OLD | NEW |
| (Empty) |
1 | |
2 /* | |
3 * Copyright 2012 Google Inc. | |
4 * | |
5 * Use of this source code is governed by a BSD-style license that can be | |
6 * found in the LICENSE file. | |
7 */ | |
8 | |
9 #include "SkOrderedWriteBuffer.h" | |
10 #include "SkBitmap.h" | |
11 #include "SkData.h" | |
12 #include "SkPixelRef.h" | |
13 #include "SkPtrRecorder.h" | |
14 #include "SkStream.h" | |
15 #include "SkTypeface.h" | |
16 | |
17 SkOrderedWriteBuffer::SkOrderedWriteBuffer() | |
18 : INHERITED() | |
19 , fFactorySet(NULL) | |
20 , fNamedFactorySet(NULL) | |
21 , fBitmapHeap(NULL) | |
22 , fTFSet(NULL) | |
23 , fBitmapEncoder(NULL) { | |
24 } | |
25 | |
26 SkOrderedWriteBuffer::SkOrderedWriteBuffer(void* storage, size_t storageSize) | |
27 : INHERITED() | |
28 , fFactorySet(NULL) | |
29 , fNamedFactorySet(NULL) | |
30 , fWriter(storage, storageSize) | |
31 , fBitmapHeap(NULL) | |
32 , fTFSet(NULL) | |
33 , fBitmapEncoder(NULL) { | |
34 } | |
35 | |
36 SkOrderedWriteBuffer::~SkOrderedWriteBuffer() { | |
37 SkSafeUnref(fFactorySet); | |
38 SkSafeUnref(fNamedFactorySet); | |
39 SkSafeUnref(fBitmapHeap); | |
40 SkSafeUnref(fTFSet); | |
41 } | |
42 | |
43 void SkOrderedWriteBuffer::writeByteArray(const void* data, size_t size) { | |
44 fWriter.write32(size); | |
45 fWriter.writePad(data, size); | |
46 } | |
47 | |
48 void SkOrderedWriteBuffer::writeBool(bool value) { | |
49 fWriter.writeBool(value); | |
50 } | |
51 | |
52 void SkOrderedWriteBuffer::writeFixed(SkFixed value) { | |
53 fWriter.write32(value); | |
54 } | |
55 | |
56 void SkOrderedWriteBuffer::writeScalar(SkScalar value) { | |
57 fWriter.writeScalar(value); | |
58 } | |
59 | |
60 void SkOrderedWriteBuffer::writeScalarArray(const SkScalar* value, uint32_t coun
t) { | |
61 fWriter.write32(count); | |
62 fWriter.write(value, count * sizeof(SkScalar)); | |
63 } | |
64 | |
65 void SkOrderedWriteBuffer::writeInt(int32_t value) { | |
66 fWriter.write32(value); | |
67 } | |
68 | |
69 void SkOrderedWriteBuffer::writeIntArray(const int32_t* value, uint32_t count) { | |
70 fWriter.write32(count); | |
71 fWriter.write(value, count * sizeof(int32_t)); | |
72 } | |
73 | |
74 void SkOrderedWriteBuffer::writeUInt(uint32_t value) { | |
75 fWriter.write32(value); | |
76 } | |
77 | |
78 void SkOrderedWriteBuffer::write32(int32_t value) { | |
79 fWriter.write32(value); | |
80 } | |
81 | |
82 void SkOrderedWriteBuffer::writeString(const char* value) { | |
83 fWriter.writeString(value); | |
84 } | |
85 | |
86 void SkOrderedWriteBuffer::writeEncodedString(const void* value, size_t byteLeng
th, | |
87 SkPaint::TextEncoding encoding) { | |
88 fWriter.writeInt(encoding); | |
89 fWriter.writeInt(byteLength); | |
90 fWriter.write(value, byteLength); | |
91 } | |
92 | |
93 | |
94 void SkOrderedWriteBuffer::writeColor(const SkColor& color) { | |
95 fWriter.write32(color); | |
96 } | |
97 | |
98 void SkOrderedWriteBuffer::writeColorArray(const SkColor* color, uint32_t count)
{ | |
99 fWriter.write32(count); | |
100 fWriter.write(color, count * sizeof(SkColor)); | |
101 } | |
102 | |
103 void SkOrderedWriteBuffer::writePoint(const SkPoint& point) { | |
104 fWriter.writeScalar(point.fX); | |
105 fWriter.writeScalar(point.fY); | |
106 } | |
107 | |
108 void SkOrderedWriteBuffer::writePointArray(const SkPoint* point, uint32_t count)
{ | |
109 fWriter.write32(count); | |
110 fWriter.write(point, count * sizeof(SkPoint)); | |
111 } | |
112 | |
113 void SkOrderedWriteBuffer::writeMatrix(const SkMatrix& matrix) { | |
114 fWriter.writeMatrix(matrix); | |
115 } | |
116 | |
117 void SkOrderedWriteBuffer::writeIRect(const SkIRect& rect) { | |
118 fWriter.write(&rect, sizeof(SkIRect)); | |
119 } | |
120 | |
121 void SkOrderedWriteBuffer::writeRect(const SkRect& rect) { | |
122 fWriter.writeRect(rect); | |
123 } | |
124 | |
125 void SkOrderedWriteBuffer::writeRegion(const SkRegion& region) { | |
126 fWriter.writeRegion(region); | |
127 } | |
128 | |
129 void SkOrderedWriteBuffer::writePath(const SkPath& path) { | |
130 fWriter.writePath(path); | |
131 } | |
132 | |
133 size_t SkOrderedWriteBuffer::writeStream(SkStream* stream, size_t length) { | |
134 fWriter.write32(length); | |
135 size_t bytesWritten = fWriter.readFromStream(stream, length); | |
136 if (bytesWritten < length) { | |
137 fWriter.reservePad(length - bytesWritten); | |
138 } | |
139 return bytesWritten; | |
140 } | |
141 | |
142 bool SkOrderedWriteBuffer::writeToStream(SkWStream* stream) { | |
143 return fWriter.writeToStream(stream); | |
144 } | |
145 | |
146 static void write_encoded_bitmap(SkOrderedWriteBuffer* buffer, SkData* data, | |
147 const SkIPoint& origin) { | |
148 buffer->writeUInt(SkToU32(data->size())); | |
149 buffer->getWriter32()->writePad(data->data(), data->size()); | |
150 buffer->write32(origin.fX); | |
151 buffer->write32(origin.fY); | |
152 } | |
153 | |
154 void SkOrderedWriteBuffer::writeBitmap(const SkBitmap& bitmap) { | |
155 // Record the width and height. This way if readBitmap fails a dummy bitmap
can be drawn at the | |
156 // right size. | |
157 this->writeInt(bitmap.width()); | |
158 this->writeInt(bitmap.height()); | |
159 | |
160 // Record information about the bitmap in one of three ways, in order of pri
ority: | |
161 // 1. If there is an SkBitmapHeap, store it in the heap. The client can avoi
d serializing the | |
162 // bitmap entirely or serialize it later as desired. A boolean value of t
rue will be written | |
163 // to the stream to signify that a heap was used. | |
164 // 2. If there is a function for encoding bitmaps, use it to write an encode
d version of the | |
165 // bitmap. After writing a boolean value of false, signifying that a heap
was not used, write | |
166 // the size of the encoded data. A non-zero size signifies that encoded d
ata was written. | |
167 // 3. Call SkBitmap::flatten. After writing a boolean value of false, signif
ying that a heap was | |
168 // not used, write a zero to signify that the data was not encoded. | |
169 bool useBitmapHeap = fBitmapHeap != NULL; | |
170 // Write a bool: true if the SkBitmapHeap is to be used, in which case the r
eader must use an | |
171 // SkBitmapHeapReader to read the SkBitmap. False if the bitmap was serializ
ed another way. | |
172 this->writeBool(useBitmapHeap); | |
173 if (useBitmapHeap) { | |
174 SkASSERT(NULL == fBitmapEncoder); | |
175 int32_t slot = fBitmapHeap->insert(bitmap); | |
176 fWriter.write32(slot); | |
177 // crbug.com/155875 | |
178 // The generation ID is not required information. We write it to prevent
collisions | |
179 // in SkFlatDictionary. It is possible to get a collision when a previo
usly | |
180 // unflattened (i.e. stale) instance of a similar flattenable is in the
dictionary | |
181 // and the instance currently being written is re-using the same slot fr
om the | |
182 // bitmap heap. | |
183 fWriter.write32(bitmap.getGenerationID()); | |
184 return; | |
185 } | |
186 | |
187 // see if the pixelref already has an encoded version | |
188 if (bitmap.pixelRef()) { | |
189 SkAutoDataUnref data(bitmap.pixelRef()->refEncodedData()); | |
190 if (data.get() != NULL) { | |
191 write_encoded_bitmap(this, data, bitmap.pixelRefOrigin()); | |
192 return; | |
193 } | |
194 } | |
195 | |
196 // see if the caller wants to manually encode | |
197 if (fBitmapEncoder != NULL) { | |
198 SkASSERT(NULL == fBitmapHeap); | |
199 size_t offset = 0; // this parameter is deprecated/ignored | |
200 // if we have to "encode" the bitmap, then we assume there is no | |
201 // offset to share, since we are effectively creating a new pixelref | |
202 SkAutoDataUnref data(fBitmapEncoder(&offset, bitmap)); | |
203 if (data.get() != NULL) { | |
204 write_encoded_bitmap(this, data, SkIPoint::Make(0, 0)); | |
205 return; | |
206 } | |
207 } | |
208 | |
209 // Bitmap was not encoded. Record a zero, implying that the reader need not
decode. | |
210 this->writeUInt(0); | |
211 bitmap.flatten(*this); | |
212 } | |
213 | |
214 void SkOrderedWriteBuffer::writeTypeface(SkTypeface* obj) { | |
215 if (NULL == obj || NULL == fTFSet) { | |
216 fWriter.write32(0); | |
217 } else { | |
218 fWriter.write32(fTFSet->add(obj)); | |
219 } | |
220 } | |
221 | |
222 SkFactorySet* SkOrderedWriteBuffer::setFactoryRecorder(SkFactorySet* rec) { | |
223 SkRefCnt_SafeAssign(fFactorySet, rec); | |
224 if (fNamedFactorySet != NULL) { | |
225 fNamedFactorySet->unref(); | |
226 fNamedFactorySet = NULL; | |
227 } | |
228 return rec; | |
229 } | |
230 | |
231 SkNamedFactorySet* SkOrderedWriteBuffer::setNamedFactoryRecorder(SkNamedFactoryS
et* rec) { | |
232 SkRefCnt_SafeAssign(fNamedFactorySet, rec); | |
233 if (fFactorySet != NULL) { | |
234 fFactorySet->unref(); | |
235 fFactorySet = NULL; | |
236 } | |
237 return rec; | |
238 } | |
239 | |
240 SkRefCntSet* SkOrderedWriteBuffer::setTypefaceRecorder(SkRefCntSet* rec) { | |
241 SkRefCnt_SafeAssign(fTFSet, rec); | |
242 return rec; | |
243 } | |
244 | |
245 void SkOrderedWriteBuffer::setBitmapHeap(SkBitmapHeap* bitmapHeap) { | |
246 SkRefCnt_SafeAssign(fBitmapHeap, bitmapHeap); | |
247 if (bitmapHeap != NULL) { | |
248 SkASSERT(NULL == fBitmapEncoder); | |
249 fBitmapEncoder = NULL; | |
250 } | |
251 } | |
252 | |
253 void SkOrderedWriteBuffer::setBitmapEncoder(SkPicture::EncodeBitmap bitmapEncode
r) { | |
254 fBitmapEncoder = bitmapEncoder; | |
255 if (bitmapEncoder != NULL) { | |
256 SkASSERT(NULL == fBitmapHeap); | |
257 SkSafeUnref(fBitmapHeap); | |
258 fBitmapHeap = NULL; | |
259 } | |
260 } | |
261 | |
262 void SkOrderedWriteBuffer::writeFlattenable(const SkFlattenable* flattenable) { | |
263 /* | |
264 * If we have a factoryset, then the first 32bits tell us... | |
265 * 0: failure to write the flattenable | |
266 * >0: (1-based) index into the SkFactorySet or SkNamedFactorySet | |
267 * If we don't have a factoryset, then the first "ptr" is either the | |
268 * factory, or null for failure. | |
269 * | |
270 * The distinction is important, since 0-index is 32bits (always), but a | |
271 * 0-functionptr might be 32 or 64 bits. | |
272 */ | |
273 | |
274 SkFlattenable::Factory factory = NULL; | |
275 if (flattenable) { | |
276 factory = flattenable->getFactory(); | |
277 } | |
278 if (NULL == factory) { | |
279 if (this->isValidating()) { | |
280 this->writeString(""); | |
281 SkASSERT(NULL == flattenable); // We shouldn't get in here in this s
cenario | |
282 } else if (fFactorySet != NULL || fNamedFactorySet != NULL) { | |
283 this->write32(0); | |
284 } else { | |
285 this->writeFunctionPtr(NULL); | |
286 } | |
287 return; | |
288 } | |
289 | |
290 /* | |
291 * We can write 1 of 3 versions of the flattenable: | |
292 * 1. function-ptr : this is the fastest for the reader, but assumes that | |
293 * the writer and reader are in the same process. | |
294 * 2. index into fFactorySet : This is assumes the writer will later | |
295 * resolve the function-ptrs into strings for its reader. SkPicture | |
296 * does exactly this, by writing a table of names (matching the indices
) | |
297 * up front in its serialized form. | |
298 * 3. index into fNamedFactorySet. fNamedFactorySet will also store the | |
299 * name. SkGPipe uses this technique so it can write the name to its | |
300 * stream before writing the flattenable. | |
301 */ | |
302 if (this->isValidating()) { | |
303 this->writeString(flattenable->getTypeName()); | |
304 } else if (fFactorySet) { | |
305 this->write32(fFactorySet->add(factory)); | |
306 } else if (fNamedFactorySet) { | |
307 int32_t index = fNamedFactorySet->find(factory); | |
308 this->write32(index); | |
309 if (0 == index) { | |
310 return; | |
311 } | |
312 } else { | |
313 this->writeFunctionPtr((void*)factory); | |
314 } | |
315 | |
316 // make room for the size of the flattened object | |
317 (void)fWriter.reserve(sizeof(uint32_t)); | |
318 // record the current size, so we can subtract after the object writes. | |
319 uint32_t offset = fWriter.bytesWritten(); | |
320 // now flatten the object | |
321 flattenObject(flattenable, *this); | |
322 uint32_t objSize = fWriter.bytesWritten() - offset; | |
323 // record the obj's size | |
324 *fWriter.peek32(offset - sizeof(uint32_t)) = objSize; | |
325 } | |
OLD | NEW |