Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(22)

Side by Side Diff: src/IceTimerTree.cpp

Issue 1341423002: Reflow comments to use the full width. (Closed) Base URL: https://chromium.googlesource.com/native_client/pnacl-subzero.git@master
Patch Set: Fix spelling and rebase Created 5 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/IceTimerTree.h ('k') | src/IceTimerTree.def » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 //===- subzero/src/IceTimerTree.cpp - Pass timer defs ---------------------===// 1 //===- subzero/src/IceTimerTree.cpp - Pass timer defs ---------------------===//
2 // 2 //
3 // The Subzero Code Generator 3 // The Subzero Code Generator
4 // 4 //
5 // This file is distributed under the University of Illinois Open Source 5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details. 6 // License. See LICENSE.TXT for details.
7 // 7 //
8 //===----------------------------------------------------------------------===// 8 //===----------------------------------------------------------------------===//
9 /// 9 ///
10 /// \file 10 /// \file
11 /// This file defines the TimerTree class, which tracks flat and 11 /// This file defines the TimerTree class, which tracks flat and cumulative
12 /// cumulative execution time collection of call chains. 12 /// execution time collection of call chains.
13 /// 13 ///
14 //===----------------------------------------------------------------------===// 14 //===----------------------------------------------------------------------===//
15 15
16 #include "IceTimerTree.h" 16 #include "IceTimerTree.h"
17 17
18 #include "IceDefs.h" 18 #include "IceDefs.h"
19 19
20 #pragma clang diagnostic push 20 #pragma clang diagnostic push
21 #pragma clang diagnostic ignored "-Wunused-parameter" 21 #pragma clang diagnostic ignored "-Wunused-parameter"
22 #include "llvm/Support/Timer.h" 22 #include "llvm/Support/Timer.h"
(...skipping 11 matching lines...) Expand all
34 LeafCounts.resize(TT__num); 34 LeafCounts.resize(TT__num);
35 #define STR(s) #s 35 #define STR(s) #s
36 #define X(tag) \ 36 #define X(tag) \
37 IDs[TT_##tag] = STR(tag); \ 37 IDs[TT_##tag] = STR(tag); \
38 IDsIndex[STR(tag)] = TT_##tag; 38 IDsIndex[STR(tag)] = TT_##tag;
39 TIMERTREE_TABLE; 39 TIMERTREE_TABLE;
40 #undef X 40 #undef X
41 #undef STR 41 #undef STR
42 } 42 }
43 43
44 // Returns the unique timer ID for the given Name, creating a new ID 44 // Returns the unique timer ID for the given Name, creating a new ID if needed.
45 // if needed.
46 TimerIdT TimerStack::getTimerID(const IceString &Name) { 45 TimerIdT TimerStack::getTimerID(const IceString &Name) {
47 if (!BuildDefs::dump()) 46 if (!BuildDefs::dump())
48 return 0; 47 return 0;
49 if (IDsIndex.find(Name) == IDsIndex.end()) { 48 if (IDsIndex.find(Name) == IDsIndex.end()) {
50 IDsIndex[Name] = IDs.size(); 49 IDsIndex[Name] = IDs.size();
51 IDs.push_back(Name); 50 IDs.push_back(Name);
52 LeafTimes.push_back(decltype(LeafTimes)::value_type()); 51 LeafTimes.push_back(decltype(LeafTimes)::value_type());
53 LeafCounts.push_back(decltype(LeafCounts)::value_type()); 52 LeafCounts.push_back(decltype(LeafCounts)::value_type());
54 } 53 }
55 return IDsIndex[Name]; 54 return IDsIndex[Name];
56 } 55 }
57 56
58 // Creates a mapping from TimerIdT (leaf) values in the Src timer 57 // Creates a mapping from TimerIdT (leaf) values in the Src timer stack into
59 // stack into TimerIdT values in this timer stack. Creates new 58 // TimerIdT values in this timer stack. Creates new entries in this timer stack
60 // entries in this timer stack as needed. 59 // as needed.
61 TimerStack::TranslationType 60 TimerStack::TranslationType
62 TimerStack::translateIDsFrom(const TimerStack &Src) { 61 TimerStack::translateIDsFrom(const TimerStack &Src) {
63 size_t Size = Src.IDs.size(); 62 size_t Size = Src.IDs.size();
64 TranslationType Mapping(Size); 63 TranslationType Mapping(Size);
65 for (TimerIdT i = 0; i < Size; ++i) { 64 for (TimerIdT i = 0; i < Size; ++i) {
66 Mapping[i] = getTimerID(Src.IDs[i]); 65 Mapping[i] = getTimerID(Src.IDs[i]);
67 } 66 }
68 return Mapping; 67 return Mapping;
69 } 68 }
70 69
71 // Merges two timer stacks, by combining and summing corresponding 70 // Merges two timer stacks, by combining and summing corresponding entries.
72 // entries. This timer stack is updated from Src. 71 // This timer stack is updated from Src.
73 void TimerStack::mergeFrom(const TimerStack &Src) { 72 void TimerStack::mergeFrom(const TimerStack &Src) {
74 if (!BuildDefs::dump()) 73 if (!BuildDefs::dump())
75 return; 74 return;
76 TranslationType Mapping = translateIDsFrom(Src); 75 TranslationType Mapping = translateIDsFrom(Src);
77 TTindex SrcIndex = 0; 76 TTindex SrcIndex = 0;
78 for (const TimerTreeNode &SrcNode : Src.Nodes) { 77 for (const TimerTreeNode &SrcNode : Src.Nodes) {
79 // The first node is reserved as a sentinel, so avoid it. 78 // The first node is reserved as a sentinel, so avoid it.
80 if (SrcIndex > 0) { 79 if (SrcIndex > 0) {
81 // Find the full path to the Src node, translated to path 80 // Find the full path to the Src node, translated to path components
82 // components corresponding to this timer stack. 81 // corresponding to this timer stack.
83 PathType MyPath = Src.getPath(SrcIndex, Mapping); 82 PathType MyPath = Src.getPath(SrcIndex, Mapping);
84 // Find a node in this timer stack corresponding to the given 83 // Find a node in this timer stack corresponding to the given path,
85 // path, creating new interior nodes as necessary. 84 // creating new interior nodes as necessary.
86 TTindex MyIndex = findPath(MyPath); 85 TTindex MyIndex = findPath(MyPath);
87 Nodes[MyIndex].Time += SrcNode.Time; 86 Nodes[MyIndex].Time += SrcNode.Time;
88 Nodes[MyIndex].UpdateCount += SrcNode.UpdateCount; 87 Nodes[MyIndex].UpdateCount += SrcNode.UpdateCount;
89 } 88 }
90 ++SrcIndex; 89 ++SrcIndex;
91 } 90 }
92 for (TimerIdT i = 0; i < Src.LeafTimes.size(); ++i) { 91 for (TimerIdT i = 0; i < Src.LeafTimes.size(); ++i) {
93 LeafTimes[Mapping[i]] += Src.LeafTimes[i]; 92 LeafTimes[Mapping[i]] += Src.LeafTimes[i];
94 LeafCounts[Mapping[i]] += Src.LeafCounts[i]; 93 LeafCounts[Mapping[i]] += Src.LeafCounts[i];
95 } 94 }
96 StateChangeCount += Src.StateChangeCount; 95 StateChangeCount += Src.StateChangeCount;
97 } 96 }
98 97
99 // Constructs a path consisting of the sequence of leaf values leading 98 // Constructs a path consisting of the sequence of leaf values leading to a
100 // to a given node, with the Mapping translation applied to the leaf 99 // given node, with the Mapping translation applied to the leaf values. The
101 // values. The path ends up being in "reverse" order, i.e. from leaf 100 // path ends up being in "reverse" order, i.e. from leaf to root.
102 // to root.
103 TimerStack::PathType TimerStack::getPath(TTindex Index, 101 TimerStack::PathType TimerStack::getPath(TTindex Index,
104 const TranslationType &Mapping) const { 102 const TranslationType &Mapping) const {
105 PathType Path; 103 PathType Path;
106 while (Index) { 104 while (Index) {
107 Path.push_back(Mapping[Nodes[Index].Interior]); 105 Path.push_back(Mapping[Nodes[Index].Interior]);
108 assert(Nodes[Index].Parent < Index); 106 assert(Nodes[Index].Parent < Index);
109 Index = Nodes[Index].Parent; 107 Index = Nodes[Index].Parent;
110 } 108 }
111 return Path; 109 return Path;
112 } 110 }
113 111
114 // Given a parent node and a leaf ID, returns the index of the 112 // Given a parent node and a leaf ID, returns the index of the parent's child
115 // parent's child ID, creating a new node for the child as necessary. 113 // ID, creating a new node for the child as necessary.
116 TimerStack::TTindex TimerStack::getChildIndex(TimerStack::TTindex Parent, 114 TimerStack::TTindex TimerStack::getChildIndex(TimerStack::TTindex Parent,
117 TimerIdT ID) { 115 TimerIdT ID) {
118 if (Nodes[Parent].Children.size() <= ID) 116 if (Nodes[Parent].Children.size() <= ID)
119 Nodes[Parent].Children.resize(ID + 1); 117 Nodes[Parent].Children.resize(ID + 1);
120 if (Nodes[Parent].Children[ID] == 0) { 118 if (Nodes[Parent].Children[ID] == 0) {
121 TTindex Size = Nodes.size(); 119 TTindex Size = Nodes.size();
122 Nodes[Parent].Children[ID] = Size; 120 Nodes[Parent].Children[ID] = Size;
123 Nodes.resize(Size + 1); 121 Nodes.resize(Size + 1);
124 Nodes[Size].Parent = Parent; 122 Nodes[Size].Parent = Parent;
125 Nodes[Size].Interior = ID; 123 Nodes[Size].Interior = ID;
126 } 124 }
127 return Nodes[Parent].Children[ID]; 125 return Nodes[Parent].Children[ID];
128 } 126 }
129 127
130 // Finds a node in the timer stack corresponding to the given path, 128 // Finds a node in the timer stack corresponding to the given path, creating
131 // creating new interior nodes as necessary. 129 // new interior nodes as necessary.
132 TimerStack::TTindex TimerStack::findPath(const PathType &Path) { 130 TimerStack::TTindex TimerStack::findPath(const PathType &Path) {
133 TTindex CurIndex = 0; 131 TTindex CurIndex = 0;
134 // The path is in reverse order (leaf to root), so it needs to be 132 // The path is in reverse order (leaf to root), so it needs to be followed in
135 // followed in reverse. 133 // reverse.
136 for (TTindex Index : reverse_range(Path)) { 134 for (TTindex Index : reverse_range(Path)) {
137 CurIndex = getChildIndex(CurIndex, Index); 135 CurIndex = getChildIndex(CurIndex, Index);
138 } 136 }
139 assert(CurIndex); // shouldn't be the sentinel node 137 assert(CurIndex); // shouldn't be the sentinel node
140 return CurIndex; 138 return CurIndex;
141 } 139 }
142 140
143 // Pushes a new marker onto the timer stack. 141 // Pushes a new marker onto the timer stack.
144 void TimerStack::push(TimerIdT ID) { 142 void TimerStack::push(TimerIdT ID) {
145 if (!BuildDefs::dump()) 143 if (!BuildDefs::dump())
146 return; 144 return;
147 const bool UpdateCounts = false; 145 const bool UpdateCounts = false;
148 update(UpdateCounts); 146 update(UpdateCounts);
149 StackTop = getChildIndex(StackTop, ID); 147 StackTop = getChildIndex(StackTop, ID);
150 assert(StackTop); 148 assert(StackTop);
151 } 149 }
152 150
153 // Pops the top marker from the timer stack. Validates via assert() 151 // Pops the top marker from the timer stack. Validates via assert() that the
154 // that the expected marker is popped. 152 // expected marker is popped.
155 void TimerStack::pop(TimerIdT ID) { 153 void TimerStack::pop(TimerIdT ID) {
156 if (!BuildDefs::dump()) 154 if (!BuildDefs::dump())
157 return; 155 return;
158 const bool UpdateCounts = true; 156 const bool UpdateCounts = true;
159 update(UpdateCounts); 157 update(UpdateCounts);
160 assert(StackTop); 158 assert(StackTop);
161 assert(Nodes[StackTop].Parent < StackTop); 159 assert(Nodes[StackTop].Parent < StackTop);
162 // Verify that the expected ID is being popped. 160 // Verify that the expected ID is being popped.
163 assert(Nodes[StackTop].Interior == ID); 161 assert(Nodes[StackTop].Interior == ID);
164 (void)ID; 162 (void)ID;
165 // Verify that the parent's child points to the current stack top. 163 // Verify that the parent's child points to the current stack top.
166 assert(Nodes[Nodes[StackTop].Parent].Children[ID] == StackTop); 164 assert(Nodes[Nodes[StackTop].Parent].Children[ID] == StackTop);
167 StackTop = Nodes[StackTop].Parent; 165 StackTop = Nodes[StackTop].Parent;
168 } 166 }
169 167
170 // At a state change (e.g. push or pop), updates the flat and 168 // At a state change (e.g. push or pop), updates the flat and cumulative
171 // cumulative timings for everything on the timer stack. 169 // timings for everything on the timer stack.
172 void TimerStack::update(bool UpdateCounts) { 170 void TimerStack::update(bool UpdateCounts) {
173 if (!BuildDefs::dump()) 171 if (!BuildDefs::dump())
174 return; 172 return;
175 ++StateChangeCount; 173 ++StateChangeCount;
176 // Whenever the stack is about to change, we grab the time delta 174 // Whenever the stack is about to change, we grab the time delta since the
177 // since the last change and add it to all active cumulative 175 // last change and add it to all active cumulative elements and to the flat
178 // elements and to the flat element for the top of the stack. 176 // element for the top of the stack.
179 double Current = timestamp(); 177 double Current = timestamp();
180 double Delta = Current - LastTimestamp; 178 double Delta = Current - LastTimestamp;
181 if (StackTop) { 179 if (StackTop) {
182 TimerIdT Leaf = Nodes[StackTop].Interior; 180 TimerIdT Leaf = Nodes[StackTop].Interior;
183 if (Leaf >= LeafTimes.size()) { 181 if (Leaf >= LeafTimes.size()) {
184 LeafTimes.resize(Leaf + 1); 182 LeafTimes.resize(Leaf + 1);
185 LeafCounts.resize(Leaf + 1); 183 LeafCounts.resize(Leaf + 1);
186 } 184 }
187 LeafTimes[Leaf] += Delta; 185 LeafTimes[Leaf] += Delta;
188 if (UpdateCounts) 186 if (UpdateCounts)
189 ++LeafCounts[Leaf]; 187 ++LeafCounts[Leaf];
190 } 188 }
191 TTindex Prefix = StackTop; 189 TTindex Prefix = StackTop;
192 while (Prefix) { 190 while (Prefix) {
193 Nodes[Prefix].Time += Delta; 191 Nodes[Prefix].Time += Delta;
194 // Only update a leaf node count, not the internal node counts. 192 // Only update a leaf node count, not the internal node counts.
195 if (UpdateCounts && Prefix == StackTop) 193 if (UpdateCounts && Prefix == StackTop)
196 ++Nodes[Prefix].UpdateCount; 194 ++Nodes[Prefix].UpdateCount;
197 TTindex Next = Nodes[Prefix].Parent; 195 TTindex Next = Nodes[Prefix].Parent;
198 assert(Next < Prefix); 196 assert(Next < Prefix);
199 Prefix = Next; 197 Prefix = Next;
200 } 198 }
201 // Capture the next timestamp *after* the updates are finished. 199 // Capture the next timestamp *after* the updates are finished. This
202 // This minimizes how much the timer can perturb the reported 200 // minimizes how much the timer can perturb the reported timing. The numbers
203 // timing. The numbers may not sum to 100%, and the missing amount 201 // may not sum to 100%, and the missing amount is indicative of the overhead
204 // is indicative of the overhead of timing. 202 // of timing.
205 LastTimestamp = timestamp(); 203 LastTimestamp = timestamp();
206 } 204 }
207 205
208 void TimerStack::reset() { 206 void TimerStack::reset() {
209 if (!BuildDefs::dump()) 207 if (!BuildDefs::dump())
210 return; 208 return;
211 StateChangeCount = 0; 209 StateChangeCount = 0;
212 FirstTimestamp = LastTimestamp = timestamp(); 210 FirstTimestamp = LastTimestamp = timestamp();
213 LeafTimes.assign(LeafTimes.size(), 0); 211 LeafTimes.assign(LeafTimes.size(), 0);
214 LeafCounts.assign(LeafCounts.size(), 0); 212 LeafCounts.assign(LeafCounts.size(), 0);
(...skipping 12 matching lines...) Expand all
227 if (!BuildDefs::dump()) 225 if (!BuildDefs::dump())
228 return; 226 return;
229 for (auto &I : reverse_range(Map)) { 227 for (auto &I : reverse_range(Map)) {
230 char buf[80]; 228 char buf[80];
231 snprintf(buf, llvm::array_lengthof(buf), " %10.6f (%4.1f%%): ", I.first, 229 snprintf(buf, llvm::array_lengthof(buf), " %10.6f (%4.1f%%): ", I.first,
232 I.first * 100 / TotalTime); 230 I.first * 100 / TotalTime);
233 Str << buf << I.second << "\n"; 231 Str << buf << I.second << "\n";
234 } 232 }
235 } 233 }
236 234
237 // Write a printf() format string into Buf[], in the format "[%5lu] ", 235 // Write a printf() format string into Buf[], in the format "[%5lu] ", where
238 // where "5" is actually the number of digits in MaxVal. E.g., 236 // "5" is actually the number of digits in MaxVal. E.g.,
239 // MaxVal=0 ==> "[%1lu] " 237 // MaxVal=0 ==> "[%1lu] "
240 // MaxVal=5 ==> "[%1lu] " 238 // MaxVal=5 ==> "[%1lu] "
241 // MaxVal=9876 ==> "[%4lu] " 239 // MaxVal=9876 ==> "[%4lu] "
242 void makePrintfFormatString(char *Buf, size_t BufLen, size_t MaxVal) { 240 void makePrintfFormatString(char *Buf, size_t BufLen, size_t MaxVal) {
243 if (!BuildDefs::dump()) 241 if (!BuildDefs::dump())
244 return; 242 return;
245 int NumDigits = 0; 243 int NumDigits = 0;
246 do { 244 do {
247 ++NumDigits; 245 ++NumDigits;
248 MaxVal /= 10; 246 MaxVal /= 10;
(...skipping 54 matching lines...) Expand 10 before | Expand all | Expand 10 after
303 dumpHelper(Str, FlatMap, TotalTime); 301 dumpHelper(Str, FlatMap, TotalTime);
304 Str << "Number of timer updates: " << StateChangeCount << "\n"; 302 Str << "Number of timer updates: " << StateChangeCount << "\n";
305 } 303 }
306 304
307 double TimerStack::timestamp() { 305 double TimerStack::timestamp() {
308 // TODO: Implement in terms of std::chrono for C++11. 306 // TODO: Implement in terms of std::chrono for C++11.
309 return llvm::TimeRecord::getCurrentTime(false).getWallTime(); 307 return llvm::TimeRecord::getCurrentTime(false).getWallTime();
310 } 308 }
311 309
312 } // end of namespace Ice 310 } // end of namespace Ice
OLDNEW
« no previous file with comments | « src/IceTimerTree.h ('k') | src/IceTimerTree.def » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698