| Index: src/builtins.cc
|
| diff --git a/src/builtins.cc b/src/builtins.cc
|
| index a1445b732c3c41548aded2e8848eea6dee2cc91d..f777f14f52cf8d03330446b672f1da876210b035 100644
|
| --- a/src/builtins.cc
|
| +++ b/src/builtins.cc
|
| @@ -604,36 +604,810 @@ BUILTIN(ArraySplice) {
|
| }
|
|
|
|
|
| -BUILTIN(ArrayConcat) {
|
| - HandleScope scope(isolate);
|
| +// Array Concat -------------------------------------------------------------
|
| +
|
| +namespace {
|
| +
|
| +/**
|
| + * A simple visitor visits every element of Array's.
|
| + * The backend storage can be a fixed array for fast elements case,
|
| + * or a dictionary for sparse array. Since Dictionary is a subtype
|
| + * of FixedArray, the class can be used by both fast and slow cases.
|
| + * The second parameter of the constructor, fast_elements, specifies
|
| + * whether the storage is a FixedArray or Dictionary.
|
| + *
|
| + * An index limit is used to deal with the situation that a result array
|
| + * length overflows 32-bit non-negative integer.
|
| + */
|
| +class ArrayConcatVisitor {
|
| + public:
|
| + ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage,
|
| + bool fast_elements)
|
| + : isolate_(isolate),
|
| + storage_(Handle<FixedArray>::cast(
|
| + isolate->global_handles()->Create(*storage))),
|
| + index_offset_(0u),
|
| + bit_field_(FastElementsField::encode(fast_elements) |
|
| + ExceedsLimitField::encode(false)) {}
|
| +
|
| + ~ArrayConcatVisitor() { clear_storage(); }
|
| +
|
| + void visit(uint32_t i, Handle<Object> elm) {
|
| + if (i >= JSObject::kMaxElementCount - index_offset_) {
|
| + set_exceeds_array_limit(true);
|
| + return;
|
| + }
|
| + uint32_t index = index_offset_ + i;
|
| +
|
| + if (fast_elements()) {
|
| + if (index < static_cast<uint32_t>(storage_->length())) {
|
| + storage_->set(index, *elm);
|
| + return;
|
| + }
|
| + // Our initial estimate of length was foiled, possibly by
|
| + // getters on the arrays increasing the length of later arrays
|
| + // during iteration.
|
| + // This shouldn't happen in anything but pathological cases.
|
| + SetDictionaryMode();
|
| + // Fall-through to dictionary mode.
|
| + }
|
| + DCHECK(!fast_elements());
|
| + Handle<SeededNumberDictionary> dict(
|
| + SeededNumberDictionary::cast(*storage_));
|
| + // The object holding this backing store has just been allocated, so
|
| + // it cannot yet be used as a prototype.
|
| + Handle<SeededNumberDictionary> result =
|
| + SeededNumberDictionary::AtNumberPut(dict, index, elm, false);
|
| + if (!result.is_identical_to(dict)) {
|
| + // Dictionary needed to grow.
|
| + clear_storage();
|
| + set_storage(*result);
|
| + }
|
| + }
|
|
|
| - int n_arguments = args.length();
|
| + void increase_index_offset(uint32_t delta) {
|
| + if (JSObject::kMaxElementCount - index_offset_ < delta) {
|
| + index_offset_ = JSObject::kMaxElementCount;
|
| + } else {
|
| + index_offset_ += delta;
|
| + }
|
| + // If the initial length estimate was off (see special case in visit()),
|
| + // but the array blowing the limit didn't contain elements beyond the
|
| + // provided-for index range, go to dictionary mode now.
|
| + if (fast_elements() &&
|
| + index_offset_ >
|
| + static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
|
| + SetDictionaryMode();
|
| + }
|
| + }
|
| +
|
| + bool exceeds_array_limit() const {
|
| + return ExceedsLimitField::decode(bit_field_);
|
| + }
|
| +
|
| + Handle<JSArray> ToArray() {
|
| + Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
|
| + Handle<Object> length =
|
| + isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
|
| + Handle<Map> map = JSObject::GetElementsTransitionMap(
|
| + array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
|
| + array->set_map(*map);
|
| + array->set_length(*length);
|
| + array->set_elements(*storage_);
|
| + return array;
|
| + }
|
| +
|
| + private:
|
| + // Convert storage to dictionary mode.
|
| + void SetDictionaryMode() {
|
| + DCHECK(fast_elements());
|
| + Handle<FixedArray> current_storage(*storage_);
|
| + Handle<SeededNumberDictionary> slow_storage(
|
| + SeededNumberDictionary::New(isolate_, current_storage->length()));
|
| + uint32_t current_length = static_cast<uint32_t>(current_storage->length());
|
| + for (uint32_t i = 0; i < current_length; i++) {
|
| + HandleScope loop_scope(isolate_);
|
| + Handle<Object> element(current_storage->get(i), isolate_);
|
| + if (!element->IsTheHole()) {
|
| + // The object holding this backing store has just been allocated, so
|
| + // it cannot yet be used as a prototype.
|
| + Handle<SeededNumberDictionary> new_storage =
|
| + SeededNumberDictionary::AtNumberPut(slow_storage, i, element,
|
| + false);
|
| + if (!new_storage.is_identical_to(slow_storage)) {
|
| + slow_storage = loop_scope.CloseAndEscape(new_storage);
|
| + }
|
| + }
|
| + }
|
| + clear_storage();
|
| + set_storage(*slow_storage);
|
| + set_fast_elements(false);
|
| + }
|
| +
|
| + inline void clear_storage() {
|
| + GlobalHandles::Destroy(Handle<Object>::cast(storage_).location());
|
| + }
|
| +
|
| + inline void set_storage(FixedArray* storage) {
|
| + storage_ =
|
| + Handle<FixedArray>::cast(isolate_->global_handles()->Create(storage));
|
| + }
|
| +
|
| + class FastElementsField : public BitField<bool, 0, 1> {};
|
| + class ExceedsLimitField : public BitField<bool, 1, 1> {};
|
| +
|
| + bool fast_elements() const { return FastElementsField::decode(bit_field_); }
|
| + void set_fast_elements(bool fast) {
|
| + bit_field_ = FastElementsField::update(bit_field_, fast);
|
| + }
|
| + void set_exceeds_array_limit(bool exceeds) {
|
| + bit_field_ = ExceedsLimitField::update(bit_field_, exceeds);
|
| + }
|
| +
|
| + Isolate* isolate_;
|
| + Handle<FixedArray> storage_; // Always a global handle.
|
| + // Index after last seen index. Always less than or equal to
|
| + // JSObject::kMaxElementCount.
|
| + uint32_t index_offset_;
|
| + uint32_t bit_field_;
|
| +};
|
| +
|
| +
|
| +uint32_t EstimateElementCount(Handle<JSArray> array) {
|
| + uint32_t length = static_cast<uint32_t>(array->length()->Number());
|
| + int element_count = 0;
|
| + switch (array->GetElementsKind()) {
|
| + case FAST_SMI_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS: {
|
| + // Fast elements can't have lengths that are not representable by
|
| + // a 32-bit signed integer.
|
| + DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
|
| + int fast_length = static_cast<int>(length);
|
| + Handle<FixedArray> elements(FixedArray::cast(array->elements()));
|
| + for (int i = 0; i < fast_length; i++) {
|
| + if (!elements->get(i)->IsTheHole()) element_count++;
|
| + }
|
| + break;
|
| + }
|
| + case FAST_DOUBLE_ELEMENTS:
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS: {
|
| + // Fast elements can't have lengths that are not representable by
|
| + // a 32-bit signed integer.
|
| + DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
|
| + int fast_length = static_cast<int>(length);
|
| + if (array->elements()->IsFixedArray()) {
|
| + DCHECK(FixedArray::cast(array->elements())->length() == 0);
|
| + break;
|
| + }
|
| + Handle<FixedDoubleArray> elements(
|
| + FixedDoubleArray::cast(array->elements()));
|
| + for (int i = 0; i < fast_length; i++) {
|
| + if (!elements->is_the_hole(i)) element_count++;
|
| + }
|
| + break;
|
| + }
|
| + case DICTIONARY_ELEMENTS: {
|
| + Handle<SeededNumberDictionary> dictionary(
|
| + SeededNumberDictionary::cast(array->elements()));
|
| + int capacity = dictionary->Capacity();
|
| + for (int i = 0; i < capacity; i++) {
|
| + Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
|
| + if (dictionary->IsKey(*key)) {
|
| + element_count++;
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
|
| + case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
|
| +#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
|
| +
|
| + TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
| +#undef TYPED_ARRAY_CASE
|
| + // External arrays are always dense.
|
| + return length;
|
| + }
|
| + // As an estimate, we assume that the prototype doesn't contain any
|
| + // inherited elements.
|
| + return element_count;
|
| +}
|
| +
|
| +
|
| +template <class ExternalArrayClass, class ElementType>
|
| +void IterateTypedArrayElements(Isolate* isolate, Handle<JSObject> receiver,
|
| + bool elements_are_ints,
|
| + bool elements_are_guaranteed_smis,
|
| + ArrayConcatVisitor* visitor) {
|
| + Handle<ExternalArrayClass> array(
|
| + ExternalArrayClass::cast(receiver->elements()));
|
| + uint32_t len = static_cast<uint32_t>(array->length());
|
| +
|
| + DCHECK(visitor != NULL);
|
| + if (elements_are_ints) {
|
| + if (elements_are_guaranteed_smis) {
|
| + for (uint32_t j = 0; j < len; j++) {
|
| + HandleScope loop_scope(isolate);
|
| + Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
|
| + isolate);
|
| + visitor->visit(j, e);
|
| + }
|
| + } else {
|
| + for (uint32_t j = 0; j < len; j++) {
|
| + HandleScope loop_scope(isolate);
|
| + int64_t val = static_cast<int64_t>(array->get_scalar(j));
|
| + if (Smi::IsValid(static_cast<intptr_t>(val))) {
|
| + Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
|
| + visitor->visit(j, e);
|
| + } else {
|
| + Handle<Object> e =
|
| + isolate->factory()->NewNumber(static_cast<ElementType>(val));
|
| + visitor->visit(j, e);
|
| + }
|
| + }
|
| + }
|
| + } else {
|
| + for (uint32_t j = 0; j < len; j++) {
|
| + HandleScope loop_scope(isolate);
|
| + Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
|
| + visitor->visit(j, e);
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +// Used for sorting indices in a List<uint32_t>.
|
| +int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
|
| + uint32_t a = *ap;
|
| + uint32_t b = *bp;
|
| + return (a == b) ? 0 : (a < b) ? -1 : 1;
|
| +}
|
| +
|
| +
|
| +void CollectElementIndices(Handle<JSObject> object, uint32_t range,
|
| + List<uint32_t>* indices) {
|
| + Isolate* isolate = object->GetIsolate();
|
| + ElementsKind kind = object->GetElementsKind();
|
| + switch (kind) {
|
| + case FAST_SMI_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS: {
|
| + Handle<FixedArray> elements(FixedArray::cast(object->elements()));
|
| + uint32_t length = static_cast<uint32_t>(elements->length());
|
| + if (range < length) length = range;
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + if (!elements->get(i)->IsTheHole()) {
|
| + indices->Add(i);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS: {
|
| + if (object->elements()->IsFixedArray()) {
|
| + DCHECK(object->elements()->length() == 0);
|
| + break;
|
| + }
|
| + Handle<FixedDoubleArray> elements(
|
| + FixedDoubleArray::cast(object->elements()));
|
| + uint32_t length = static_cast<uint32_t>(elements->length());
|
| + if (range < length) length = range;
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + if (!elements->is_the_hole(i)) {
|
| + indices->Add(i);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case DICTIONARY_ELEMENTS: {
|
| + Handle<SeededNumberDictionary> dict(
|
| + SeededNumberDictionary::cast(object->elements()));
|
| + uint32_t capacity = dict->Capacity();
|
| + for (uint32_t j = 0; j < capacity; j++) {
|
| + HandleScope loop_scope(isolate);
|
| + Handle<Object> k(dict->KeyAt(j), isolate);
|
| + if (dict->IsKey(*k)) {
|
| + DCHECK(k->IsNumber());
|
| + uint32_t index = static_cast<uint32_t>(k->Number());
|
| + if (index < range) {
|
| + indices->Add(index);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + }
|
| +#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS:
|
| +
|
| + TYPED_ARRAYS(TYPED_ARRAY_CASE)
|
| +#undef TYPED_ARRAY_CASE
|
| + {
|
| + uint32_t length = static_cast<uint32_t>(
|
| + FixedArrayBase::cast(object->elements())->length());
|
| + if (range <= length) {
|
| + length = range;
|
| + // We will add all indices, so we might as well clear it first
|
| + // and avoid duplicates.
|
| + indices->Clear();
|
| + }
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + indices->Add(i);
|
| + }
|
| + if (length == range) return; // All indices accounted for already.
|
| + break;
|
| + }
|
| + case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
|
| + case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
|
| + ElementsAccessor* accessor = object->GetElementsAccessor();
|
| + for (uint32_t i = 0; i < range; i++) {
|
| + if (accessor->HasElement(object, i)) {
|
| + indices->Add(i);
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + }
|
| +
|
| + PrototypeIterator iter(isolate, object);
|
| + if (!iter.IsAtEnd()) {
|
| + // The prototype will usually have no inherited element indices,
|
| + // but we have to check.
|
| + CollectElementIndices(
|
| + Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range,
|
| + indices);
|
| + }
|
| +}
|
| +
|
| +
|
| +bool IterateElementsSlow(Isolate* isolate, Handle<JSObject> receiver,
|
| + uint32_t length, ArrayConcatVisitor* visitor) {
|
| + for (uint32_t i = 0; i < length; ++i) {
|
| + HandleScope loop_scope(isolate);
|
| + Maybe<bool> maybe = JSReceiver::HasElement(receiver, i);
|
| + if (!maybe.IsJust()) return false;
|
| + if (maybe.FromJust()) {
|
| + Handle<Object> element_value;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, element_value,
|
| + Object::GetElement(isolate, receiver, i),
|
| + false);
|
| + visitor->visit(i, element_value);
|
| + }
|
| + }
|
| + visitor->increase_index_offset(length);
|
| + return true;
|
| +}
|
| +
|
| +
|
| +/**
|
| + * A helper function that visits elements of a JSObject in numerical
|
| + * order.
|
| + *
|
| + * The visitor argument called for each existing element in the array
|
| + * with the element index and the element's value.
|
| + * Afterwards it increments the base-index of the visitor by the array
|
| + * length.
|
| + * Returns false if any access threw an exception, otherwise true.
|
| + */
|
| +bool IterateElements(Isolate* isolate, Handle<JSObject> receiver,
|
| + ArrayConcatVisitor* visitor) {
|
| + uint32_t length = 0;
|
| +
|
| + if (receiver->IsJSArray()) {
|
| + Handle<JSArray> array(Handle<JSArray>::cast(receiver));
|
| + length = static_cast<uint32_t>(array->length()->Number());
|
| + } else {
|
| + Handle<Object> val;
|
| + Handle<Object> key(isolate->heap()->length_string(), isolate);
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, val, Runtime::GetObjectProperty(isolate, receiver, key),
|
| + false);
|
| + // TODO(caitp): Support larger element indexes (up to 2^53-1).
|
| + if (!val->ToUint32(&length)) {
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, val, Execution::ToLength(isolate, val), false);
|
| + val->ToUint32(&length);
|
| + }
|
| + }
|
| +
|
| + if (!(receiver->IsJSArray() || receiver->IsJSTypedArray())) {
|
| + // For classes which are not known to be safe to access via elements alone,
|
| + // use the slow case.
|
| + return IterateElementsSlow(isolate, receiver, length, visitor);
|
| + }
|
| +
|
| + switch (receiver->GetElementsKind()) {
|
| + case FAST_SMI_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_HOLEY_ELEMENTS: {
|
| + // Run through the elements FixedArray and use HasElement and GetElement
|
| + // to check the prototype for missing elements.
|
| + Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
|
| + int fast_length = static_cast<int>(length);
|
| + DCHECK(fast_length <= elements->length());
|
| + for (int j = 0; j < fast_length; j++) {
|
| + HandleScope loop_scope(isolate);
|
| + Handle<Object> element_value(elements->get(j), isolate);
|
| + if (!element_value->IsTheHole()) {
|
| + visitor->visit(j, element_value);
|
| + } else {
|
| + Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
|
| + if (!maybe.IsJust()) return false;
|
| + if (maybe.FromJust()) {
|
| + // Call GetElement on receiver, not its prototype, or getters won't
|
| + // have the correct receiver.
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element_value,
|
| + Object::GetElement(isolate, receiver, j), false);
|
| + visitor->visit(j, element_value);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS: {
|
| + // Empty array is FixedArray but not FixedDoubleArray.
|
| + if (length == 0) break;
|
| + // Run through the elements FixedArray and use HasElement and GetElement
|
| + // to check the prototype for missing elements.
|
| + if (receiver->elements()->IsFixedArray()) {
|
| + DCHECK(receiver->elements()->length() == 0);
|
| + break;
|
| + }
|
| + Handle<FixedDoubleArray> elements(
|
| + FixedDoubleArray::cast(receiver->elements()));
|
| + int fast_length = static_cast<int>(length);
|
| + DCHECK(fast_length <= elements->length());
|
| + for (int j = 0; j < fast_length; j++) {
|
| + HandleScope loop_scope(isolate);
|
| + if (!elements->is_the_hole(j)) {
|
| + double double_value = elements->get_scalar(j);
|
| + Handle<Object> element_value =
|
| + isolate->factory()->NewNumber(double_value);
|
| + visitor->visit(j, element_value);
|
| + } else {
|
| + Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
|
| + if (!maybe.IsJust()) return false;
|
| + if (maybe.FromJust()) {
|
| + // Call GetElement on receiver, not its prototype, or getters won't
|
| + // have the correct receiver.
|
| + Handle<Object> element_value;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element_value,
|
| + Object::GetElement(isolate, receiver, j), false);
|
| + visitor->visit(j, element_value);
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case DICTIONARY_ELEMENTS: {
|
| + Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
|
| + List<uint32_t> indices(dict->Capacity() / 2);
|
| + // Collect all indices in the object and the prototypes less
|
| + // than length. This might introduce duplicates in the indices list.
|
| + CollectElementIndices(receiver, length, &indices);
|
| + indices.Sort(&compareUInt32);
|
| + int j = 0;
|
| + int n = indices.length();
|
| + while (j < n) {
|
| + HandleScope loop_scope(isolate);
|
| + uint32_t index = indices[j];
|
| + Handle<Object> element;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element, Object::GetElement(isolate, receiver, index),
|
| + false);
|
| + visitor->visit(index, element);
|
| + // Skip to next different index (i.e., omit duplicates).
|
| + do {
|
| + j++;
|
| + } while (j < n && indices[j] == index);
|
| + }
|
| + break;
|
| + }
|
| + case UINT8_CLAMPED_ELEMENTS: {
|
| + Handle<FixedUint8ClampedArray> pixels(
|
| + FixedUint8ClampedArray::cast(receiver->elements()));
|
| + for (uint32_t j = 0; j < length; j++) {
|
| + Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
|
| + visitor->visit(j, e);
|
| + }
|
| + break;
|
| + }
|
| + case INT8_ELEMENTS: {
|
| + IterateTypedArrayElements<FixedInt8Array, int8_t>(isolate, receiver, true,
|
| + true, visitor);
|
| + break;
|
| + }
|
| + case UINT8_ELEMENTS: {
|
| + IterateTypedArrayElements<FixedUint8Array, uint8_t>(isolate, receiver,
|
| + true, true, visitor);
|
| + break;
|
| + }
|
| + case INT16_ELEMENTS: {
|
| + IterateTypedArrayElements<FixedInt16Array, int16_t>(isolate, receiver,
|
| + true, true, visitor);
|
| + break;
|
| + }
|
| + case UINT16_ELEMENTS: {
|
| + IterateTypedArrayElements<FixedUint16Array, uint16_t>(
|
| + isolate, receiver, true, true, visitor);
|
| + break;
|
| + }
|
| + case INT32_ELEMENTS: {
|
| + IterateTypedArrayElements<FixedInt32Array, int32_t>(isolate, receiver,
|
| + true, false, visitor);
|
| + break;
|
| + }
|
| + case UINT32_ELEMENTS: {
|
| + IterateTypedArrayElements<FixedUint32Array, uint32_t>(
|
| + isolate, receiver, true, false, visitor);
|
| + break;
|
| + }
|
| + case FLOAT32_ELEMENTS: {
|
| + IterateTypedArrayElements<FixedFloat32Array, float>(
|
| + isolate, receiver, false, false, visitor);
|
| + break;
|
| + }
|
| + case FLOAT64_ELEMENTS: {
|
| + IterateTypedArrayElements<FixedFloat64Array, double>(
|
| + isolate, receiver, false, false, visitor);
|
| + break;
|
| + }
|
| + case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
|
| + case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: {
|
| + for (uint32_t index = 0; index < length; index++) {
|
| + HandleScope loop_scope(isolate);
|
| + Handle<Object> element;
|
| + ASSIGN_RETURN_ON_EXCEPTION_VALUE(
|
| + isolate, element, Object::GetElement(isolate, receiver, index),
|
| + false);
|
| + visitor->visit(index, element);
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + visitor->increase_index_offset(length);
|
| + return true;
|
| +}
|
| +
|
| +
|
| +bool HasConcatSpreadableModifier(Isolate* isolate, Handle<JSArray> obj) {
|
| + if (!FLAG_harmony_concat_spreadable) return false;
|
| + Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
|
| + Maybe<bool> maybe =
|
| + JSReceiver::HasProperty(Handle<JSReceiver>::cast(obj), key);
|
| + if (!maybe.IsJust()) return false;
|
| + return maybe.FromJust();
|
| +}
|
| +
|
| +
|
| +bool IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) {
|
| + HandleScope handle_scope(isolate);
|
| + if (!obj->IsSpecObject()) return false;
|
| + if (FLAG_harmony_concat_spreadable) {
|
| + Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
|
| + Handle<Object> value;
|
| + MaybeHandle<Object> maybeValue =
|
| + i::Runtime::GetObjectProperty(isolate, obj, key);
|
| + if (maybeValue.ToHandle(&value) && !value->IsUndefined()) {
|
| + return value->BooleanValue();
|
| + }
|
| + }
|
| + return obj->IsJSArray();
|
| +}
|
| +
|
| +
|
| +/**
|
| + * Array::concat implementation.
|
| + * See ECMAScript 262, 15.4.4.4.
|
| + * TODO(581): Fix non-compliance for very large concatenations and update to
|
| + * following the ECMAScript 5 specification.
|
| + */
|
| +Object* Slow_ArrayConcat(Arguments* args, Isolate* isolate) {
|
| + int argument_count = args->length();
|
| +
|
| + // Pass 1: estimate the length and number of elements of the result.
|
| + // The actual length can be larger if any of the arguments have getters
|
| + // that mutate other arguments (but will otherwise be precise).
|
| + // The number of elements is precise if there are no inherited elements.
|
| +
|
| + ElementsKind kind = FAST_SMI_ELEMENTS;
|
| +
|
| + uint32_t estimate_result_length = 0;
|
| + uint32_t estimate_nof_elements = 0;
|
| + for (int i = 0; i < argument_count; i++) {
|
| + HandleScope loop_scope(isolate);
|
| + Handle<Object> obj((*args)[i], isolate);
|
| + uint32_t length_estimate;
|
| + uint32_t element_estimate;
|
| + if (obj->IsJSArray()) {
|
| + Handle<JSArray> array(Handle<JSArray>::cast(obj));
|
| + length_estimate = static_cast<uint32_t>(array->length()->Number());
|
| + if (length_estimate != 0) {
|
| + ElementsKind array_kind =
|
| + GetPackedElementsKind(array->map()->elements_kind());
|
| + if (IsMoreGeneralElementsKindTransition(kind, array_kind)) {
|
| + kind = array_kind;
|
| + }
|
| + }
|
| + element_estimate = EstimateElementCount(array);
|
| + } else {
|
| + if (obj->IsHeapObject()) {
|
| + if (obj->IsNumber()) {
|
| + if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) {
|
| + kind = FAST_DOUBLE_ELEMENTS;
|
| + }
|
| + } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) {
|
| + kind = FAST_ELEMENTS;
|
| + }
|
| + }
|
| + length_estimate = 1;
|
| + element_estimate = 1;
|
| + }
|
| + // Avoid overflows by capping at kMaxElementCount.
|
| + if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
|
| + estimate_result_length = JSObject::kMaxElementCount;
|
| + } else {
|
| + estimate_result_length += length_estimate;
|
| + }
|
| + if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
|
| + estimate_nof_elements = JSObject::kMaxElementCount;
|
| + } else {
|
| + estimate_nof_elements += element_estimate;
|
| + }
|
| + }
|
| +
|
| + // If estimated number of elements is more than half of length, a
|
| + // fixed array (fast case) is more time and space-efficient than a
|
| + // dictionary.
|
| + bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
|
| +
|
| + if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
|
| + Handle<FixedArrayBase> storage =
|
| + isolate->factory()->NewFixedDoubleArray(estimate_result_length);
|
| + int j = 0;
|
| + bool failure = false;
|
| + if (estimate_result_length > 0) {
|
| + Handle<FixedDoubleArray> double_storage =
|
| + Handle<FixedDoubleArray>::cast(storage);
|
| + for (int i = 0; i < argument_count; i++) {
|
| + Handle<Object> obj((*args)[i], isolate);
|
| + if (obj->IsSmi()) {
|
| + double_storage->set(j, Smi::cast(*obj)->value());
|
| + j++;
|
| + } else if (obj->IsNumber()) {
|
| + double_storage->set(j, obj->Number());
|
| + j++;
|
| + } else {
|
| + JSArray* array = JSArray::cast(*obj);
|
| + uint32_t length = static_cast<uint32_t>(array->length()->Number());
|
| + switch (array->map()->elements_kind()) {
|
| + case FAST_HOLEY_DOUBLE_ELEMENTS:
|
| + case FAST_DOUBLE_ELEMENTS: {
|
| + // Empty array is FixedArray but not FixedDoubleArray.
|
| + if (length == 0) break;
|
| + FixedDoubleArray* elements =
|
| + FixedDoubleArray::cast(array->elements());
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + if (elements->is_the_hole(i)) {
|
| + // TODO(jkummerow/verwaest): We could be a bit more clever
|
| + // here: Check if there are no elements/getters on the
|
| + // prototype chain, and if so, allow creation of a holey
|
| + // result array.
|
| + // Same thing below (holey smi case).
|
| + failure = true;
|
| + break;
|
| + }
|
| + double double_value = elements->get_scalar(i);
|
| + double_storage->set(j, double_value);
|
| + j++;
|
| + }
|
| + break;
|
| + }
|
| + case FAST_HOLEY_SMI_ELEMENTS:
|
| + case FAST_SMI_ELEMENTS: {
|
| + FixedArray* elements(FixedArray::cast(array->elements()));
|
| + for (uint32_t i = 0; i < length; i++) {
|
| + Object* element = elements->get(i);
|
| + if (element->IsTheHole()) {
|
| + failure = true;
|
| + break;
|
| + }
|
| + int32_t int_value = Smi::cast(element)->value();
|
| + double_storage->set(j, int_value);
|
| + j++;
|
| + }
|
| + break;
|
| + }
|
| + case FAST_HOLEY_ELEMENTS:
|
| + case FAST_ELEMENTS:
|
| + case DICTIONARY_ELEMENTS:
|
| + DCHECK_EQ(0u, length);
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + }
|
| + if (failure) break;
|
| + }
|
| + }
|
| + if (!failure) {
|
| + Handle<JSArray> array = isolate->factory()->NewJSArray(0);
|
| + Smi* length = Smi::FromInt(j);
|
| + Handle<Map> map;
|
| + map = JSObject::GetElementsTransitionMap(array, kind);
|
| + array->set_map(*map);
|
| + array->set_length(length);
|
| + array->set_elements(*storage);
|
| + return *array;
|
| + }
|
| + // In case of failure, fall through.
|
| + }
|
| +
|
| + Handle<FixedArray> storage;
|
| + if (fast_case) {
|
| + // The backing storage array must have non-existing elements to preserve
|
| + // holes across concat operations.
|
| + storage =
|
| + isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
|
| + } else {
|
| + // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
|
| + uint32_t at_least_space_for =
|
| + estimate_nof_elements + (estimate_nof_elements >> 2);
|
| + storage = Handle<FixedArray>::cast(
|
| + SeededNumberDictionary::New(isolate, at_least_space_for));
|
| + }
|
| +
|
| + ArrayConcatVisitor visitor(isolate, storage, fast_case);
|
| +
|
| + for (int i = 0; i < argument_count; i++) {
|
| + Handle<Object> obj((*args)[i], isolate);
|
| + bool spreadable = IsConcatSpreadable(isolate, obj);
|
| + if (isolate->has_pending_exception()) return isolate->heap()->exception();
|
| + if (spreadable) {
|
| + Handle<JSObject> object = Handle<JSObject>::cast(obj);
|
| + if (!IterateElements(isolate, object, &visitor)) {
|
| + return isolate->heap()->exception();
|
| + }
|
| + } else {
|
| + visitor.visit(0, obj);
|
| + visitor.increase_index_offset(1);
|
| + }
|
| + }
|
| +
|
| + if (visitor.exceeds_array_limit()) {
|
| + THROW_NEW_ERROR_RETURN_FAILURE(
|
| + isolate, NewRangeError(MessageTemplate::kInvalidArrayLength));
|
| + }
|
| + return *visitor.ToArray();
|
| +}
|
| +
|
| +
|
| +MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, Arguments* args) {
|
| + if (!isolate->IsFastArrayConstructorPrototypeChainIntact()) {
|
| + return MaybeHandle<JSArray>();
|
| + }
|
| + int n_arguments = args->length();
|
| int result_len = 0;
|
| - ElementsKind elements_kind = GetInitialFastElementsKind();
|
| - bool has_double = false;
|
| {
|
| DisallowHeapAllocation no_gc;
|
| - Context* native_context = isolate->context()->native_context();
|
| - Object* array_proto = native_context->array_function()->prototype();
|
| - PrototypeIterator iter(isolate, array_proto,
|
| - PrototypeIterator::START_AT_RECEIVER);
|
| - if (!PrototypeHasNoElements(&iter)) {
|
| - AllowHeapAllocation allow_allocation;
|
| - return CallJsIntrinsic(isolate, isolate->array_concat(), args);
|
| - }
|
| -
|
| + Object* array_proto = isolate->array_function()->prototype();
|
| // Iterate through all the arguments performing checks
|
| // and calculating total length.
|
| - bool is_holey = false;
|
| for (int i = 0; i < n_arguments; i++) {
|
| - Object* arg = args[i];
|
| + Object* arg = (*args)[i];
|
| + if (!arg->IsJSArray()) return MaybeHandle<JSArray>();
|
| + Handle<JSArray> array(JSArray::cast(arg), isolate);
|
| + if (!array->HasFastElements()) return MaybeHandle<JSArray>();
|
| PrototypeIterator iter(isolate, arg);
|
| - if (!arg->IsJSArray() || !JSArray::cast(arg)->HasFastElements() ||
|
| - iter.GetCurrent() != array_proto) {
|
| - AllowHeapAllocation allow_allocation;
|
| - return CallJsIntrinsic(isolate, isolate->array_concat(), args);
|
| + if (iter.GetCurrent() != array_proto) return MaybeHandle<JSArray>();
|
| + if (HasConcatSpreadableModifier(isolate, array)) {
|
| + return MaybeHandle<JSArray>();
|
| }
|
| - int len = Smi::cast(JSArray::cast(arg)->length())->value();
|
| + int len = Smi::cast(array->length())->value();
|
|
|
| // We shouldn't overflow when adding another len.
|
| const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2);
|
| @@ -641,48 +1415,38 @@ BUILTIN(ArrayConcat) {
|
| USE(kHalfOfMaxInt);
|
| result_len += len;
|
| DCHECK(result_len >= 0);
|
| -
|
| - if (result_len > FixedDoubleArray::kMaxLength) {
|
| - AllowHeapAllocation allow_allocation;
|
| - return CallJsIntrinsic(isolate, isolate->array_concat(), args);
|
| + // Throw an Error if we overflow the FixedArray limits
|
| + if (FixedArray::kMaxLength < result_len) {
|
| + THROW_NEW_ERROR(isolate,
|
| + NewRangeError(MessageTemplate::kInvalidArrayLength),
|
| + JSArray);
|
| }
|
| -
|
| - ElementsKind arg_kind = JSArray::cast(arg)->map()->elements_kind();
|
| - has_double = has_double || IsFastDoubleElementsKind(arg_kind);
|
| - is_holey = is_holey || IsFastHoleyElementsKind(arg_kind);
|
| - elements_kind = GetMoreGeneralElementsKind(elements_kind, arg_kind);
|
| - }
|
| - if (is_holey) elements_kind = GetHoleyElementsKind(elements_kind);
|
| - }
|
| -
|
| - // If a double array is concatted into a fast elements array, the fast
|
| - // elements array needs to be initialized to contain proper holes, since
|
| - // boxing doubles may cause incremental marking.
|
| - ArrayStorageAllocationMode mode =
|
| - has_double && IsFastObjectElementsKind(elements_kind)
|
| - ? INITIALIZE_ARRAY_ELEMENTS_WITH_HOLE : DONT_INITIALIZE_ARRAY_ELEMENTS;
|
| - Handle<JSArray> result_array = isolate->factory()->NewJSArray(
|
| - elements_kind, result_len, result_len, Strength::WEAK, mode);
|
| - if (result_len == 0) return *result_array;
|
| -
|
| - int j = 0;
|
| - Handle<FixedArrayBase> storage(result_array->elements(), isolate);
|
| - ElementsAccessor* accessor = ElementsAccessor::ForKind(elements_kind);
|
| - for (int i = 0; i < n_arguments; i++) {
|
| - // It is crucial to keep |array| in a raw pointer form to avoid performance
|
| - // degradation.
|
| - JSArray* array = JSArray::cast(args[i]);
|
| - int len = Smi::cast(array->length())->value();
|
| - if (len > 0) {
|
| - ElementsKind from_kind = array->GetElementsKind();
|
| - accessor->CopyElements(array, 0, from_kind, storage, j, len);
|
| - j += len;
|
| }
|
| }
|
| + return ElementsAccessor::Concat(isolate, args, n_arguments);
|
| +}
|
|
|
| - DCHECK(j == result_len);
|
| +} // namespace
|
|
|
| - return *result_array;
|
| +BUILTIN(ArrayConcat) {
|
| + HandleScope scope(isolate);
|
| +
|
| + Handle<Object> receiver;
|
| + if (!Object::ToObject(isolate, handle(args[0], isolate))
|
| + .ToHandle(&receiver)) {
|
| + THROW_NEW_ERROR_RETURN_FAILURE(
|
| + isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined,
|
| + isolate->factory()->NewStringFromAsciiChecked(
|
| + "Array.prototype.concat")));
|
| + }
|
| + args[0] = *receiver;
|
| +
|
| + Handle<JSArray> result_array;
|
| + if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) {
|
| + return *result_array;
|
| + }
|
| + if (isolate->has_pending_exception()) return isolate->heap()->exception();
|
| + return Slow_ArrayConcat(&args, isolate);
|
| }
|
|
|
|
|
|
|