Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(65)

Side by Side Diff: skia/ext/convolver.cc

Issue 13293004: enable SSE2 in skia/convolver for linux32 (Closed) Base URL: svn://svn.chromium.org/chrome/trunk/src
Patch Set: wrapped convolvevertically Created 7 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch | Annotate | Revision Log
« no previous file with comments | « skia/ext/convolver.h ('k') | skia/ext/convolver_SSE2.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved. 1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include <algorithm> 5 #include <algorithm>
6 6
7 #include "skia/ext/convolver.h" 7 #include "skia/ext/convolver.h"
8 #include "skia/ext/convolver_SSE2.h"
8 #include "third_party/skia/include/core/SkTypes.h" 9 #include "third_party/skia/include/core/SkTypes.h"
9 10
10 #if defined(SIMD_SSE2)
11 #include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
12 #endif
13
14 namespace skia { 11 namespace skia {
15 12
16 namespace { 13 namespace {
17 14
18 // Converts the argument to an 8-bit unsigned value by clamping to the range 15 // Converts the argument to an 8-bit unsigned value by clamping to the range
19 // 0-255. 16 // 0-255.
20 inline unsigned char ClampTo8(int a) { 17 inline unsigned char ClampTo8(int a) {
21 if (static_cast<unsigned>(a) < 256) 18 if (static_cast<unsigned>(a) < 256)
22 return a; // Avoid the extra check in the common case. 19 return a; // Avoid the extra check in the common case.
23 if (a < 0) 20 if (a < 0)
(...skipping 192 matching lines...) Expand 10 before | Expand all | Expand 10 after
216 out_row[byte_offset + 3] = max_color_channel; 213 out_row[byte_offset + 3] = max_color_channel;
217 else 214 else
218 out_row[byte_offset + 3] = alpha; 215 out_row[byte_offset + 3] = alpha;
219 } else { 216 } else {
220 // No alpha channel, the image is opaque. 217 // No alpha channel, the image is opaque.
221 out_row[byte_offset + 3] = 0xff; 218 out_row[byte_offset + 3] = 0xff;
222 } 219 }
223 } 220 }
224 } 221 }
225 222
226 223 void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
227 // Convolves horizontally along a single row. The row data is given in 224 int filter_length,
228 // |src_data| and continues for the num_values() of the filter. 225 unsigned char* const* source_data_rows,
229 void ConvolveHorizontally_SSE2(const unsigned char* src_data, 226 int pixel_width,
230 const ConvolutionFilter1D& filter, 227 unsigned char* out_row,
231 unsigned char* out_row) { 228 bool source_has_alpha) {
232 #if defined(SIMD_SSE2) 229 if (source_has_alpha) {
233 int num_values = filter.num_values(); 230 ConvolveVertically<true>(filter_values, filter_length,
234 231 source_data_rows,
235 int filter_offset, filter_length; 232 pixel_width,
236 __m128i zero = _mm_setzero_si128(); 233 out_row);
237 __m128i mask[4]; 234 } else {
238 // |mask| will be used to decimate all extra filter coefficients that are 235 ConvolveVertically<false>(filter_values, filter_length,
239 // loaded by SIMD when |filter_length| is not divisible by 4. 236 source_data_rows,
240 // mask[0] is not used in following algorithm. 237 pixel_width,
241 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); 238 out_row);
242 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
243 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
244
245 // Output one pixel each iteration, calculating all channels (RGBA) together.
246 for (int out_x = 0; out_x < num_values; out_x++) {
247 const ConvolutionFilter1D::Fixed* filter_values =
248 filter.FilterForValue(out_x, &filter_offset, &filter_length);
249
250 __m128i accum = _mm_setzero_si128();
251
252 // Compute the first pixel in this row that the filter affects. It will
253 // touch |filter_length| pixels (4 bytes each) after this.
254 const __m128i* row_to_filter =
255 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
256
257 // We will load and accumulate with four coefficients per iteration.
258 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
259
260 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
261 __m128i coeff, coeff16;
262 // [16] xx xx xx xx c3 c2 c1 c0
263 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
264 // [16] xx xx xx xx c1 c1 c0 c0
265 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
266 // [16] c1 c1 c1 c1 c0 c0 c0 c0
267 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
268
269 // Load four pixels => unpack the first two pixels to 16 bits =>
270 // multiply with coefficients => accumulate the convolution result.
271 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
272 __m128i src8 = _mm_loadu_si128(row_to_filter);
273 // [16] a1 b1 g1 r1 a0 b0 g0 r0
274 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
275 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
276 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
277 // [32] a0*c0 b0*c0 g0*c0 r0*c0
278 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
279 accum = _mm_add_epi32(accum, t);
280 // [32] a1*c1 b1*c1 g1*c1 r1*c1
281 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
282 accum = _mm_add_epi32(accum, t);
283
284 // Duplicate 3rd and 4th coefficients for all channels =>
285 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
286 // => accumulate the convolution results.
287 // [16] xx xx xx xx c3 c3 c2 c2
288 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
289 // [16] c3 c3 c3 c3 c2 c2 c2 c2
290 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
291 // [16] a3 g3 b3 r3 a2 g2 b2 r2
292 src16 = _mm_unpackhi_epi8(src8, zero);
293 mul_hi = _mm_mulhi_epi16(src16, coeff16);
294 mul_lo = _mm_mullo_epi16(src16, coeff16);
295 // [32] a2*c2 b2*c2 g2*c2 r2*c2
296 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
297 accum = _mm_add_epi32(accum, t);
298 // [32] a3*c3 b3*c3 g3*c3 r3*c3
299 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
300 accum = _mm_add_epi32(accum, t);
301
302 // Advance the pixel and coefficients pointers.
303 row_to_filter += 1;
304 filter_values += 4;
305 }
306
307 // When |filter_length| is not divisible by 4, we need to decimate some of
308 // the filter coefficient that was loaded incorrectly to zero; Other than
309 // that the algorithm is same with above, exceot that the 4th pixel will be
310 // always absent.
311 int r = filter_length&3;
312 if (r) {
313 // Note: filter_values must be padded to align_up(filter_offset, 8).
314 __m128i coeff, coeff16;
315 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
316 // Mask out extra filter taps.
317 coeff = _mm_and_si128(coeff, mask[r]);
318 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
319 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
320
321 // Note: line buffer must be padded to align_up(filter_offset, 16).
322 // We resolve this by use C-version for the last horizontal line.
323 __m128i src8 = _mm_loadu_si128(row_to_filter);
324 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
325 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
326 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
327 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
328 accum = _mm_add_epi32(accum, t);
329 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
330 accum = _mm_add_epi32(accum, t);
331
332 src16 = _mm_unpackhi_epi8(src8, zero);
333 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
334 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
335 mul_hi = _mm_mulhi_epi16(src16, coeff16);
336 mul_lo = _mm_mullo_epi16(src16, coeff16);
337 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
338 accum = _mm_add_epi32(accum, t);
339 }
340
341 // Shift right for fixed point implementation.
342 accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
343
344 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
345 accum = _mm_packs_epi32(accum, zero);
346 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
347 accum = _mm_packus_epi16(accum, zero);
348
349 // Store the pixel value of 32 bits.
350 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
351 out_row += 4;
352 } 239 }
353 #endif
354 }
355
356 // Convolves horizontally along four rows. The row data is given in
357 // |src_data| and continues for the num_values() of the filter.
358 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
359 // refer to that function for detailed comments.
360 void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
361 const ConvolutionFilter1D& filter,
362 unsigned char* out_row[4]) {
363 #if defined(SIMD_SSE2)
364 int num_values = filter.num_values();
365
366 int filter_offset, filter_length;
367 __m128i zero = _mm_setzero_si128();
368 __m128i mask[4];
369 // |mask| will be used to decimate all extra filter coefficients that are
370 // loaded by SIMD when |filter_length| is not divisible by 4.
371 // mask[0] is not used in following algorithm.
372 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
373 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
374 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
375
376 // Output one pixel each iteration, calculating all channels (RGBA) together.
377 for (int out_x = 0; out_x < num_values; out_x++) {
378 const ConvolutionFilter1D::Fixed* filter_values =
379 filter.FilterForValue(out_x, &filter_offset, &filter_length);
380
381 // four pixels in a column per iteration.
382 __m128i accum0 = _mm_setzero_si128();
383 __m128i accum1 = _mm_setzero_si128();
384 __m128i accum2 = _mm_setzero_si128();
385 __m128i accum3 = _mm_setzero_si128();
386 int start = (filter_offset<<2);
387 // We will load and accumulate with four coefficients per iteration.
388 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
389 __m128i coeff, coeff16lo, coeff16hi;
390 // [16] xx xx xx xx c3 c2 c1 c0
391 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
392 // [16] xx xx xx xx c1 c1 c0 c0
393 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
394 // [16] c1 c1 c1 c1 c0 c0 c0 c0
395 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
396 // [16] xx xx xx xx c3 c3 c2 c2
397 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
398 // [16] c3 c3 c3 c3 c2 c2 c2 c2
399 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
400
401 __m128i src8, src16, mul_hi, mul_lo, t;
402
403 #define ITERATION(src, accum) \
404 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
405 src16 = _mm_unpacklo_epi8(src8, zero); \
406 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
407 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
408 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
409 accum = _mm_add_epi32(accum, t); \
410 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
411 accum = _mm_add_epi32(accum, t); \
412 src16 = _mm_unpackhi_epi8(src8, zero); \
413 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
414 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
415 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
416 accum = _mm_add_epi32(accum, t); \
417 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
418 accum = _mm_add_epi32(accum, t)
419
420 ITERATION(src_data[0] + start, accum0);
421 ITERATION(src_data[1] + start, accum1);
422 ITERATION(src_data[2] + start, accum2);
423 ITERATION(src_data[3] + start, accum3);
424
425 start += 16;
426 filter_values += 4;
427 }
428
429 int r = filter_length & 3;
430 if (r) {
431 // Note: filter_values must be padded to align_up(filter_offset, 8);
432 __m128i coeff;
433 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
434 // Mask out extra filter taps.
435 coeff = _mm_and_si128(coeff, mask[r]);
436
437 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
438 /* c1 c1 c1 c1 c0 c0 c0 c0 */
439 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
440 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
441 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
442
443 __m128i src8, src16, mul_hi, mul_lo, t;
444
445 ITERATION(src_data[0] + start, accum0);
446 ITERATION(src_data[1] + start, accum1);
447 ITERATION(src_data[2] + start, accum2);
448 ITERATION(src_data[3] + start, accum3);
449 }
450
451 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
452 accum0 = _mm_packs_epi32(accum0, zero);
453 accum0 = _mm_packus_epi16(accum0, zero);
454 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
455 accum1 = _mm_packs_epi32(accum1, zero);
456 accum1 = _mm_packus_epi16(accum1, zero);
457 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
458 accum2 = _mm_packs_epi32(accum2, zero);
459 accum2 = _mm_packus_epi16(accum2, zero);
460 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
461 accum3 = _mm_packs_epi32(accum3, zero);
462 accum3 = _mm_packus_epi16(accum3, zero);
463
464 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
465 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
466 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
467 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
468
469 out_row[0] += 4;
470 out_row[1] += 4;
471 out_row[2] += 4;
472 out_row[3] += 4;
473 }
474 #endif
475 }
476
477 // Does vertical convolution to produce one output row. The filter values and
478 // length are given in the first two parameters. These are applied to each
479 // of the rows pointed to in the |source_data_rows| array, with each row
480 // being |pixel_width| wide.
481 //
482 // The output must have room for |pixel_width * 4| bytes.
483 template<bool has_alpha>
484 void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
485 int filter_length,
486 unsigned char* const* source_data_rows,
487 int pixel_width,
488 unsigned char* out_row) {
489 #if defined(SIMD_SSE2)
490 int width = pixel_width & ~3;
491
492 __m128i zero = _mm_setzero_si128();
493 __m128i accum0, accum1, accum2, accum3, coeff16;
494 const __m128i* src;
495 // Output four pixels per iteration (16 bytes).
496 for (int out_x = 0; out_x < width; out_x += 4) {
497
498 // Accumulated result for each pixel. 32 bits per RGBA channel.
499 accum0 = _mm_setzero_si128();
500 accum1 = _mm_setzero_si128();
501 accum2 = _mm_setzero_si128();
502 accum3 = _mm_setzero_si128();
503
504 // Convolve with one filter coefficient per iteration.
505 for (int filter_y = 0; filter_y < filter_length; filter_y++) {
506
507 // Duplicate the filter coefficient 8 times.
508 // [16] cj cj cj cj cj cj cj cj
509 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
510
511 // Load four pixels (16 bytes) together.
512 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
513 src = reinterpret_cast<const __m128i*>(
514 &source_data_rows[filter_y][out_x << 2]);
515 __m128i src8 = _mm_loadu_si128(src);
516
517 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
518 // multiply with current coefficient => accumulate the result.
519 // [16] a1 b1 g1 r1 a0 b0 g0 r0
520 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
521 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
522 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
523 // [32] a0 b0 g0 r0
524 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
525 accum0 = _mm_add_epi32(accum0, t);
526 // [32] a1 b1 g1 r1
527 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
528 accum1 = _mm_add_epi32(accum1, t);
529
530 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
531 // multiply with current coefficient => accumulate the result.
532 // [16] a3 b3 g3 r3 a2 b2 g2 r2
533 src16 = _mm_unpackhi_epi8(src8, zero);
534 mul_hi = _mm_mulhi_epi16(src16, coeff16);
535 mul_lo = _mm_mullo_epi16(src16, coeff16);
536 // [32] a2 b2 g2 r2
537 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
538 accum2 = _mm_add_epi32(accum2, t);
539 // [32] a3 b3 g3 r3
540 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
541 accum3 = _mm_add_epi32(accum3, t);
542 }
543
544 // Shift right for fixed point implementation.
545 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
546 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
547 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
548 accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
549
550 // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
551 // [16] a1 b1 g1 r1 a0 b0 g0 r0
552 accum0 = _mm_packs_epi32(accum0, accum1);
553 // [16] a3 b3 g3 r3 a2 b2 g2 r2
554 accum2 = _mm_packs_epi32(accum2, accum3);
555
556 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
557 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
558 accum0 = _mm_packus_epi16(accum0, accum2);
559
560 if (has_alpha) {
561 // Compute the max(ri, gi, bi) for each pixel.
562 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
563 __m128i a = _mm_srli_epi32(accum0, 8);
564 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
565 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
566 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
567 a = _mm_srli_epi32(accum0, 16);
568 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
569 b = _mm_max_epu8(a, b); // Max of r and g and b.
570 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
571 b = _mm_slli_epi32(b, 24);
572
573 // Make sure the value of alpha channel is always larger than maximum
574 // value of color channels.
575 accum0 = _mm_max_epu8(b, accum0);
576 } else {
577 // Set value of alpha channels to 0xFF.
578 __m128i mask = _mm_set1_epi32(0xff000000);
579 accum0 = _mm_or_si128(accum0, mask);
580 }
581
582 // Store the convolution result (16 bytes) and advance the pixel pointers.
583 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
584 out_row += 16;
585 }
586
587 // When the width of the output is not divisible by 4, We need to save one
588 // pixel (4 bytes) each time. And also the fourth pixel is always absent.
589 if (pixel_width & 3) {
590 accum0 = _mm_setzero_si128();
591 accum1 = _mm_setzero_si128();
592 accum2 = _mm_setzero_si128();
593 for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
594 coeff16 = _mm_set1_epi16(filter_values[filter_y]);
595 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
596 src = reinterpret_cast<const __m128i*>(
597 &source_data_rows[filter_y][width<<2]);
598 __m128i src8 = _mm_loadu_si128(src);
599 // [16] a1 b1 g1 r1 a0 b0 g0 r0
600 __m128i src16 = _mm_unpacklo_epi8(src8, zero);
601 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
602 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
603 // [32] a0 b0 g0 r0
604 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
605 accum0 = _mm_add_epi32(accum0, t);
606 // [32] a1 b1 g1 r1
607 t = _mm_unpackhi_epi16(mul_lo, mul_hi);
608 accum1 = _mm_add_epi32(accum1, t);
609 // [16] a3 b3 g3 r3 a2 b2 g2 r2
610 src16 = _mm_unpackhi_epi8(src8, zero);
611 mul_hi = _mm_mulhi_epi16(src16, coeff16);
612 mul_lo = _mm_mullo_epi16(src16, coeff16);
613 // [32] a2 b2 g2 r2
614 t = _mm_unpacklo_epi16(mul_lo, mul_hi);
615 accum2 = _mm_add_epi32(accum2, t);
616 }
617
618 accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
619 accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
620 accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
621 // [16] a1 b1 g1 r1 a0 b0 g0 r0
622 accum0 = _mm_packs_epi32(accum0, accum1);
623 // [16] a3 b3 g3 r3 a2 b2 g2 r2
624 accum2 = _mm_packs_epi32(accum2, zero);
625 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
626 accum0 = _mm_packus_epi16(accum0, accum2);
627 if (has_alpha) {
628 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
629 __m128i a = _mm_srli_epi32(accum0, 8);
630 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
631 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
632 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
633 a = _mm_srli_epi32(accum0, 16);
634 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
635 b = _mm_max_epu8(a, b); // Max of r and g and b.
636 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
637 b = _mm_slli_epi32(b, 24);
638 accum0 = _mm_max_epu8(b, accum0);
639 } else {
640 __m128i mask = _mm_set1_epi32(0xff000000);
641 accum0 = _mm_or_si128(accum0, mask);
642 }
643
644 for (int out_x = width; out_x < pixel_width; out_x++) {
645 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
646 accum0 = _mm_srli_si128(accum0, 4);
647 out_row += 4;
648 }
649 }
650 #endif
651 } 240 }
652 241
653 } // namespace 242 } // namespace
654 243
655 // ConvolutionFilter1D --------------------------------------------------------- 244 // ConvolutionFilter1D ---------------------------------------------------------
656 245
657 ConvolutionFilter1D::ConvolutionFilter1D() 246 ConvolutionFilter1D::ConvolutionFilter1D()
658 : max_filter_(0) { 247 : max_filter_(0) {
659 } 248 }
660 249
(...skipping 47 matching lines...) Expand 10 before | Expand all | Expand 10 after
708 // We pushed filter_length elements onto filter_values_ 297 // We pushed filter_length elements onto filter_values_
709 instance.data_location = (static_cast<int>(filter_values_.size()) - 298 instance.data_location = (static_cast<int>(filter_values_.size()) -
710 filter_length); 299 filter_length);
711 instance.offset = filter_offset; 300 instance.offset = filter_offset;
712 instance.length = filter_length; 301 instance.length = filter_length;
713 filters_.push_back(instance); 302 filters_.push_back(instance);
714 303
715 max_filter_ = std::max(max_filter_, filter_length); 304 max_filter_ = std::max(max_filter_, filter_length);
716 } 305 }
717 306
307 typedef void (*ConvolveVertically_pointer)(
308 const ConvolutionFilter1D::Fixed* filter_values,
309 int filter_length,
310 unsigned char* const* source_data_rows,
311 int pixel_width,
312 unsigned char* out_row,
313 bool has_alpha);
314 typedef void (*Convolve4RowsHorizontally_pointer)(
315 const unsigned char* src_data[4],
316 const ConvolutionFilter1D& filter,
317 unsigned char* out_row[4]);
318 typedef void (*ConvolveHorizontally_pointer)(
319 const unsigned char* src_data,
320 const ConvolutionFilter1D& filter,
321 unsigned char* out_row);
322
323 struct ConvolveProcs {
324 // This is how many extra pixels may be read by the
325 // conolve*horizontally functions.
326 int extra_horizontal_reads;
327 ConvolveVertically_pointer convolve_vertically;
328 Convolve4RowsHorizontally_pointer convolve_4rows_horizontally;
329 ConvolveHorizontally_pointer convolve_horizontally;
330 };
331
332 void SetupSIMD(ConvolveProcs *procs) {
333 #ifdef SIMD_SSE2
334 base::CPU cpu;
335 if (cpu.has_sse2()) {
336 procs->extra_horizontal_reads = 3;
337 procs->convolve_vertically = &ConvolveVertically_SSE2;
338 procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2;
339 procs->convolve_horizontally = &ConvolveHorizontally_SSE2;
340 }
341 #endif
342 }
343
718 void BGRAConvolve2D(const unsigned char* source_data, 344 void BGRAConvolve2D(const unsigned char* source_data,
719 int source_byte_row_stride, 345 int source_byte_row_stride,
720 bool source_has_alpha, 346 bool source_has_alpha,
721 const ConvolutionFilter1D& filter_x, 347 const ConvolutionFilter1D& filter_x,
722 const ConvolutionFilter1D& filter_y, 348 const ConvolutionFilter1D& filter_y,
723 int output_byte_row_stride, 349 int output_byte_row_stride,
724 unsigned char* output, 350 unsigned char* output,
725 bool use_sse2) { 351 bool use_simd_if_possible) {
726 #if !defined(SIMD_SSE2) 352 ConvolveProcs simd;
727 // Even we have runtime support for SSE2 instructions, since the binary 353 simd.extra_horizontal_reads = 0;
728 // was not built with SSE2 support, we had to fallback to C version. 354 simd.convolve_vertically = NULL;
729 use_sse2 = false; 355 simd.convolve_4rows_horizontally = NULL;
730 #endif 356 simd.convolve_horizontally = NULL;
357 if (use_simd_if_possible) {
358 SetupSIMD(&simd);
359 }
731 360
732 int max_y_filter_size = filter_y.max_filter(); 361 int max_y_filter_size = filter_y.max_filter();
733 362
734 // The next row in the input that we will generate a horizontally 363 // The next row in the input that we will generate a horizontally
735 // convolved row for. If the filter doesn't start at the beginning of the 364 // convolved row for. If the filter doesn't start at the beginning of the
736 // image (this is the case when we are only resizing a subset), then we 365 // image (this is the case when we are only resizing a subset), then we
737 // don't want to generate any output rows before that. Compute the starting 366 // don't want to generate any output rows before that. Compute the starting
738 // row for convolution as the first pixel for the first vertical filter. 367 // row for convolution as the first pixel for the first vertical filter.
739 int filter_offset, filter_length; 368 int filter_offset, filter_length;
740 const ConvolutionFilter1D::Fixed* filter_values = 369 const ConvolutionFilter1D::Fixed* filter_values =
741 filter_y.FilterForValue(0, &filter_offset, &filter_length); 370 filter_y.FilterForValue(0, &filter_offset, &filter_length);
742 int next_x_row = filter_offset; 371 int next_x_row = filter_offset;
743 372
744 // We loop over each row in the input doing a horizontal convolution. This 373 // We loop over each row in the input doing a horizontal convolution. This
745 // will result in a horizontally convolved image. We write the results into 374 // will result in a horizontally convolved image. We write the results into
746 // a circular buffer of convolved rows and do vertical convolution as rows 375 // a circular buffer of convolved rows and do vertical convolution as rows
747 // are available. This prevents us from having to store the entire 376 // are available. This prevents us from having to store the entire
748 // intermediate image and helps cache coherency. 377 // intermediate image and helps cache coherency.
749 // We will need four extra rows to allow horizontal convolution could be done 378 // We will need four extra rows to allow horizontal convolution could be done
750 // simultaneously. We also padding each row in row buffer to be aligned-up to 379 // simultaneously. We also padding each row in row buffer to be aligned-up to
751 // 16 bytes. 380 // 16 bytes.
752 // TODO(jiesun): We do not use aligned load from row buffer in vertical 381 // TODO(jiesun): We do not use aligned load from row buffer in vertical
753 // convolution pass yet. Somehow Windows does not like it. 382 // convolution pass yet. Somehow Windows does not like it.
754 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; 383 int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
755 int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0); 384 int row_buffer_height = max_y_filter_size +
385 (simd.convolve_4rows_horizontally ? 4 : 0);
756 CircularRowBuffer row_buffer(row_buffer_width, 386 CircularRowBuffer row_buffer(row_buffer_width,
757 row_buffer_height, 387 row_buffer_height,
758 filter_offset); 388 filter_offset);
759 389
760 // Loop over every possible output row, processing just enough horizontal 390 // Loop over every possible output row, processing just enough horizontal
761 // convolutions to run each subsequent vertical convolution. 391 // convolutions to run each subsequent vertical convolution.
762 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); 392 SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4);
763 int num_output_rows = filter_y.num_values(); 393 int num_output_rows = filter_y.num_values();
764 394
765 // We need to check which is the last line to convolve before we advance 4 395 // We need to check which is the last line to convolve before we advance 4
766 // lines in one iteration. 396 // lines in one iteration.
767 int last_filter_offset, last_filter_length; 397 int last_filter_offset, last_filter_length;
768 398
769 // SSE2 can access up to 3 extra pixels past the end of the 399 // SSE2 can access up to 3 extra pixels past the end of the
770 // buffer. At the bottom of the image, we have to be careful 400 // buffer. At the bottom of the image, we have to be careful
771 // not to access data past the end of the buffer. Normally 401 // not to access data past the end of the buffer. Normally
772 // we fall back to the C++ implementation for the last row. 402 // we fall back to the C++ implementation for the last row.
773 // If the last row is less than 3 pixels wide, we may have to fall 403 // If the last row is less than 3 pixels wide, we may have to fall
774 // back to the C++ version for more rows. Compute how many 404 // back to the C++ version for more rows. Compute how many
775 // rows we need to avoid the SSE implementation for here. 405 // rows we need to avoid the SSE implementation for here.
776 filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, 406 filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset,
777 &last_filter_length); 407 &last_filter_length);
778 int avoid_sse_rows = 1 + 3/(last_filter_offset + last_filter_length); 408 int avoid_simd_rows = 1 + simd.extra_horizontal_reads /
409 (last_filter_offset + last_filter_length);
779 410
780 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, 411 filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
781 &last_filter_length); 412 &last_filter_length);
782 413
783 for (int out_y = 0; out_y < num_output_rows; out_y++) { 414 for (int out_y = 0; out_y < num_output_rows; out_y++) {
784 filter_values = filter_y.FilterForValue(out_y, 415 filter_values = filter_y.FilterForValue(out_y,
785 &filter_offset, &filter_length); 416 &filter_offset, &filter_length);
786 417
787 // Generate output rows until we have enough to run the current filter. 418 // Generate output rows until we have enough to run the current filter.
788 if (use_sse2) { 419 while (next_x_row < filter_offset + filter_length) {
789 while (next_x_row < filter_offset + filter_length) { 420 if (simd.convolve_4rows_horizontally &&
790 if (next_x_row + 3 < last_filter_offset + last_filter_length - 421 next_x_row + 3 < last_filter_offset + last_filter_length -
791 avoid_sse_rows) { 422 avoid_simd_rows) {
792 const unsigned char* src[4]; 423 const unsigned char* src[4];
793 unsigned char* out_row[4]; 424 unsigned char* out_row[4];
794 for (int i = 0; i < 4; ++i) { 425 for (int i = 0; i < 4; ++i) {
795 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; 426 src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
796 out_row[i] = row_buffer.AdvanceRow(); 427 out_row[i] = row_buffer.AdvanceRow();
797 } 428 }
798 ConvolveHorizontally4_SSE2(src, filter_x, out_row); 429 simd.convolve_4rows_horizontally(src, filter_x, out_row);
799 next_x_row += 4; 430 next_x_row += 4;
431 } else {
432 // Check if we need to avoid SSE2 for this row.
433 if (simd.convolve_horizontally &&
434 next_x_row < last_filter_offset + last_filter_length -
435 avoid_simd_rows) {
436 simd.convolve_horizontally(
437 &source_data[next_x_row * source_byte_row_stride],
438 filter_x, row_buffer.AdvanceRow());
800 } else { 439 } else {
801 // Check if we need to avoid SSE2 for this row. 440 if (source_has_alpha) {
Stephen White 2013/04/06 22:44:33 Not new to this patch, but it seems a little stran
802 if (next_x_row >= last_filter_offset + last_filter_length - 441 ConvolveHorizontally<true>(
803 avoid_sse_rows) { 442 &source_data[next_x_row * source_byte_row_stride],
804 if (source_has_alpha) { 443 filter_x, row_buffer.AdvanceRow());
805 ConvolveHorizontally<true>(
806 &source_data[next_x_row * source_byte_row_stride],
807 filter_x, row_buffer.AdvanceRow());
808 } else {
809 ConvolveHorizontally<false>(
810 &source_data[next_x_row * source_byte_row_stride],
811 filter_x, row_buffer.AdvanceRow());
812 }
813 } else { 444 } else {
814 ConvolveHorizontally_SSE2( 445 ConvolveHorizontally<false>(
815 &source_data[next_x_row * source_byte_row_stride], 446 &source_data[next_x_row * source_byte_row_stride],
816 filter_x, row_buffer.AdvanceRow()); 447 filter_x, row_buffer.AdvanceRow());
817 } 448 }
818 next_x_row++;
819 }
820 }
821 } else {
822 while (next_x_row < filter_offset + filter_length) {
823 if (source_has_alpha) {
824 ConvolveHorizontally<true>(
825 &source_data[next_x_row * source_byte_row_stride],
826 filter_x, row_buffer.AdvanceRow());
827 } else {
828 ConvolveHorizontally<false>(
829 &source_data[next_x_row * source_byte_row_stride],
830 filter_x, row_buffer.AdvanceRow());
831 } 449 }
832 next_x_row++; 450 next_x_row++;
833 } 451 }
834 } 452 }
835 453
836 // Compute where in the output image this row of final data will go. 454 // Compute where in the output image this row of final data will go.
837 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; 455 unsigned char* cur_output_row = &output[out_y * output_byte_row_stride];
838 456
839 // Get the list of rows that the circular buffer has, in order. 457 // Get the list of rows that the circular buffer has, in order.
840 int first_row_in_circular_buffer; 458 int first_row_in_circular_buffer;
841 unsigned char* const* rows_to_convolve = 459 unsigned char* const* rows_to_convolve =
842 row_buffer.GetRowAddresses(&first_row_in_circular_buffer); 460 row_buffer.GetRowAddresses(&first_row_in_circular_buffer);
843 461
844 // Now compute the start of the subset of those rows that the filter 462 // Now compute the start of the subset of those rows that the filter
845 // needs. 463 // needs.
846 unsigned char* const* first_row_for_filter = 464 unsigned char* const* first_row_for_filter =
847 &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; 465 &rows_to_convolve[filter_offset - first_row_in_circular_buffer];
848 466
849 if (source_has_alpha) { 467 if (simd.convolve_vertically) {
850 if (use_sse2) { 468 simd.convolve_vertically(filter_values, filter_length,
851 ConvolveVertically_SSE2<true>(filter_values, filter_length, 469 first_row_for_filter,
852 first_row_for_filter, 470 filter_x.num_values(), cur_output_row,
853 filter_x.num_values(), cur_output_row); 471 source_has_alpha);
854 } else {
855 ConvolveVertically<true>(filter_values, filter_length,
856 first_row_for_filter,
857 filter_x.num_values(), cur_output_row);
858 }
859 } else { 472 } else {
860 if (use_sse2) { 473 ConvolveVertically(filter_values, filter_length,
861 ConvolveVertically_SSE2<false>(filter_values, filter_length, 474 first_row_for_filter,
862 first_row_for_filter, 475 filter_x.num_values(), cur_output_row,
863 filter_x.num_values(), cur_output_row); 476 source_has_alpha);
864 } else {
865 ConvolveVertically<false>(filter_values, filter_length,
866 first_row_for_filter,
867 filter_x.num_values(), cur_output_row);
868 }
869 } 477 }
870 } 478 }
871 } 479 }
872 480
873 } // namespace skia 481 } // namespace skia
OLDNEW
« no previous file with comments | « skia/ext/convolver.h ('k') | skia/ext/convolver_SSE2.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698