Index: third_party/protobuf/src/google/protobuf/stubs/map_util.h |
diff --git a/third_party/protobuf/src/google/protobuf/stubs/map_util.h b/third_party/protobuf/src/google/protobuf/stubs/map_util.h |
deleted file mode 100644 |
index 4cccbbedcbbfe7bd078b81b6cddb255c1cd7568b..0000000000000000000000000000000000000000 |
--- a/third_party/protobuf/src/google/protobuf/stubs/map_util.h |
+++ /dev/null |
@@ -1,769 +0,0 @@ |
-// Protocol Buffers - Google's data interchange format |
-// Copyright 2014 Google Inc. All rights reserved. |
-// https://developers.google.com/protocol-buffers/ |
-// |
-// Redistribution and use in source and binary forms, with or without |
-// modification, are permitted provided that the following conditions are |
-// met: |
-// |
-// * Redistributions of source code must retain the above copyright |
-// notice, this list of conditions and the following disclaimer. |
-// * Redistributions in binary form must reproduce the above |
-// copyright notice, this list of conditions and the following disclaimer |
-// in the documentation and/or other materials provided with the |
-// distribution. |
-// * Neither the name of Google Inc. nor the names of its |
-// contributors may be used to endorse or promote products derived from |
-// this software without specific prior written permission. |
-// |
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- |
-// from google3/util/gtl/map_util.h |
-// Author: Anton Carver |
- |
-#ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |
-#define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |
- |
-#include <stddef.h> |
-#include <iterator> |
-#include <string> |
-#include <utility> |
-#include <vector> |
- |
-#include <google/protobuf/stubs/common.h> |
- |
-namespace google { |
-namespace protobuf { |
-namespace internal { |
-// Local implementation of RemoveConst to avoid including base/type_traits.h. |
-template <class T> struct RemoveConst { typedef T type; }; |
-template <class T> struct RemoveConst<const T> : RemoveConst<T> {}; |
-} // namespace internal |
- |
-// |
-// Find*() |
-// |
- |
-// Returns a const reference to the value associated with the given key if it |
-// exists. Crashes otherwise. |
-// |
-// This is intended as a replacement for operator[] as an rvalue (for reading) |
-// when the key is guaranteed to exist. |
-// |
-// operator[] for lookup is discouraged for several reasons: |
-// * It has a side-effect of inserting missing keys |
-// * It is not thread-safe (even when it is not inserting, it can still |
-// choose to resize the underlying storage) |
-// * It invalidates iterators (when it chooses to resize) |
-// * It default constructs a value object even if it doesn't need to |
-// |
-// This version assumes the key is printable, and includes it in the fatal log |
-// message. |
-template <class Collection> |
-const typename Collection::value_type::second_type& |
-FindOrDie(const Collection& collection, |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::const_iterator it = collection.find(key); |
- GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; |
- return it->second; |
-} |
- |
-// Same as above, but returns a non-const reference. |
-template <class Collection> |
-typename Collection::value_type::second_type& |
-FindOrDie(Collection& collection, // NOLINT |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::iterator it = collection.find(key); |
- GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key; |
- return it->second; |
-} |
- |
-// Same as FindOrDie above, but doesn't log the key on failure. |
-template <class Collection> |
-const typename Collection::value_type::second_type& |
-FindOrDieNoPrint(const Collection& collection, |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::const_iterator it = collection.find(key); |
- GOOGLE_CHECK(it != collection.end()) << "Map key not found"; |
- return it->second; |
-} |
- |
-// Same as above, but returns a non-const reference. |
-template <class Collection> |
-typename Collection::value_type::second_type& |
-FindOrDieNoPrint(Collection& collection, // NOLINT |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::iterator it = collection.find(key); |
- GOOGLE_CHECK(it != collection.end()) << "Map key not found"; |
- return it->second; |
-} |
- |
-// Returns a const reference to the value associated with the given key if it |
-// exists, otherwise returns a const reference to the provided default value. |
-// |
-// WARNING: If a temporary object is passed as the default "value," |
-// this function will return a reference to that temporary object, |
-// which will be destroyed at the end of the statement. A common |
-// example: if you have a map with string values, and you pass a char* |
-// as the default "value," either use the returned value immediately |
-// or store it in a string (not string&). |
-// Details: http://go/findwithdefault |
-template <class Collection> |
-const typename Collection::value_type::second_type& |
-FindWithDefault(const Collection& collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& value) { |
- typename Collection::const_iterator it = collection.find(key); |
- if (it == collection.end()) { |
- return value; |
- } |
- return it->second; |
-} |
- |
-// Returns a pointer to the const value associated with the given key if it |
-// exists, or NULL otherwise. |
-template <class Collection> |
-const typename Collection::value_type::second_type* |
-FindOrNull(const Collection& collection, |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::const_iterator it = collection.find(key); |
- if (it == collection.end()) { |
- return 0; |
- } |
- return &it->second; |
-} |
- |
-// Same as above but returns a pointer to the non-const value. |
-template <class Collection> |
-typename Collection::value_type::second_type* |
-FindOrNull(Collection& collection, // NOLINT |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::iterator it = collection.find(key); |
- if (it == collection.end()) { |
- return 0; |
- } |
- return &it->second; |
-} |
- |
-// Returns the pointer value associated with the given key. If none is found, |
-// NULL is returned. The function is designed to be used with a map of keys to |
-// pointers. |
-// |
-// This function does not distinguish between a missing key and a key mapped |
-// to a NULL value. |
-template <class Collection> |
-typename Collection::value_type::second_type |
-FindPtrOrNull(const Collection& collection, |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::const_iterator it = collection.find(key); |
- if (it == collection.end()) { |
- return typename Collection::value_type::second_type(); |
- } |
- return it->second; |
-} |
- |
-// Same as above, except takes non-const reference to collection. |
-// |
-// This function is needed for containers that propagate constness to the |
-// pointee, such as boost::ptr_map. |
-template <class Collection> |
-typename Collection::value_type::second_type |
-FindPtrOrNull(Collection& collection, // NOLINT |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::iterator it = collection.find(key); |
- if (it == collection.end()) { |
- return typename Collection::value_type::second_type(); |
- } |
- return it->second; |
-} |
- |
-// Finds the pointer value associated with the given key in a map whose values |
-// are linked_ptrs. Returns NULL if key is not found. |
-template <class Collection> |
-typename Collection::value_type::second_type::element_type* |
-FindLinkedPtrOrNull(const Collection& collection, |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::const_iterator it = collection.find(key); |
- if (it == collection.end()) { |
- return 0; |
- } |
- // Since linked_ptr::get() is a const member returning a non const, |
- // we do not need a version of this function taking a non const collection. |
- return it->second.get(); |
-} |
- |
-// Same as above, but dies if the key is not found. |
-template <class Collection> |
-typename Collection::value_type::second_type::element_type& |
-FindLinkedPtrOrDie(const Collection& collection, |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::const_iterator it = collection.find(key); |
- CHECK(it != collection.end()) << "key not found: " << key; |
- // Since linked_ptr::operator*() is a const member returning a non const, |
- // we do not need a version of this function taking a non const collection. |
- return *it->second; |
-} |
- |
-// Finds the value associated with the given key and copies it to *value (if not |
-// NULL). Returns false if the key was not found, true otherwise. |
-template <class Collection, class Key, class Value> |
-bool FindCopy(const Collection& collection, |
- const Key& key, |
- Value* const value) { |
- typename Collection::const_iterator it = collection.find(key); |
- if (it == collection.end()) { |
- return false; |
- } |
- if (value) { |
- *value = it->second; |
- } |
- return true; |
-} |
- |
-// |
-// Contains*() |
-// |
- |
-// Returns true if and only if the given collection contains the given key. |
-template <class Collection, class Key> |
-bool ContainsKey(const Collection& collection, const Key& key) { |
- return collection.find(key) != collection.end(); |
-} |
- |
-// Returns true if and only if the given collection contains the given key-value |
-// pair. |
-template <class Collection, class Key, class Value> |
-bool ContainsKeyValuePair(const Collection& collection, |
- const Key& key, |
- const Value& value) { |
- typedef typename Collection::const_iterator const_iterator; |
- std::pair<const_iterator, const_iterator> range = collection.equal_range(key); |
- for (const_iterator it = range.first; it != range.second; ++it) { |
- if (it->second == value) { |
- return true; |
- } |
- } |
- return false; |
-} |
- |
-// |
-// Insert*() |
-// |
- |
-// Inserts the given key-value pair into the collection. Returns true if and |
-// only if the key from the given pair didn't previously exist. Otherwise, the |
-// value in the map is replaced with the value from the given pair. |
-template <class Collection> |
-bool InsertOrUpdate(Collection* const collection, |
- const typename Collection::value_type& vt) { |
- std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
- if (!ret.second) { |
- // update |
- ret.first->second = vt.second; |
- return false; |
- } |
- return true; |
-} |
- |
-// Same as above, except that the key and value are passed separately. |
-template <class Collection> |
-bool InsertOrUpdate(Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& value) { |
- return InsertOrUpdate( |
- collection, typename Collection::value_type(key, value)); |
-} |
- |
-// Inserts/updates all the key-value pairs from the range defined by the |
-// iterators "first" and "last" into the given collection. |
-template <class Collection, class InputIterator> |
-void InsertOrUpdateMany(Collection* const collection, |
- InputIterator first, InputIterator last) { |
- for (; first != last; ++first) { |
- InsertOrUpdate(collection, *first); |
- } |
-} |
- |
-// Change the value associated with a particular key in a map or hash_map |
-// of the form map<Key, Value*> which owns the objects pointed to by the |
-// value pointers. If there was an existing value for the key, it is deleted. |
-// True indicates an insert took place, false indicates an update + delete. |
-template <class Collection> |
-bool InsertAndDeleteExisting( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& value) { |
- std::pair<typename Collection::iterator, bool> ret = |
- collection->insert(typename Collection::value_type(key, value)); |
- if (!ret.second) { |
- delete ret.first->second; |
- ret.first->second = value; |
- return false; |
- } |
- return true; |
-} |
- |
-// Inserts the given key and value into the given collection if and only if the |
-// given key did NOT already exist in the collection. If the key previously |
-// existed in the collection, the value is not changed. Returns true if the |
-// key-value pair was inserted; returns false if the key was already present. |
-template <class Collection> |
-bool InsertIfNotPresent(Collection* const collection, |
- const typename Collection::value_type& vt) { |
- return collection->insert(vt).second; |
-} |
- |
-// Same as above except the key and value are passed separately. |
-template <class Collection> |
-bool InsertIfNotPresent( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& value) { |
- return InsertIfNotPresent( |
- collection, typename Collection::value_type(key, value)); |
-} |
- |
-// Same as above except dies if the key already exists in the collection. |
-template <class Collection> |
-void InsertOrDie(Collection* const collection, |
- const typename Collection::value_type& value) { |
- CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value; |
-} |
- |
-// Same as above except doesn't log the value on error. |
-template <class Collection> |
-void InsertOrDieNoPrint(Collection* const collection, |
- const typename Collection::value_type& value) { |
- CHECK(InsertIfNotPresent(collection, value)) << "duplicate value."; |
-} |
- |
-// Inserts the key-value pair into the collection. Dies if key was already |
-// present. |
-template <class Collection> |
-void InsertOrDie(Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& data) { |
- GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) |
- << "duplicate key: " << key; |
-} |
- |
-// Same as above except doesn't log the key on error. |
-template <class Collection> |
-void InsertOrDieNoPrint( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& data) { |
- GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key."; |
-} |
- |
-// Inserts a new key and default-initialized value. Dies if the key was already |
-// present. Returns a reference to the value. Example usage: |
-// |
-// map<int, SomeProto> m; |
-// SomeProto& proto = InsertKeyOrDie(&m, 3); |
-// proto.set_field("foo"); |
-template <class Collection> |
-typename Collection::value_type::second_type& InsertKeyOrDie( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key) { |
- typedef typename Collection::value_type value_type; |
- std::pair<typename Collection::iterator, bool> res = |
- collection->insert(value_type(key, typename value_type::second_type())); |
- GOOGLE_CHECK(res.second) << "duplicate key: " << key; |
- return res.first->second; |
-} |
- |
-// |
-// Lookup*() |
-// |
- |
-// Looks up a given key and value pair in a collection and inserts the key-value |
-// pair if it's not already present. Returns a reference to the value associated |
-// with the key. |
-template <class Collection> |
-typename Collection::value_type::second_type& |
-LookupOrInsert(Collection* const collection, |
- const typename Collection::value_type& vt) { |
- return collection->insert(vt).first->second; |
-} |
- |
-// Same as above except the key-value are passed separately. |
-template <class Collection> |
-typename Collection::value_type::second_type& |
-LookupOrInsert(Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& value) { |
- return LookupOrInsert( |
- collection, typename Collection::value_type(key, value)); |
-} |
- |
-// Counts the number of equivalent elements in the given "sequence", and stores |
-// the results in "count_map" with element as the key and count as the value. |
-// |
-// Example: |
-// vector<string> v = {"a", "b", "c", "a", "b"}; |
-// map<string, int> m; |
-// AddTokenCounts(v, 1, &m); |
-// assert(m["a"] == 2); |
-// assert(m["b"] == 2); |
-// assert(m["c"] == 1); |
-template <typename Sequence, typename Collection> |
-void AddTokenCounts( |
- const Sequence& sequence, |
- const typename Collection::value_type::second_type& increment, |
- Collection* const count_map) { |
- for (typename Sequence::const_iterator it = sequence.begin(); |
- it != sequence.end(); ++it) { |
- typename Collection::value_type::second_type& value = |
- LookupOrInsert(count_map, *it, |
- typename Collection::value_type::second_type()); |
- value += increment; |
- } |
-} |
- |
-// Returns a reference to the value associated with key. If not found, a value |
-// is default constructed on the heap and added to the map. |
-// |
-// This function is useful for containers of the form map<Key, Value*>, where |
-// inserting a new key, value pair involves constructing a new heap-allocated |
-// Value, and storing a pointer to that in the collection. |
-template <class Collection> |
-typename Collection::value_type::second_type& |
-LookupOrInsertNew(Collection* const collection, |
- const typename Collection::value_type::first_type& key) { |
- typedef typename std::iterator_traits< |
- typename Collection::value_type::second_type>::value_type Element; |
- std::pair<typename Collection::iterator, bool> ret = |
- collection->insert(typename Collection::value_type( |
- key, |
- static_cast<typename Collection::value_type::second_type>(NULL))); |
- if (ret.second) { |
- ret.first->second = new Element(); |
- } |
- return ret.first->second; |
-} |
- |
-// Same as above but constructs the value using the single-argument constructor |
-// and the given "arg". |
-template <class Collection, class Arg> |
-typename Collection::value_type::second_type& |
-LookupOrInsertNew(Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const Arg& arg) { |
- typedef typename std::iterator_traits< |
- typename Collection::value_type::second_type>::value_type Element; |
- std::pair<typename Collection::iterator, bool> ret = |
- collection->insert(typename Collection::value_type( |
- key, |
- static_cast<typename Collection::value_type::second_type>(NULL))); |
- if (ret.second) { |
- ret.first->second = new Element(arg); |
- } |
- return ret.first->second; |
-} |
- |
-// Lookup of linked/shared pointers is used in two scenarios: |
-// |
-// Use LookupOrInsertNewLinkedPtr if the container owns the elements. |
-// In this case it is fine working with the raw pointer as long as it is |
-// guaranteed that no other thread can delete/update an accessed element. |
-// A mutex will need to lock the container operation as well as the use |
-// of the returned elements. Finding an element may be performed using |
-// FindLinkedPtr*(). |
-// |
-// Use LookupOrInsertNewSharedPtr if the container does not own the elements |
-// for their whole lifetime. This is typically the case when a reader allows |
-// parallel updates to the container. In this case a Mutex only needs to lock |
-// container operations, but all element operations must be performed on the |
-// shared pointer. Finding an element must be performed using FindPtr*() and |
-// cannot be done with FindLinkedPtr*() even though it compiles. |
- |
-// Lookup a key in a map or hash_map whose values are linked_ptrs. If it is |
-// missing, set collection[key].reset(new Value::element_type) and return that. |
-// Value::element_type must be default constructable. |
-template <class Collection> |
-typename Collection::value_type::second_type::element_type* |
-LookupOrInsertNewLinkedPtr( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key) { |
- typedef typename Collection::value_type::second_type Value; |
- std::pair<typename Collection::iterator, bool> ret = |
- collection->insert(typename Collection::value_type(key, Value())); |
- if (ret.second) { |
- ret.first->second.reset(new typename Value::element_type); |
- } |
- return ret.first->second.get(); |
-} |
- |
-// A variant of LookupOrInsertNewLinkedPtr where the value is constructed using |
-// a single-parameter constructor. Note: the constructor argument is computed |
-// even if it will not be used, so only values cheap to compute should be passed |
-// here. On the other hand it does not matter how expensive the construction of |
-// the actual stored value is, as that only occurs if necessary. |
-template <class Collection, class Arg> |
-typename Collection::value_type::second_type::element_type* |
-LookupOrInsertNewLinkedPtr( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const Arg& arg) { |
- typedef typename Collection::value_type::second_type Value; |
- std::pair<typename Collection::iterator, bool> ret = |
- collection->insert(typename Collection::value_type(key, Value())); |
- if (ret.second) { |
- ret.first->second.reset(new typename Value::element_type(arg)); |
- } |
- return ret.first->second.get(); |
-} |
- |
-// Lookup a key in a map or hash_map whose values are shared_ptrs. If it is |
-// missing, set collection[key].reset(new Value::element_type). Unlike |
-// LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of |
-// the raw pointer. Value::element_type must be default constructable. |
-template <class Collection> |
-typename Collection::value_type::second_type& |
-LookupOrInsertNewSharedPtr( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key) { |
- typedef typename Collection::value_type::second_type SharedPtr; |
- typedef typename Collection::value_type::second_type::element_type Element; |
- std::pair<typename Collection::iterator, bool> ret = |
- collection->insert(typename Collection::value_type(key, SharedPtr())); |
- if (ret.second) { |
- ret.first->second.reset(new Element()); |
- } |
- return ret.first->second; |
-} |
- |
-// A variant of LookupOrInsertNewSharedPtr where the value is constructed using |
-// a single-parameter constructor. Note: the constructor argument is computed |
-// even if it will not be used, so only values cheap to compute should be passed |
-// here. On the other hand it does not matter how expensive the construction of |
-// the actual stored value is, as that only occurs if necessary. |
-template <class Collection, class Arg> |
-typename Collection::value_type::second_type& |
-LookupOrInsertNewSharedPtr( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const Arg& arg) { |
- typedef typename Collection::value_type::second_type SharedPtr; |
- typedef typename Collection::value_type::second_type::element_type Element; |
- std::pair<typename Collection::iterator, bool> ret = |
- collection->insert(typename Collection::value_type(key, SharedPtr())); |
- if (ret.second) { |
- ret.first->second.reset(new Element(arg)); |
- } |
- return ret.first->second; |
-} |
- |
-// |
-// Misc Utility Functions |
-// |
- |
-// Updates the value associated with the given key. If the key was not already |
-// present, then the key-value pair are inserted and "previous" is unchanged. If |
-// the key was already present, the value is updated and "*previous" will |
-// contain a copy of the old value. |
-// |
-// InsertOrReturnExisting has complementary behavior that returns the |
-// address of an already existing value, rather than updating it. |
-template <class Collection> |
-bool UpdateReturnCopy(Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& value, |
- typename Collection::value_type::second_type* previous) { |
- std::pair<typename Collection::iterator, bool> ret = |
- collection->insert(typename Collection::value_type(key, value)); |
- if (!ret.second) { |
- // update |
- if (previous) { |
- *previous = ret.first->second; |
- } |
- ret.first->second = value; |
- return true; |
- } |
- return false; |
-} |
- |
-// Same as above except that the key and value are passed as a pair. |
-template <class Collection> |
-bool UpdateReturnCopy(Collection* const collection, |
- const typename Collection::value_type& vt, |
- typename Collection::value_type::second_type* previous) { |
- std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
- if (!ret.second) { |
- // update |
- if (previous) { |
- *previous = ret.first->second; |
- } |
- ret.first->second = vt.second; |
- return true; |
- } |
- return false; |
-} |
- |
-// Tries to insert the given key-value pair into the collection. Returns NULL if |
-// the insert succeeds. Otherwise, returns a pointer to the existing value. |
-// |
-// This complements UpdateReturnCopy in that it allows to update only after |
-// verifying the old value and still insert quickly without having to look up |
-// twice. Unlike UpdateReturnCopy this also does not come with the issue of an |
-// undefined previous* in case new data was inserted. |
-template <class Collection> |
-typename Collection::value_type::second_type* const |
-InsertOrReturnExisting(Collection* const collection, |
- const typename Collection::value_type& vt) { |
- std::pair<typename Collection::iterator, bool> ret = collection->insert(vt); |
- if (ret.second) { |
- return NULL; // Inserted, no existing previous value. |
- } else { |
- return &ret.first->second; // Return address of already existing value. |
- } |
-} |
- |
-// Same as above, except for explicit key and data. |
-template <class Collection> |
-typename Collection::value_type::second_type* const |
-InsertOrReturnExisting( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key, |
- const typename Collection::value_type::second_type& data) { |
- return InsertOrReturnExisting(collection, |
- typename Collection::value_type(key, data)); |
-} |
- |
-// Erases the collection item identified by the given key, and returns the value |
-// associated with that key. It is assumed that the value (i.e., the |
-// mapped_type) is a pointer. Returns NULL if the key was not found in the |
-// collection. |
-// |
-// Examples: |
-// map<string, MyType*> my_map; |
-// |
-// One line cleanup: |
-// delete EraseKeyReturnValuePtr(&my_map, "abc"); |
-// |
-// Use returned value: |
-// scoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc")); |
-// if (value_ptr.get()) |
-// value_ptr->DoSomething(); |
-// |
-template <class Collection> |
-typename Collection::value_type::second_type EraseKeyReturnValuePtr( |
- Collection* const collection, |
- const typename Collection::value_type::first_type& key) { |
- typename Collection::iterator it = collection->find(key); |
- if (it == collection->end()) { |
- return NULL; |
- } |
- typename Collection::value_type::second_type v = it->second; |
- collection->erase(it); |
- return v; |
-} |
- |
-// Inserts all the keys from map_container into key_container, which must |
-// support insert(MapContainer::key_type). |
-// |
-// Note: any initial contents of the key_container are not cleared. |
-template <class MapContainer, class KeyContainer> |
-void InsertKeysFromMap(const MapContainer& map_container, |
- KeyContainer* key_container) { |
- GOOGLE_CHECK(key_container != NULL); |
- for (typename MapContainer::const_iterator it = map_container.begin(); |
- it != map_container.end(); ++it) { |
- key_container->insert(it->first); |
- } |
-} |
- |
-// Appends all the keys from map_container into key_container, which must |
-// support push_back(MapContainer::key_type). |
-// |
-// Note: any initial contents of the key_container are not cleared. |
-template <class MapContainer, class KeyContainer> |
-void AppendKeysFromMap(const MapContainer& map_container, |
- KeyContainer* key_container) { |
- GOOGLE_CHECK(key_container != NULL); |
- for (typename MapContainer::const_iterator it = map_container.begin(); |
- it != map_container.end(); ++it) { |
- key_container->push_back(it->first); |
- } |
-} |
- |
-// A more specialized overload of AppendKeysFromMap to optimize reallocations |
-// for the common case in which we're appending keys to a vector and hence can |
-// (and sometimes should) call reserve() first. |
-// |
-// (It would be possible to play SFINAE games to call reserve() for any |
-// container that supports it, but this seems to get us 99% of what we need |
-// without the complexity of a SFINAE-based solution.) |
-template <class MapContainer, class KeyType> |
-void AppendKeysFromMap(const MapContainer& map_container, |
- vector<KeyType>* key_container) { |
- GOOGLE_CHECK(key_container != NULL); |
- // We now have the opportunity to call reserve(). Calling reserve() every |
- // time is a bad idea for some use cases: libstdc++'s implementation of |
- // vector<>::reserve() resizes the vector's backing store to exactly the |
- // given size (unless it's already at least that big). Because of this, |
- // the use case that involves appending a lot of small maps (total size |
- // N) one by one to a vector would be O(N^2). But never calling reserve() |
- // loses the opportunity to improve the use case of adding from a large |
- // map to an empty vector (this improves performance by up to 33%). A |
- // number of heuristics are possible; see the discussion in |
- // cl/34081696. Here we use the simplest one. |
- if (key_container->empty()) { |
- key_container->reserve(map_container.size()); |
- } |
- for (typename MapContainer::const_iterator it = map_container.begin(); |
- it != map_container.end(); ++it) { |
- key_container->push_back(it->first); |
- } |
-} |
- |
-// Inserts all the values from map_container into value_container, which must |
-// support push_back(MapContainer::mapped_type). |
-// |
-// Note: any initial contents of the value_container are not cleared. |
-template <class MapContainer, class ValueContainer> |
-void AppendValuesFromMap(const MapContainer& map_container, |
- ValueContainer* value_container) { |
- GOOGLE_CHECK(value_container != NULL); |
- for (typename MapContainer::const_iterator it = map_container.begin(); |
- it != map_container.end(); ++it) { |
- value_container->push_back(it->second); |
- } |
-} |
- |
-// A more specialized overload of AppendValuesFromMap to optimize reallocations |
-// for the common case in which we're appending values to a vector and hence |
-// can (and sometimes should) call reserve() first. |
-// |
-// (It would be possible to play SFINAE games to call reserve() for any |
-// container that supports it, but this seems to get us 99% of what we need |
-// without the complexity of a SFINAE-based solution.) |
-template <class MapContainer, class ValueType> |
-void AppendValuesFromMap(const MapContainer& map_container, |
- vector<ValueType>* value_container) { |
- GOOGLE_CHECK(value_container != NULL); |
- // See AppendKeysFromMap for why this is done. |
- if (value_container->empty()) { |
- value_container->reserve(map_container.size()); |
- } |
- for (typename MapContainer::const_iterator it = map_container.begin(); |
- it != map_container.end(); ++it) { |
- value_container->push_back(it->second); |
- } |
-} |
- |
-} // namespace protobuf |
-} // namespace google |
- |
-#endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__ |