OLD | NEW |
| (Empty) |
1 // Amalgamated source file | |
2 #include "upb.h" | |
3 | |
4 | |
5 #include <stdlib.h> | |
6 #include <string.h> | |
7 | |
8 typedef struct { | |
9 size_t len; | |
10 char str[1]; /* Null-terminated string data follows. */ | |
11 } str_t; | |
12 | |
13 static str_t *newstr(const char *data, size_t len) { | |
14 str_t *ret = malloc(sizeof(*ret) + len); | |
15 if (!ret) return NULL; | |
16 ret->len = len; | |
17 memcpy(ret->str, data, len); | |
18 ret->str[len] = '\0'; | |
19 return ret; | |
20 } | |
21 | |
22 static void freestr(str_t *s) { free(s); } | |
23 | |
24 /* isalpha() etc. from <ctype.h> are locale-dependent, which we don't want. */ | |
25 static bool upb_isbetween(char c, char low, char high) { | |
26 return c >= low && c <= high; | |
27 } | |
28 | |
29 static bool upb_isletter(char c) { | |
30 return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_'; | |
31 } | |
32 | |
33 static bool upb_isalphanum(char c) { | |
34 return upb_isletter(c) || upb_isbetween(c, '0', '9'); | |
35 } | |
36 | |
37 static bool upb_isident(const char *str, size_t len, bool full, upb_status *s) { | |
38 bool start = true; | |
39 size_t i; | |
40 for (i = 0; i < len; i++) { | |
41 char c = str[i]; | |
42 if (c == '.') { | |
43 if (start || !full) { | |
44 upb_status_seterrf(s, "invalid name: unexpected '.' (%s)", str); | |
45 return false; | |
46 } | |
47 start = true; | |
48 } else if (start) { | |
49 if (!upb_isletter(c)) { | |
50 upb_status_seterrf( | |
51 s, "invalid name: path components must start with a letter (%s)", | |
52 str); | |
53 return false; | |
54 } | |
55 start = false; | |
56 } else { | |
57 if (!upb_isalphanum(c)) { | |
58 upb_status_seterrf(s, "invalid name: non-alphanumeric character (%s)", | |
59 str); | |
60 return false; | |
61 } | |
62 } | |
63 } | |
64 return !start; | |
65 } | |
66 | |
67 | |
68 /* upb_def ********************************************************************/ | |
69 | |
70 upb_deftype_t upb_def_type(const upb_def *d) { return d->type; } | |
71 | |
72 const char *upb_def_fullname(const upb_def *d) { return d->fullname; } | |
73 | |
74 bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s) { | |
75 assert(!upb_def_isfrozen(def)); | |
76 if (!upb_isident(fullname, strlen(fullname), true, s)) return false; | |
77 free((void*)def->fullname); | |
78 def->fullname = upb_strdup(fullname); | |
79 return true; | |
80 } | |
81 | |
82 upb_def *upb_def_dup(const upb_def *def, const void *o) { | |
83 switch (def->type) { | |
84 case UPB_DEF_MSG: | |
85 return upb_msgdef_upcast_mutable( | |
86 upb_msgdef_dup(upb_downcast_msgdef(def), o)); | |
87 case UPB_DEF_FIELD: | |
88 return upb_fielddef_upcast_mutable( | |
89 upb_fielddef_dup(upb_downcast_fielddef(def), o)); | |
90 case UPB_DEF_ENUM: | |
91 return upb_enumdef_upcast_mutable( | |
92 upb_enumdef_dup(upb_downcast_enumdef(def), o)); | |
93 default: assert(false); return NULL; | |
94 } | |
95 } | |
96 | |
97 static bool upb_def_init(upb_def *def, upb_deftype_t type, | |
98 const struct upb_refcounted_vtbl *vtbl, | |
99 const void *owner) { | |
100 if (!upb_refcounted_init(upb_def_upcast_mutable(def), vtbl, owner)) return fal
se; | |
101 def->type = type; | |
102 def->fullname = NULL; | |
103 def->came_from_user = false; | |
104 return true; | |
105 } | |
106 | |
107 static void upb_def_uninit(upb_def *def) { | |
108 free((void*)def->fullname); | |
109 } | |
110 | |
111 static const char *msgdef_name(const upb_msgdef *m) { | |
112 const char *name = upb_def_fullname(upb_msgdef_upcast(m)); | |
113 return name ? name : "(anonymous)"; | |
114 } | |
115 | |
116 static bool upb_validate_field(upb_fielddef *f, upb_status *s) { | |
117 if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { | |
118 upb_status_seterrmsg(s, "fielddef must have name and number set"); | |
119 return false; | |
120 } | |
121 | |
122 if (!f->type_is_set_) { | |
123 upb_status_seterrmsg(s, "fielddef type was not initialized"); | |
124 return false; | |
125 } | |
126 | |
127 if (upb_fielddef_lazy(f) && | |
128 upb_fielddef_descriptortype(f) != UPB_DESCRIPTOR_TYPE_MESSAGE) { | |
129 upb_status_seterrmsg(s, | |
130 "only length-delimited submessage fields may be lazy"); | |
131 return false; | |
132 } | |
133 | |
134 if (upb_fielddef_hassubdef(f)) { | |
135 const upb_def *subdef; | |
136 | |
137 if (f->subdef_is_symbolic) { | |
138 upb_status_seterrf(s, "field '%s.%s' has not been resolved", | |
139 msgdef_name(f->msg.def), upb_fielddef_name(f)); | |
140 return false; | |
141 } | |
142 | |
143 subdef = upb_fielddef_subdef(f); | |
144 if (subdef == NULL) { | |
145 upb_status_seterrf(s, "field %s.%s is missing required subdef", | |
146 msgdef_name(f->msg.def), upb_fielddef_name(f)); | |
147 return false; | |
148 } | |
149 | |
150 if (!upb_def_isfrozen(subdef) && !subdef->came_from_user) { | |
151 upb_status_seterrf(s, | |
152 "subdef of field %s.%s is not frozen or being frozen", | |
153 msgdef_name(f->msg.def), upb_fielddef_name(f)); | |
154 return false; | |
155 } | |
156 } | |
157 | |
158 if (upb_fielddef_type(f) == UPB_TYPE_ENUM) { | |
159 bool has_default_name = upb_fielddef_enumhasdefaultstr(f); | |
160 bool has_default_number = upb_fielddef_enumhasdefaultint32(f); | |
161 | |
162 /* Previously verified by upb_validate_enumdef(). */ | |
163 assert(upb_enumdef_numvals(upb_fielddef_enumsubdef(f)) > 0); | |
164 | |
165 /* We've already validated that we have an associated enumdef and that it | |
166 * has at least one member, so at least one of these should be true. | |
167 * Because if the user didn't set anything, we'll pick up the enum's | |
168 * default, but if the user *did* set something we should at least pick up | |
169 * the one they set (int32 or string). */ | |
170 assert(has_default_name || has_default_number); | |
171 | |
172 if (!has_default_name) { | |
173 upb_status_seterrf(s, | |
174 "enum default for field %s.%s (%d) is not in the enum", | |
175 msgdef_name(f->msg.def), upb_fielddef_name(f), | |
176 upb_fielddef_defaultint32(f)); | |
177 return false; | |
178 } | |
179 | |
180 if (!has_default_number) { | |
181 upb_status_seterrf(s, | |
182 "enum default for field %s.%s (%s) is not in the enum", | |
183 msgdef_name(f->msg.def), upb_fielddef_name(f), | |
184 upb_fielddef_defaultstr(f, NULL)); | |
185 return false; | |
186 } | |
187 | |
188 /* Lift the effective numeric default into the field's default slot, in case | |
189 * we were only getting it "by reference" from the enumdef. */ | |
190 upb_fielddef_setdefaultint32(f, upb_fielddef_defaultint32(f)); | |
191 } | |
192 | |
193 /* Ensure that MapEntry submessages only appear as repeated fields, not | |
194 * optional/required (singular) fields. */ | |
195 if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE && | |
196 upb_fielddef_msgsubdef(f) != NULL) { | |
197 const upb_msgdef *subdef = upb_fielddef_msgsubdef(f); | |
198 if (upb_msgdef_mapentry(subdef) && !upb_fielddef_isseq(f)) { | |
199 upb_status_seterrf(s, | |
200 "Field %s refers to mapentry message but is not " | |
201 "a repeated field", | |
202 upb_fielddef_name(f) ? upb_fielddef_name(f) : | |
203 "(unnamed)"); | |
204 return false; | |
205 } | |
206 } | |
207 | |
208 return true; | |
209 } | |
210 | |
211 static bool upb_validate_enumdef(const upb_enumdef *e, upb_status *s) { | |
212 if (upb_enumdef_numvals(e) == 0) { | |
213 upb_status_seterrf(s, "enum %s has no members (must have at least one)", | |
214 upb_enumdef_fullname(e)); | |
215 return false; | |
216 } | |
217 | |
218 return true; | |
219 } | |
220 | |
221 /* All submessage fields are lower than all other fields. | |
222 * Secondly, fields are increasing in order. */ | |
223 uint32_t field_rank(const upb_fielddef *f) { | |
224 uint32_t ret = upb_fielddef_number(f); | |
225 const uint32_t high_bit = 1 << 30; | |
226 assert(ret < high_bit); | |
227 if (!upb_fielddef_issubmsg(f)) | |
228 ret |= high_bit; | |
229 return ret; | |
230 } | |
231 | |
232 int cmp_fields(const void *p1, const void *p2) { | |
233 const upb_fielddef *f1 = *(upb_fielddef*const*)p1; | |
234 const upb_fielddef *f2 = *(upb_fielddef*const*)p2; | |
235 return field_rank(f1) - field_rank(f2); | |
236 } | |
237 | |
238 static bool assign_msg_indices(upb_msgdef *m, upb_status *s) { | |
239 /* Sort fields. upb internally relies on UPB_TYPE_MESSAGE fields having the | |
240 * lowest indexes, but we do not publicly guarantee this. */ | |
241 upb_msg_field_iter j; | |
242 int i; | |
243 uint32_t selector; | |
244 int n = upb_msgdef_numfields(m); | |
245 upb_fielddef **fields = malloc(n * sizeof(*fields)); | |
246 if (!fields) return false; | |
247 | |
248 m->submsg_field_count = 0; | |
249 for(i = 0, upb_msg_field_begin(&j, m); | |
250 !upb_msg_field_done(&j); | |
251 upb_msg_field_next(&j), i++) { | |
252 upb_fielddef *f = upb_msg_iter_field(&j); | |
253 assert(f->msg.def == m); | |
254 if (!upb_validate_field(f, s)) { | |
255 free(fields); | |
256 return false; | |
257 } | |
258 if (upb_fielddef_issubmsg(f)) { | |
259 m->submsg_field_count++; | |
260 } | |
261 fields[i] = f; | |
262 } | |
263 | |
264 qsort(fields, n, sizeof(*fields), cmp_fields); | |
265 | |
266 selector = UPB_STATIC_SELECTOR_COUNT + m->submsg_field_count; | |
267 for (i = 0; i < n; i++) { | |
268 upb_fielddef *f = fields[i]; | |
269 f->index_ = i; | |
270 f->selector_base = selector + upb_handlers_selectorbaseoffset(f); | |
271 selector += upb_handlers_selectorcount(f); | |
272 } | |
273 m->selector_count = selector; | |
274 | |
275 #ifndef NDEBUG | |
276 { | |
277 /* Verify that all selectors for the message are distinct. */ | |
278 #define TRY(type) \ | |
279 if (upb_handlers_getselector(f, type, &sel)) upb_inttable_insert(&t, sel, v)
; | |
280 | |
281 upb_inttable t; | |
282 upb_value v; | |
283 upb_selector_t sel; | |
284 | |
285 upb_inttable_init(&t, UPB_CTYPE_BOOL); | |
286 v = upb_value_bool(true); | |
287 upb_inttable_insert(&t, UPB_STARTMSG_SELECTOR, v); | |
288 upb_inttable_insert(&t, UPB_ENDMSG_SELECTOR, v); | |
289 for(upb_msg_field_begin(&j, m); | |
290 !upb_msg_field_done(&j); | |
291 upb_msg_field_next(&j)) { | |
292 upb_fielddef *f = upb_msg_iter_field(&j); | |
293 /* These calls will assert-fail in upb_table if the value already | |
294 * exists. */ | |
295 TRY(UPB_HANDLER_INT32); | |
296 TRY(UPB_HANDLER_INT64) | |
297 TRY(UPB_HANDLER_UINT32) | |
298 TRY(UPB_HANDLER_UINT64) | |
299 TRY(UPB_HANDLER_FLOAT) | |
300 TRY(UPB_HANDLER_DOUBLE) | |
301 TRY(UPB_HANDLER_BOOL) | |
302 TRY(UPB_HANDLER_STARTSTR) | |
303 TRY(UPB_HANDLER_STRING) | |
304 TRY(UPB_HANDLER_ENDSTR) | |
305 TRY(UPB_HANDLER_STARTSUBMSG) | |
306 TRY(UPB_HANDLER_ENDSUBMSG) | |
307 TRY(UPB_HANDLER_STARTSEQ) | |
308 TRY(UPB_HANDLER_ENDSEQ) | |
309 } | |
310 upb_inttable_uninit(&t); | |
311 } | |
312 #undef TRY | |
313 #endif | |
314 | |
315 free(fields); | |
316 return true; | |
317 } | |
318 | |
319 bool upb_def_freeze(upb_def *const* defs, int n, upb_status *s) { | |
320 int i; | |
321 int maxdepth; | |
322 bool ret; | |
323 upb_status_clear(s); | |
324 | |
325 /* First perform validation, in two passes so we can check that we have a | |
326 * transitive closure without needing to search. */ | |
327 for (i = 0; i < n; i++) { | |
328 upb_def *def = defs[i]; | |
329 if (upb_def_isfrozen(def)) { | |
330 /* Could relax this requirement if it's annoying. */ | |
331 upb_status_seterrmsg(s, "def is already frozen"); | |
332 goto err; | |
333 } else if (def->type == UPB_DEF_FIELD) { | |
334 upb_status_seterrmsg(s, "standalone fielddefs can not be frozen"); | |
335 goto err; | |
336 } else if (def->type == UPB_DEF_ENUM) { | |
337 if (!upb_validate_enumdef(upb_dyncast_enumdef(def), s)) { | |
338 goto err; | |
339 } | |
340 } else { | |
341 /* Set now to detect transitive closure in the second pass. */ | |
342 def->came_from_user = true; | |
343 } | |
344 } | |
345 | |
346 /* Second pass of validation. Also assign selector bases and indexes, and | |
347 * compact tables. */ | |
348 for (i = 0; i < n; i++) { | |
349 upb_msgdef *m = upb_dyncast_msgdef_mutable(defs[i]); | |
350 upb_enumdef *e = upb_dyncast_enumdef_mutable(defs[i]); | |
351 if (m) { | |
352 upb_inttable_compact(&m->itof); | |
353 if (!assign_msg_indices(m, s)) { | |
354 goto err; | |
355 } | |
356 } else if (e) { | |
357 upb_inttable_compact(&e->iton); | |
358 } | |
359 } | |
360 | |
361 /* Def graph contains FieldDefs between each MessageDef, so double the | |
362 * limit. */ | |
363 maxdepth = UPB_MAX_MESSAGE_DEPTH * 2; | |
364 | |
365 /* Validation all passed; freeze the defs. */ | |
366 ret = upb_refcounted_freeze((upb_refcounted * const *)defs, n, s, maxdepth); | |
367 assert(!(s && ret != upb_ok(s))); | |
368 return ret; | |
369 | |
370 err: | |
371 for (i = 0; i < n; i++) { | |
372 defs[i]->came_from_user = false; | |
373 } | |
374 assert(!(s && upb_ok(s))); | |
375 return false; | |
376 } | |
377 | |
378 | |
379 /* upb_enumdef ****************************************************************/ | |
380 | |
381 static void upb_enumdef_free(upb_refcounted *r) { | |
382 upb_enumdef *e = (upb_enumdef*)r; | |
383 upb_inttable_iter i; | |
384 upb_inttable_begin(&i, &e->iton); | |
385 for( ; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
386 /* To clean up the upb_strdup() from upb_enumdef_addval(). */ | |
387 free(upb_value_getcstr(upb_inttable_iter_value(&i))); | |
388 } | |
389 upb_strtable_uninit(&e->ntoi); | |
390 upb_inttable_uninit(&e->iton); | |
391 upb_def_uninit(upb_enumdef_upcast_mutable(e)); | |
392 free(e); | |
393 } | |
394 | |
395 upb_enumdef *upb_enumdef_new(const void *owner) { | |
396 static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_enumdef_free}; | |
397 upb_enumdef *e = malloc(sizeof(*e)); | |
398 if (!e) return NULL; | |
399 if (!upb_def_init(upb_enumdef_upcast_mutable(e), UPB_DEF_ENUM, &vtbl, owner)) | |
400 goto err2; | |
401 if (!upb_strtable_init(&e->ntoi, UPB_CTYPE_INT32)) goto err2; | |
402 if (!upb_inttable_init(&e->iton, UPB_CTYPE_CSTR)) goto err1; | |
403 return e; | |
404 | |
405 err1: | |
406 upb_strtable_uninit(&e->ntoi); | |
407 err2: | |
408 free(e); | |
409 return NULL; | |
410 } | |
411 | |
412 upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner) { | |
413 upb_enum_iter i; | |
414 upb_enumdef *new_e = upb_enumdef_new(owner); | |
415 if (!new_e) return NULL; | |
416 for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) { | |
417 bool success = upb_enumdef_addval( | |
418 new_e, upb_enum_iter_name(&i),upb_enum_iter_number(&i), NULL); | |
419 if (!success) { | |
420 upb_enumdef_unref(new_e, owner); | |
421 return NULL; | |
422 } | |
423 } | |
424 return new_e; | |
425 } | |
426 | |
427 bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status) { | |
428 upb_def *d = upb_enumdef_upcast_mutable(e); | |
429 return upb_def_freeze(&d, 1, status); | |
430 } | |
431 | |
432 const char *upb_enumdef_fullname(const upb_enumdef *e) { | |
433 return upb_def_fullname(upb_enumdef_upcast(e)); | |
434 } | |
435 | |
436 bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname, | |
437 upb_status *s) { | |
438 return upb_def_setfullname(upb_enumdef_upcast_mutable(e), fullname, s); | |
439 } | |
440 | |
441 bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num, | |
442 upb_status *status) { | |
443 if (!upb_isident(name, strlen(name), false, status)) { | |
444 return false; | |
445 } | |
446 if (upb_enumdef_ntoiz(e, name, NULL)) { | |
447 upb_status_seterrf(status, "name '%s' is already defined", name); | |
448 return false; | |
449 } | |
450 if (!upb_strtable_insert(&e->ntoi, name, upb_value_int32(num))) { | |
451 upb_status_seterrmsg(status, "out of memory"); | |
452 return false; | |
453 } | |
454 if (!upb_inttable_lookup(&e->iton, num, NULL) && | |
455 !upb_inttable_insert(&e->iton, num, upb_value_cstr(upb_strdup(name)))) { | |
456 upb_status_seterrmsg(status, "out of memory"); | |
457 upb_strtable_remove(&e->ntoi, name, NULL); | |
458 return false; | |
459 } | |
460 if (upb_enumdef_numvals(e) == 1) { | |
461 bool ok = upb_enumdef_setdefault(e, num, NULL); | |
462 UPB_ASSERT_VAR(ok, ok); | |
463 } | |
464 return true; | |
465 } | |
466 | |
467 int32_t upb_enumdef_default(const upb_enumdef *e) { | |
468 assert(upb_enumdef_iton(e, e->defaultval)); | |
469 return e->defaultval; | |
470 } | |
471 | |
472 bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s) { | |
473 assert(!upb_enumdef_isfrozen(e)); | |
474 if (!upb_enumdef_iton(e, val)) { | |
475 upb_status_seterrf(s, "number '%d' is not in the enum.", val); | |
476 return false; | |
477 } | |
478 e->defaultval = val; | |
479 return true; | |
480 } | |
481 | |
482 int upb_enumdef_numvals(const upb_enumdef *e) { | |
483 return upb_strtable_count(&e->ntoi); | |
484 } | |
485 | |
486 void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) { | |
487 /* We iterate over the ntoi table, to account for duplicate numbers. */ | |
488 upb_strtable_begin(i, &e->ntoi); | |
489 } | |
490 | |
491 void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); } | |
492 bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); } | |
493 | |
494 bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name, | |
495 size_t len, int32_t *num) { | |
496 upb_value v; | |
497 if (!upb_strtable_lookup2(&def->ntoi, name, len, &v)) { | |
498 return false; | |
499 } | |
500 if (num) *num = upb_value_getint32(v); | |
501 return true; | |
502 } | |
503 | |
504 const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) { | |
505 upb_value v; | |
506 return upb_inttable_lookup32(&def->iton, num, &v) ? | |
507 upb_value_getcstr(v) : NULL; | |
508 } | |
509 | |
510 const char *upb_enum_iter_name(upb_enum_iter *iter) { | |
511 return upb_strtable_iter_key(iter); | |
512 } | |
513 | |
514 int32_t upb_enum_iter_number(upb_enum_iter *iter) { | |
515 return upb_value_getint32(upb_strtable_iter_value(iter)); | |
516 } | |
517 | |
518 | |
519 /* upb_fielddef ***************************************************************/ | |
520 | |
521 static void upb_fielddef_init_default(upb_fielddef *f); | |
522 | |
523 static void upb_fielddef_uninit_default(upb_fielddef *f) { | |
524 if (f->type_is_set_ && f->default_is_string && f->defaultval.bytes) | |
525 freestr(f->defaultval.bytes); | |
526 } | |
527 | |
528 static void visitfield(const upb_refcounted *r, upb_refcounted_visit *visit, | |
529 void *closure) { | |
530 const upb_fielddef *f = (const upb_fielddef*)r; | |
531 if (upb_fielddef_containingtype(f)) { | |
532 visit(r, upb_msgdef_upcast2(upb_fielddef_containingtype(f)), closure); | |
533 } | |
534 if (upb_fielddef_containingoneof(f)) { | |
535 visit(r, upb_oneofdef_upcast2(upb_fielddef_containingoneof(f)), closure); | |
536 } | |
537 if (upb_fielddef_subdef(f)) { | |
538 visit(r, upb_def_upcast(upb_fielddef_subdef(f)), closure); | |
539 } | |
540 } | |
541 | |
542 static void freefield(upb_refcounted *r) { | |
543 upb_fielddef *f = (upb_fielddef*)r; | |
544 upb_fielddef_uninit_default(f); | |
545 if (f->subdef_is_symbolic) | |
546 free(f->sub.name); | |
547 upb_def_uninit(upb_fielddef_upcast_mutable(f)); | |
548 free(f); | |
549 } | |
550 | |
551 static const char *enumdefaultstr(const upb_fielddef *f) { | |
552 const upb_enumdef *e; | |
553 assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); | |
554 e = upb_fielddef_enumsubdef(f); | |
555 if (f->default_is_string && f->defaultval.bytes) { | |
556 /* Default was explicitly set as a string. */ | |
557 str_t *s = f->defaultval.bytes; | |
558 return s->str; | |
559 } else if (e) { | |
560 if (!f->default_is_string) { | |
561 /* Default was explicitly set as an integer; look it up in enumdef. */ | |
562 const char *name = upb_enumdef_iton(e, f->defaultval.sint); | |
563 if (name) { | |
564 return name; | |
565 } | |
566 } else { | |
567 /* Default is completely unset; pull enumdef default. */ | |
568 if (upb_enumdef_numvals(e) > 0) { | |
569 const char *name = upb_enumdef_iton(e, upb_enumdef_default(e)); | |
570 assert(name); | |
571 return name; | |
572 } | |
573 } | |
574 } | |
575 return NULL; | |
576 } | |
577 | |
578 static bool enumdefaultint32(const upb_fielddef *f, int32_t *val) { | |
579 const upb_enumdef *e; | |
580 assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); | |
581 e = upb_fielddef_enumsubdef(f); | |
582 if (!f->default_is_string) { | |
583 /* Default was explicitly set as an integer. */ | |
584 *val = f->defaultval.sint; | |
585 return true; | |
586 } else if (e) { | |
587 if (f->defaultval.bytes) { | |
588 /* Default was explicitly set as a str; try to lookup corresponding int. *
/ | |
589 str_t *s = f->defaultval.bytes; | |
590 if (upb_enumdef_ntoiz(e, s->str, val)) { | |
591 return true; | |
592 } | |
593 } else { | |
594 /* Default is unset; try to pull in enumdef default. */ | |
595 if (upb_enumdef_numvals(e) > 0) { | |
596 *val = upb_enumdef_default(e); | |
597 return true; | |
598 } | |
599 } | |
600 } | |
601 return false; | |
602 } | |
603 | |
604 upb_fielddef *upb_fielddef_new(const void *o) { | |
605 static const struct upb_refcounted_vtbl vtbl = {visitfield, freefield}; | |
606 upb_fielddef *f = malloc(sizeof(*f)); | |
607 if (!f) return NULL; | |
608 if (!upb_def_init(upb_fielddef_upcast_mutable(f), UPB_DEF_FIELD, &vtbl, o)) { | |
609 free(f); | |
610 return NULL; | |
611 } | |
612 f->msg.def = NULL; | |
613 f->sub.def = NULL; | |
614 f->oneof = NULL; | |
615 f->subdef_is_symbolic = false; | |
616 f->msg_is_symbolic = false; | |
617 f->label_ = UPB_LABEL_OPTIONAL; | |
618 f->type_ = UPB_TYPE_INT32; | |
619 f->number_ = 0; | |
620 f->type_is_set_ = false; | |
621 f->tagdelim = false; | |
622 f->is_extension_ = false; | |
623 f->lazy_ = false; | |
624 f->packed_ = true; | |
625 | |
626 /* For the moment we default this to UPB_INTFMT_VARIABLE, since it will work | |
627 * with all integer types and is in some since more "default" since the most | |
628 * normal-looking proto2 types int32/int64/uint32/uint64 use variable. | |
629 * | |
630 * Other options to consider: | |
631 * - there is no default; users must set this manually (like type). | |
632 * - default signed integers to UPB_INTFMT_ZIGZAG, since it's more likely to | |
633 * be an optimal default for signed integers. */ | |
634 f->intfmt = UPB_INTFMT_VARIABLE; | |
635 return f; | |
636 } | |
637 | |
638 upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner) { | |
639 const char *srcname; | |
640 upb_fielddef *newf = upb_fielddef_new(owner); | |
641 if (!newf) return NULL; | |
642 upb_fielddef_settype(newf, upb_fielddef_type(f)); | |
643 upb_fielddef_setlabel(newf, upb_fielddef_label(f)); | |
644 upb_fielddef_setnumber(newf, upb_fielddef_number(f), NULL); | |
645 upb_fielddef_setname(newf, upb_fielddef_name(f), NULL); | |
646 if (f->default_is_string && f->defaultval.bytes) { | |
647 str_t *s = f->defaultval.bytes; | |
648 upb_fielddef_setdefaultstr(newf, s->str, s->len, NULL); | |
649 } else { | |
650 newf->default_is_string = f->default_is_string; | |
651 newf->defaultval = f->defaultval; | |
652 } | |
653 | |
654 if (f->subdef_is_symbolic) { | |
655 srcname = f->sub.name; /* Might be NULL. */ | |
656 } else { | |
657 srcname = f->sub.def ? upb_def_fullname(f->sub.def) : NULL; | |
658 } | |
659 if (srcname) { | |
660 char *newname = malloc(strlen(f->sub.def->fullname) + 2); | |
661 if (!newname) { | |
662 upb_fielddef_unref(newf, owner); | |
663 return NULL; | |
664 } | |
665 strcpy(newname, "."); | |
666 strcat(newname, f->sub.def->fullname); | |
667 upb_fielddef_setsubdefname(newf, newname, NULL); | |
668 free(newname); | |
669 } | |
670 | |
671 return newf; | |
672 } | |
673 | |
674 bool upb_fielddef_typeisset(const upb_fielddef *f) { | |
675 return f->type_is_set_; | |
676 } | |
677 | |
678 upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f) { | |
679 assert(f->type_is_set_); | |
680 return f->type_; | |
681 } | |
682 | |
683 uint32_t upb_fielddef_index(const upb_fielddef *f) { | |
684 return f->index_; | |
685 } | |
686 | |
687 upb_label_t upb_fielddef_label(const upb_fielddef *f) { | |
688 return f->label_; | |
689 } | |
690 | |
691 upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f) { | |
692 return f->intfmt; | |
693 } | |
694 | |
695 bool upb_fielddef_istagdelim(const upb_fielddef *f) { | |
696 return f->tagdelim; | |
697 } | |
698 | |
699 uint32_t upb_fielddef_number(const upb_fielddef *f) { | |
700 return f->number_; | |
701 } | |
702 | |
703 bool upb_fielddef_isextension(const upb_fielddef *f) { | |
704 return f->is_extension_; | |
705 } | |
706 | |
707 bool upb_fielddef_lazy(const upb_fielddef *f) { | |
708 return f->lazy_; | |
709 } | |
710 | |
711 bool upb_fielddef_packed(const upb_fielddef *f) { | |
712 return f->packed_; | |
713 } | |
714 | |
715 const char *upb_fielddef_name(const upb_fielddef *f) { | |
716 return upb_def_fullname(upb_fielddef_upcast(f)); | |
717 } | |
718 | |
719 const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f) { | |
720 return f->msg_is_symbolic ? NULL : f->msg.def; | |
721 } | |
722 | |
723 const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f) { | |
724 return f->oneof; | |
725 } | |
726 | |
727 upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f) { | |
728 return (upb_msgdef*)upb_fielddef_containingtype(f); | |
729 } | |
730 | |
731 const char *upb_fielddef_containingtypename(upb_fielddef *f) { | |
732 return f->msg_is_symbolic ? f->msg.name : NULL; | |
733 } | |
734 | |
735 static void release_containingtype(upb_fielddef *f) { | |
736 if (f->msg_is_symbolic) free(f->msg.name); | |
737 } | |
738 | |
739 bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name, | |
740 upb_status *s) { | |
741 assert(!upb_fielddef_isfrozen(f)); | |
742 if (upb_fielddef_containingtype(f)) { | |
743 upb_status_seterrmsg(s, "field has already been added to a message."); | |
744 return false; | |
745 } | |
746 /* TODO: validate name (upb_isident() doesn't quite work atm because this name | |
747 * may have a leading "."). */ | |
748 release_containingtype(f); | |
749 f->msg.name = upb_strdup(name); | |
750 f->msg_is_symbolic = true; | |
751 return true; | |
752 } | |
753 | |
754 bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s) { | |
755 if (upb_fielddef_containingtype(f) || upb_fielddef_containingoneof(f)) { | |
756 upb_status_seterrmsg(s, "Already added to message or oneof"); | |
757 return false; | |
758 } | |
759 return upb_def_setfullname(upb_fielddef_upcast_mutable(f), name, s); | |
760 } | |
761 | |
762 static void chkdefaulttype(const upb_fielddef *f, upb_fieldtype_t type) { | |
763 UPB_UNUSED(f); | |
764 UPB_UNUSED(type); | |
765 assert(f->type_is_set_ && upb_fielddef_type(f) == type); | |
766 } | |
767 | |
768 int64_t upb_fielddef_defaultint64(const upb_fielddef *f) { | |
769 chkdefaulttype(f, UPB_TYPE_INT64); | |
770 return f->defaultval.sint; | |
771 } | |
772 | |
773 int32_t upb_fielddef_defaultint32(const upb_fielddef *f) { | |
774 if (f->type_is_set_ && upb_fielddef_type(f) == UPB_TYPE_ENUM) { | |
775 int32_t val; | |
776 bool ok = enumdefaultint32(f, &val); | |
777 UPB_ASSERT_VAR(ok, ok); | |
778 return val; | |
779 } else { | |
780 chkdefaulttype(f, UPB_TYPE_INT32); | |
781 return f->defaultval.sint; | |
782 } | |
783 } | |
784 | |
785 uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f) { | |
786 chkdefaulttype(f, UPB_TYPE_UINT64); | |
787 return f->defaultval.uint; | |
788 } | |
789 | |
790 uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f) { | |
791 chkdefaulttype(f, UPB_TYPE_UINT32); | |
792 return f->defaultval.uint; | |
793 } | |
794 | |
795 bool upb_fielddef_defaultbool(const upb_fielddef *f) { | |
796 chkdefaulttype(f, UPB_TYPE_BOOL); | |
797 return f->defaultval.uint; | |
798 } | |
799 | |
800 float upb_fielddef_defaultfloat(const upb_fielddef *f) { | |
801 chkdefaulttype(f, UPB_TYPE_FLOAT); | |
802 return f->defaultval.flt; | |
803 } | |
804 | |
805 double upb_fielddef_defaultdouble(const upb_fielddef *f) { | |
806 chkdefaulttype(f, UPB_TYPE_DOUBLE); | |
807 return f->defaultval.dbl; | |
808 } | |
809 | |
810 const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len) { | |
811 assert(f->type_is_set_); | |
812 assert(upb_fielddef_type(f) == UPB_TYPE_STRING || | |
813 upb_fielddef_type(f) == UPB_TYPE_BYTES || | |
814 upb_fielddef_type(f) == UPB_TYPE_ENUM); | |
815 | |
816 if (upb_fielddef_type(f) == UPB_TYPE_ENUM) { | |
817 const char *ret = enumdefaultstr(f); | |
818 assert(ret); | |
819 /* Enum defaults can't have embedded NULLs. */ | |
820 if (len) *len = strlen(ret); | |
821 return ret; | |
822 } | |
823 | |
824 if (f->default_is_string) { | |
825 str_t *str = f->defaultval.bytes; | |
826 if (len) *len = str->len; | |
827 return str->str; | |
828 } | |
829 | |
830 return NULL; | |
831 } | |
832 | |
833 static void upb_fielddef_init_default(upb_fielddef *f) { | |
834 f->default_is_string = false; | |
835 switch (upb_fielddef_type(f)) { | |
836 case UPB_TYPE_DOUBLE: f->defaultval.dbl = 0; break; | |
837 case UPB_TYPE_FLOAT: f->defaultval.flt = 0; break; | |
838 case UPB_TYPE_INT32: | |
839 case UPB_TYPE_INT64: f->defaultval.sint = 0; break; | |
840 case UPB_TYPE_UINT64: | |
841 case UPB_TYPE_UINT32: | |
842 case UPB_TYPE_BOOL: f->defaultval.uint = 0; break; | |
843 case UPB_TYPE_STRING: | |
844 case UPB_TYPE_BYTES: | |
845 f->defaultval.bytes = newstr("", 0); | |
846 f->default_is_string = true; | |
847 break; | |
848 case UPB_TYPE_MESSAGE: break; | |
849 case UPB_TYPE_ENUM: | |
850 /* This is our special sentinel that indicates "not set" for an enum. */ | |
851 f->default_is_string = true; | |
852 f->defaultval.bytes = NULL; | |
853 break; | |
854 } | |
855 } | |
856 | |
857 const upb_def *upb_fielddef_subdef(const upb_fielddef *f) { | |
858 return f->subdef_is_symbolic ? NULL : f->sub.def; | |
859 } | |
860 | |
861 const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f) { | |
862 const upb_def *def = upb_fielddef_subdef(f); | |
863 return def ? upb_dyncast_msgdef(def) : NULL; | |
864 } | |
865 | |
866 const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f) { | |
867 const upb_def *def = upb_fielddef_subdef(f); | |
868 return def ? upb_dyncast_enumdef(def) : NULL; | |
869 } | |
870 | |
871 upb_def *upb_fielddef_subdef_mutable(upb_fielddef *f) { | |
872 return (upb_def*)upb_fielddef_subdef(f); | |
873 } | |
874 | |
875 const char *upb_fielddef_subdefname(const upb_fielddef *f) { | |
876 if (f->subdef_is_symbolic) { | |
877 return f->sub.name; | |
878 } else if (f->sub.def) { | |
879 return upb_def_fullname(f->sub.def); | |
880 } else { | |
881 return NULL; | |
882 } | |
883 } | |
884 | |
885 bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s) { | |
886 if (upb_fielddef_containingtype(f)) { | |
887 upb_status_seterrmsg( | |
888 s, "cannot change field number after adding to a message"); | |
889 return false; | |
890 } | |
891 if (number == 0 || number > UPB_MAX_FIELDNUMBER) { | |
892 upb_status_seterrf(s, "invalid field number (%u)", number); | |
893 return false; | |
894 } | |
895 f->number_ = number; | |
896 return true; | |
897 } | |
898 | |
899 void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type) { | |
900 assert(!upb_fielddef_isfrozen(f)); | |
901 assert(upb_fielddef_checktype(type)); | |
902 upb_fielddef_uninit_default(f); | |
903 f->type_ = type; | |
904 f->type_is_set_ = true; | |
905 upb_fielddef_init_default(f); | |
906 } | |
907 | |
908 void upb_fielddef_setdescriptortype(upb_fielddef *f, int type) { | |
909 assert(!upb_fielddef_isfrozen(f)); | |
910 switch (type) { | |
911 case UPB_DESCRIPTOR_TYPE_DOUBLE: | |
912 upb_fielddef_settype(f, UPB_TYPE_DOUBLE); | |
913 break; | |
914 case UPB_DESCRIPTOR_TYPE_FLOAT: | |
915 upb_fielddef_settype(f, UPB_TYPE_FLOAT); | |
916 break; | |
917 case UPB_DESCRIPTOR_TYPE_INT64: | |
918 case UPB_DESCRIPTOR_TYPE_SFIXED64: | |
919 case UPB_DESCRIPTOR_TYPE_SINT64: | |
920 upb_fielddef_settype(f, UPB_TYPE_INT64); | |
921 break; | |
922 case UPB_DESCRIPTOR_TYPE_UINT64: | |
923 case UPB_DESCRIPTOR_TYPE_FIXED64: | |
924 upb_fielddef_settype(f, UPB_TYPE_UINT64); | |
925 break; | |
926 case UPB_DESCRIPTOR_TYPE_INT32: | |
927 case UPB_DESCRIPTOR_TYPE_SFIXED32: | |
928 case UPB_DESCRIPTOR_TYPE_SINT32: | |
929 upb_fielddef_settype(f, UPB_TYPE_INT32); | |
930 break; | |
931 case UPB_DESCRIPTOR_TYPE_UINT32: | |
932 case UPB_DESCRIPTOR_TYPE_FIXED32: | |
933 upb_fielddef_settype(f, UPB_TYPE_UINT32); | |
934 break; | |
935 case UPB_DESCRIPTOR_TYPE_BOOL: | |
936 upb_fielddef_settype(f, UPB_TYPE_BOOL); | |
937 break; | |
938 case UPB_DESCRIPTOR_TYPE_STRING: | |
939 upb_fielddef_settype(f, UPB_TYPE_STRING); | |
940 break; | |
941 case UPB_DESCRIPTOR_TYPE_BYTES: | |
942 upb_fielddef_settype(f, UPB_TYPE_BYTES); | |
943 break; | |
944 case UPB_DESCRIPTOR_TYPE_GROUP: | |
945 case UPB_DESCRIPTOR_TYPE_MESSAGE: | |
946 upb_fielddef_settype(f, UPB_TYPE_MESSAGE); | |
947 break; | |
948 case UPB_DESCRIPTOR_TYPE_ENUM: | |
949 upb_fielddef_settype(f, UPB_TYPE_ENUM); | |
950 break; | |
951 default: assert(false); | |
952 } | |
953 | |
954 if (type == UPB_DESCRIPTOR_TYPE_FIXED64 || | |
955 type == UPB_DESCRIPTOR_TYPE_FIXED32 || | |
956 type == UPB_DESCRIPTOR_TYPE_SFIXED64 || | |
957 type == UPB_DESCRIPTOR_TYPE_SFIXED32) { | |
958 upb_fielddef_setintfmt(f, UPB_INTFMT_FIXED); | |
959 } else if (type == UPB_DESCRIPTOR_TYPE_SINT64 || | |
960 type == UPB_DESCRIPTOR_TYPE_SINT32) { | |
961 upb_fielddef_setintfmt(f, UPB_INTFMT_ZIGZAG); | |
962 } else { | |
963 upb_fielddef_setintfmt(f, UPB_INTFMT_VARIABLE); | |
964 } | |
965 | |
966 upb_fielddef_settagdelim(f, type == UPB_DESCRIPTOR_TYPE_GROUP); | |
967 } | |
968 | |
969 upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f) { | |
970 switch (upb_fielddef_type(f)) { | |
971 case UPB_TYPE_FLOAT: return UPB_DESCRIPTOR_TYPE_FLOAT; | |
972 case UPB_TYPE_DOUBLE: return UPB_DESCRIPTOR_TYPE_DOUBLE; | |
973 case UPB_TYPE_BOOL: return UPB_DESCRIPTOR_TYPE_BOOL; | |
974 case UPB_TYPE_STRING: return UPB_DESCRIPTOR_TYPE_STRING; | |
975 case UPB_TYPE_BYTES: return UPB_DESCRIPTOR_TYPE_BYTES; | |
976 case UPB_TYPE_ENUM: return UPB_DESCRIPTOR_TYPE_ENUM; | |
977 case UPB_TYPE_INT32: | |
978 switch (upb_fielddef_intfmt(f)) { | |
979 case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT32; | |
980 case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED32; | |
981 case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT32; | |
982 } | |
983 case UPB_TYPE_INT64: | |
984 switch (upb_fielddef_intfmt(f)) { | |
985 case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT64; | |
986 case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED64; | |
987 case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT64; | |
988 } | |
989 case UPB_TYPE_UINT32: | |
990 switch (upb_fielddef_intfmt(f)) { | |
991 case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT32; | |
992 case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED32; | |
993 case UPB_INTFMT_ZIGZAG: return -1; | |
994 } | |
995 case UPB_TYPE_UINT64: | |
996 switch (upb_fielddef_intfmt(f)) { | |
997 case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT64; | |
998 case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED64; | |
999 case UPB_INTFMT_ZIGZAG: return -1; | |
1000 } | |
1001 case UPB_TYPE_MESSAGE: | |
1002 return upb_fielddef_istagdelim(f) ? | |
1003 UPB_DESCRIPTOR_TYPE_GROUP : UPB_DESCRIPTOR_TYPE_MESSAGE; | |
1004 } | |
1005 return 0; | |
1006 } | |
1007 | |
1008 void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension) { | |
1009 assert(!upb_fielddef_isfrozen(f)); | |
1010 f->is_extension_ = is_extension; | |
1011 } | |
1012 | |
1013 void upb_fielddef_setlazy(upb_fielddef *f, bool lazy) { | |
1014 assert(!upb_fielddef_isfrozen(f)); | |
1015 f->lazy_ = lazy; | |
1016 } | |
1017 | |
1018 void upb_fielddef_setpacked(upb_fielddef *f, bool packed) { | |
1019 assert(!upb_fielddef_isfrozen(f)); | |
1020 f->packed_ = packed; | |
1021 } | |
1022 | |
1023 void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label) { | |
1024 assert(!upb_fielddef_isfrozen(f)); | |
1025 assert(upb_fielddef_checklabel(label)); | |
1026 f->label_ = label; | |
1027 } | |
1028 | |
1029 void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt) { | |
1030 assert(!upb_fielddef_isfrozen(f)); | |
1031 assert(upb_fielddef_checkintfmt(fmt)); | |
1032 f->intfmt = fmt; | |
1033 } | |
1034 | |
1035 void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim) { | |
1036 assert(!upb_fielddef_isfrozen(f)); | |
1037 f->tagdelim = tag_delim; | |
1038 f->tagdelim = tag_delim; | |
1039 } | |
1040 | |
1041 static bool checksetdefault(upb_fielddef *f, upb_fieldtype_t type) { | |
1042 if (!f->type_is_set_ || upb_fielddef_isfrozen(f) || | |
1043 upb_fielddef_type(f) != type) { | |
1044 assert(false); | |
1045 return false; | |
1046 } | |
1047 if (f->default_is_string) { | |
1048 str_t *s = f->defaultval.bytes; | |
1049 assert(s || type == UPB_TYPE_ENUM); | |
1050 if (s) freestr(s); | |
1051 } | |
1052 f->default_is_string = false; | |
1053 return true; | |
1054 } | |
1055 | |
1056 void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t value) { | |
1057 if (checksetdefault(f, UPB_TYPE_INT64)) | |
1058 f->defaultval.sint = value; | |
1059 } | |
1060 | |
1061 void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t value) { | |
1062 if ((upb_fielddef_type(f) == UPB_TYPE_ENUM && | |
1063 checksetdefault(f, UPB_TYPE_ENUM)) || | |
1064 checksetdefault(f, UPB_TYPE_INT32)) { | |
1065 f->defaultval.sint = value; | |
1066 } | |
1067 } | |
1068 | |
1069 void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t value) { | |
1070 if (checksetdefault(f, UPB_TYPE_UINT64)) | |
1071 f->defaultval.uint = value; | |
1072 } | |
1073 | |
1074 void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t value) { | |
1075 if (checksetdefault(f, UPB_TYPE_UINT32)) | |
1076 f->defaultval.uint = value; | |
1077 } | |
1078 | |
1079 void upb_fielddef_setdefaultbool(upb_fielddef *f, bool value) { | |
1080 if (checksetdefault(f, UPB_TYPE_BOOL)) | |
1081 f->defaultval.uint = value; | |
1082 } | |
1083 | |
1084 void upb_fielddef_setdefaultfloat(upb_fielddef *f, float value) { | |
1085 if (checksetdefault(f, UPB_TYPE_FLOAT)) | |
1086 f->defaultval.flt = value; | |
1087 } | |
1088 | |
1089 void upb_fielddef_setdefaultdouble(upb_fielddef *f, double value) { | |
1090 if (checksetdefault(f, UPB_TYPE_DOUBLE)) | |
1091 f->defaultval.dbl = value; | |
1092 } | |
1093 | |
1094 bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len, | |
1095 upb_status *s) { | |
1096 str_t *str2; | |
1097 assert(upb_fielddef_isstring(f) || f->type_ == UPB_TYPE_ENUM); | |
1098 if (f->type_ == UPB_TYPE_ENUM && !upb_isident(str, len, false, s)) | |
1099 return false; | |
1100 | |
1101 if (f->default_is_string) { | |
1102 str_t *s = f->defaultval.bytes; | |
1103 assert(s || f->type_ == UPB_TYPE_ENUM); | |
1104 if (s) freestr(s); | |
1105 } else { | |
1106 assert(f->type_ == UPB_TYPE_ENUM); | |
1107 } | |
1108 | |
1109 str2 = newstr(str, len); | |
1110 f->defaultval.bytes = str2; | |
1111 f->default_is_string = true; | |
1112 return true; | |
1113 } | |
1114 | |
1115 void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str, | |
1116 upb_status *s) { | |
1117 assert(f->type_is_set_); | |
1118 upb_fielddef_setdefaultstr(f, str, str ? strlen(str) : 0, s); | |
1119 } | |
1120 | |
1121 bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f) { | |
1122 int32_t val; | |
1123 assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); | |
1124 return enumdefaultint32(f, &val); | |
1125 } | |
1126 | |
1127 bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f) { | |
1128 assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); | |
1129 return enumdefaultstr(f) != NULL; | |
1130 } | |
1131 | |
1132 static bool upb_subdef_typecheck(upb_fielddef *f, const upb_def *subdef, | |
1133 upb_status *s) { | |
1134 if (f->type_ == UPB_TYPE_MESSAGE) { | |
1135 if (upb_dyncast_msgdef(subdef)) return true; | |
1136 upb_status_seterrmsg(s, "invalid subdef type for this submessage field"); | |
1137 return false; | |
1138 } else if (f->type_ == UPB_TYPE_ENUM) { | |
1139 if (upb_dyncast_enumdef(subdef)) return true; | |
1140 upb_status_seterrmsg(s, "invalid subdef type for this enum field"); | |
1141 return false; | |
1142 } else { | |
1143 upb_status_seterrmsg(s, "only message and enum fields can have a subdef"); | |
1144 return false; | |
1145 } | |
1146 } | |
1147 | |
1148 static void release_subdef(upb_fielddef *f) { | |
1149 if (f->subdef_is_symbolic) { | |
1150 free(f->sub.name); | |
1151 } else if (f->sub.def) { | |
1152 upb_unref2(f->sub.def, f); | |
1153 } | |
1154 } | |
1155 | |
1156 bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef, | |
1157 upb_status *s) { | |
1158 assert(!upb_fielddef_isfrozen(f)); | |
1159 assert(upb_fielddef_hassubdef(f)); | |
1160 if (subdef && !upb_subdef_typecheck(f, subdef, s)) return false; | |
1161 release_subdef(f); | |
1162 f->sub.def = subdef; | |
1163 f->subdef_is_symbolic = false; | |
1164 if (f->sub.def) upb_ref2(f->sub.def, f); | |
1165 return true; | |
1166 } | |
1167 | |
1168 bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef, | |
1169 upb_status *s) { | |
1170 return upb_fielddef_setsubdef(f, upb_msgdef_upcast(subdef), s); | |
1171 } | |
1172 | |
1173 bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef, | |
1174 upb_status *s) { | |
1175 return upb_fielddef_setsubdef(f, upb_enumdef_upcast(subdef), s); | |
1176 } | |
1177 | |
1178 bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name, | |
1179 upb_status *s) { | |
1180 assert(!upb_fielddef_isfrozen(f)); | |
1181 if (!upb_fielddef_hassubdef(f)) { | |
1182 upb_status_seterrmsg(s, "field type does not accept a subdef"); | |
1183 return false; | |
1184 } | |
1185 /* TODO: validate name (upb_isident() doesn't quite work atm because this name | |
1186 * may have a leading "."). */ | |
1187 release_subdef(f); | |
1188 f->sub.name = upb_strdup(name); | |
1189 f->subdef_is_symbolic = true; | |
1190 return true; | |
1191 } | |
1192 | |
1193 bool upb_fielddef_issubmsg(const upb_fielddef *f) { | |
1194 return upb_fielddef_type(f) == UPB_TYPE_MESSAGE; | |
1195 } | |
1196 | |
1197 bool upb_fielddef_isstring(const upb_fielddef *f) { | |
1198 return upb_fielddef_type(f) == UPB_TYPE_STRING || | |
1199 upb_fielddef_type(f) == UPB_TYPE_BYTES; | |
1200 } | |
1201 | |
1202 bool upb_fielddef_isseq(const upb_fielddef *f) { | |
1203 return upb_fielddef_label(f) == UPB_LABEL_REPEATED; | |
1204 } | |
1205 | |
1206 bool upb_fielddef_isprimitive(const upb_fielddef *f) { | |
1207 return !upb_fielddef_isstring(f) && !upb_fielddef_issubmsg(f); | |
1208 } | |
1209 | |
1210 bool upb_fielddef_ismap(const upb_fielddef *f) { | |
1211 return upb_fielddef_isseq(f) && upb_fielddef_issubmsg(f) && | |
1212 upb_msgdef_mapentry(upb_fielddef_msgsubdef(f)); | |
1213 } | |
1214 | |
1215 bool upb_fielddef_hassubdef(const upb_fielddef *f) { | |
1216 return upb_fielddef_issubmsg(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM; | |
1217 } | |
1218 | |
1219 static bool between(int32_t x, int32_t low, int32_t high) { | |
1220 return x >= low && x <= high; | |
1221 } | |
1222 | |
1223 bool upb_fielddef_checklabel(int32_t label) { return between(label, 1, 3); } | |
1224 bool upb_fielddef_checktype(int32_t type) { return between(type, 1, 11); } | |
1225 bool upb_fielddef_checkintfmt(int32_t fmt) { return between(fmt, 1, 3); } | |
1226 | |
1227 bool upb_fielddef_checkdescriptortype(int32_t type) { | |
1228 return between(type, 1, 18); | |
1229 } | |
1230 | |
1231 /* upb_msgdef *****************************************************************/ | |
1232 | |
1233 static void visitmsg(const upb_refcounted *r, upb_refcounted_visit *visit, | |
1234 void *closure) { | |
1235 upb_msg_oneof_iter o; | |
1236 const upb_msgdef *m = (const upb_msgdef*)r; | |
1237 upb_msg_field_iter i; | |
1238 for(upb_msg_field_begin(&i, m); | |
1239 !upb_msg_field_done(&i); | |
1240 upb_msg_field_next(&i)) { | |
1241 upb_fielddef *f = upb_msg_iter_field(&i); | |
1242 visit(r, upb_fielddef_upcast2(f), closure); | |
1243 } | |
1244 for(upb_msg_oneof_begin(&o, m); | |
1245 !upb_msg_oneof_done(&o); | |
1246 upb_msg_oneof_next(&o)) { | |
1247 upb_oneofdef *f = upb_msg_iter_oneof(&o); | |
1248 visit(r, upb_oneofdef_upcast2(f), closure); | |
1249 } | |
1250 } | |
1251 | |
1252 static void freemsg(upb_refcounted *r) { | |
1253 upb_msgdef *m = (upb_msgdef*)r; | |
1254 upb_strtable_uninit(&m->ntoo); | |
1255 upb_strtable_uninit(&m->ntof); | |
1256 upb_inttable_uninit(&m->itof); | |
1257 upb_def_uninit(upb_msgdef_upcast_mutable(m)); | |
1258 free(m); | |
1259 } | |
1260 | |
1261 upb_msgdef *upb_msgdef_new(const void *owner) { | |
1262 static const struct upb_refcounted_vtbl vtbl = {visitmsg, freemsg}; | |
1263 upb_msgdef *m = malloc(sizeof(*m)); | |
1264 if (!m) return NULL; | |
1265 if (!upb_def_init(upb_msgdef_upcast_mutable(m), UPB_DEF_MSG, &vtbl, owner)) | |
1266 goto err2; | |
1267 if (!upb_inttable_init(&m->itof, UPB_CTYPE_PTR)) goto err3; | |
1268 if (!upb_strtable_init(&m->ntof, UPB_CTYPE_PTR)) goto err2; | |
1269 if (!upb_strtable_init(&m->ntoo, UPB_CTYPE_PTR)) goto err1; | |
1270 m->map_entry = false; | |
1271 return m; | |
1272 | |
1273 err1: | |
1274 upb_strtable_uninit(&m->ntof); | |
1275 err2: | |
1276 upb_inttable_uninit(&m->itof); | |
1277 err3: | |
1278 free(m); | |
1279 return NULL; | |
1280 } | |
1281 | |
1282 upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner) { | |
1283 bool ok; | |
1284 upb_msg_field_iter i; | |
1285 upb_msg_oneof_iter o; | |
1286 | |
1287 upb_msgdef *newm = upb_msgdef_new(owner); | |
1288 if (!newm) return NULL; | |
1289 ok = upb_def_setfullname(upb_msgdef_upcast_mutable(newm), | |
1290 upb_def_fullname(upb_msgdef_upcast(m)), | |
1291 NULL); | |
1292 newm->map_entry = m->map_entry; | |
1293 UPB_ASSERT_VAR(ok, ok); | |
1294 for(upb_msg_field_begin(&i, m); | |
1295 !upb_msg_field_done(&i); | |
1296 upb_msg_field_next(&i)) { | |
1297 upb_fielddef *f = upb_fielddef_dup(upb_msg_iter_field(&i), &f); | |
1298 /* Fields in oneofs are dup'd below. */ | |
1299 if (upb_fielddef_containingoneof(f)) continue; | |
1300 if (!f || !upb_msgdef_addfield(newm, f, &f, NULL)) { | |
1301 upb_msgdef_unref(newm, owner); | |
1302 return NULL; | |
1303 } | |
1304 } | |
1305 for(upb_msg_oneof_begin(&o, m); | |
1306 !upb_msg_oneof_done(&o); | |
1307 upb_msg_oneof_next(&o)) { | |
1308 upb_oneofdef *f = upb_oneofdef_dup(upb_msg_iter_oneof(&o), &f); | |
1309 if (!f || !upb_msgdef_addoneof(newm, f, &f, NULL)) { | |
1310 upb_msgdef_unref(newm, owner); | |
1311 return NULL; | |
1312 } | |
1313 } | |
1314 return newm; | |
1315 } | |
1316 | |
1317 bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status) { | |
1318 upb_def *d = upb_msgdef_upcast_mutable(m); | |
1319 return upb_def_freeze(&d, 1, status); | |
1320 } | |
1321 | |
1322 const char *upb_msgdef_fullname(const upb_msgdef *m) { | |
1323 return upb_def_fullname(upb_msgdef_upcast(m)); | |
1324 } | |
1325 | |
1326 bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, | |
1327 upb_status *s) { | |
1328 return upb_def_setfullname(upb_msgdef_upcast_mutable(m), fullname, s); | |
1329 } | |
1330 | |
1331 /* Helper: check that the field |f| is safe to add to msgdef |m|. Set an error | |
1332 * on status |s| and return false if not. */ | |
1333 static bool check_field_add(const upb_msgdef *m, const upb_fielddef *f, | |
1334 upb_status *s) { | |
1335 if (upb_fielddef_containingtype(f) != NULL) { | |
1336 upb_status_seterrmsg(s, "fielddef already belongs to a message"); | |
1337 return false; | |
1338 } else if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { | |
1339 upb_status_seterrmsg(s, "field name or number were not set"); | |
1340 return false; | |
1341 } else if (upb_msgdef_ntofz(m, upb_fielddef_name(f)) || | |
1342 upb_msgdef_itof(m, upb_fielddef_number(f))) { | |
1343 upb_status_seterrmsg(s, "duplicate field name or number for field"); | |
1344 return false; | |
1345 } | |
1346 return true; | |
1347 } | |
1348 | |
1349 static void add_field(upb_msgdef *m, upb_fielddef *f, const void *ref_donor) { | |
1350 release_containingtype(f); | |
1351 f->msg.def = m; | |
1352 f->msg_is_symbolic = false; | |
1353 upb_inttable_insert(&m->itof, upb_fielddef_number(f), upb_value_ptr(f)); | |
1354 upb_strtable_insert(&m->ntof, upb_fielddef_name(f), upb_value_ptr(f)); | |
1355 upb_ref2(f, m); | |
1356 upb_ref2(m, f); | |
1357 if (ref_donor) upb_fielddef_unref(f, ref_donor); | |
1358 } | |
1359 | |
1360 bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor, | |
1361 upb_status *s) { | |
1362 /* TODO: extensions need to have a separate namespace, because proto2 allows a | |
1363 * top-level extension (ie. one not in any package) to have the same name as a | |
1364 * field from the message. | |
1365 * | |
1366 * This also implies that there needs to be a separate lookup-by-name method | |
1367 * for extensions. It seems desirable for iteration to return both extensions | |
1368 * and non-extensions though. | |
1369 * | |
1370 * We also need to validate that the field number is in an extension range iff | |
1371 * it is an extension. | |
1372 * | |
1373 * This method is idempotent. Check if |f| is already part of this msgdef and | |
1374 * return immediately if so. */ | |
1375 if (upb_fielddef_containingtype(f) == m) { | |
1376 return true; | |
1377 } | |
1378 | |
1379 /* Check constraints for all fields before performing any action. */ | |
1380 if (!check_field_add(m, f, s)) { | |
1381 return false; | |
1382 } else if (upb_fielddef_containingoneof(f) != NULL) { | |
1383 /* Fields in a oneof can only be added by adding the oneof to the msgdef. */ | |
1384 upb_status_seterrmsg(s, "fielddef is part of a oneof"); | |
1385 return false; | |
1386 } | |
1387 | |
1388 /* Constraint checks ok, perform the action. */ | |
1389 add_field(m, f, ref_donor); | |
1390 return true; | |
1391 } | |
1392 | |
1393 bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor, | |
1394 upb_status *s) { | |
1395 upb_oneof_iter it; | |
1396 | |
1397 /* Check various conditions that would prevent this oneof from being added. */ | |
1398 if (upb_oneofdef_containingtype(o)) { | |
1399 upb_status_seterrmsg(s, "oneofdef already belongs to a message"); | |
1400 return false; | |
1401 } else if (upb_oneofdef_name(o) == NULL) { | |
1402 upb_status_seterrmsg(s, "oneofdef name was not set"); | |
1403 return false; | |
1404 } else if (upb_msgdef_ntooz(m, upb_oneofdef_name(o))) { | |
1405 upb_status_seterrmsg(s, "duplicate oneof name"); | |
1406 return false; | |
1407 } | |
1408 | |
1409 /* Check that all of the oneof's fields do not conflict with names or numbers | |
1410 * of fields already in the message. */ | |
1411 for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) { | |
1412 const upb_fielddef *f = upb_oneof_iter_field(&it); | |
1413 if (!check_field_add(m, f, s)) { | |
1414 return false; | |
1415 } | |
1416 } | |
1417 | |
1418 /* Everything checks out -- commit now. */ | |
1419 | |
1420 /* Add oneof itself first. */ | |
1421 o->parent = m; | |
1422 upb_strtable_insert(&m->ntoo, upb_oneofdef_name(o), upb_value_ptr(o)); | |
1423 upb_ref2(o, m); | |
1424 upb_ref2(m, o); | |
1425 | |
1426 /* Add each field of the oneof directly to the msgdef. */ | |
1427 for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) { | |
1428 upb_fielddef *f = upb_oneof_iter_field(&it); | |
1429 add_field(m, f, NULL); | |
1430 } | |
1431 | |
1432 if (ref_donor) upb_oneofdef_unref(o, ref_donor); | |
1433 | |
1434 return true; | |
1435 } | |
1436 | |
1437 const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i) { | |
1438 upb_value val; | |
1439 return upb_inttable_lookup32(&m->itof, i, &val) ? | |
1440 upb_value_getptr(val) : NULL; | |
1441 } | |
1442 | |
1443 const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name, | |
1444 size_t len) { | |
1445 upb_value val; | |
1446 return upb_strtable_lookup2(&m->ntof, name, len, &val) ? | |
1447 upb_value_getptr(val) : NULL; | |
1448 } | |
1449 | |
1450 const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name, | |
1451 size_t len) { | |
1452 upb_value val; | |
1453 return upb_strtable_lookup2(&m->ntoo, name, len, &val) ? | |
1454 upb_value_getptr(val) : NULL; | |
1455 } | |
1456 | |
1457 int upb_msgdef_numfields(const upb_msgdef *m) { | |
1458 return upb_strtable_count(&m->ntof); | |
1459 } | |
1460 | |
1461 int upb_msgdef_numoneofs(const upb_msgdef *m) { | |
1462 return upb_strtable_count(&m->ntoo); | |
1463 } | |
1464 | |
1465 void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry) { | |
1466 assert(!upb_msgdef_isfrozen(m)); | |
1467 m->map_entry = map_entry; | |
1468 } | |
1469 | |
1470 bool upb_msgdef_mapentry(const upb_msgdef *m) { | |
1471 return m->map_entry; | |
1472 } | |
1473 | |
1474 void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m) { | |
1475 upb_inttable_begin(iter, &m->itof); | |
1476 } | |
1477 | |
1478 void upb_msg_field_next(upb_msg_field_iter *iter) { upb_inttable_next(iter); } | |
1479 | |
1480 bool upb_msg_field_done(const upb_msg_field_iter *iter) { | |
1481 return upb_inttable_done(iter); | |
1482 } | |
1483 | |
1484 upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter) { | |
1485 return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter)); | |
1486 } | |
1487 | |
1488 void upb_msg_field_iter_setdone(upb_msg_field_iter *iter) { | |
1489 upb_inttable_iter_setdone(iter); | |
1490 } | |
1491 | |
1492 void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m) { | |
1493 upb_strtable_begin(iter, &m->ntoo); | |
1494 } | |
1495 | |
1496 void upb_msg_oneof_next(upb_msg_oneof_iter *iter) { upb_strtable_next(iter); } | |
1497 | |
1498 bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter) { | |
1499 return upb_strtable_done(iter); | |
1500 } | |
1501 | |
1502 upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter) { | |
1503 return (upb_oneofdef*)upb_value_getptr(upb_strtable_iter_value(iter)); | |
1504 } | |
1505 | |
1506 void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter) { | |
1507 upb_strtable_iter_setdone(iter); | |
1508 } | |
1509 | |
1510 /* upb_oneofdef ***************************************************************/ | |
1511 | |
1512 static void visitoneof(const upb_refcounted *r, upb_refcounted_visit *visit, | |
1513 void *closure) { | |
1514 const upb_oneofdef *o = (const upb_oneofdef*)r; | |
1515 upb_oneof_iter i; | |
1516 for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) { | |
1517 const upb_fielddef *f = upb_oneof_iter_field(&i); | |
1518 visit(r, upb_fielddef_upcast2(f), closure); | |
1519 } | |
1520 if (o->parent) { | |
1521 visit(r, upb_msgdef_upcast2(o->parent), closure); | |
1522 } | |
1523 } | |
1524 | |
1525 static void freeoneof(upb_refcounted *r) { | |
1526 upb_oneofdef *o = (upb_oneofdef*)r; | |
1527 upb_strtable_uninit(&o->ntof); | |
1528 upb_inttable_uninit(&o->itof); | |
1529 upb_def_uninit(upb_oneofdef_upcast_mutable(o)); | |
1530 free(o); | |
1531 } | |
1532 | |
1533 upb_oneofdef *upb_oneofdef_new(const void *owner) { | |
1534 static const struct upb_refcounted_vtbl vtbl = {visitoneof, freeoneof}; | |
1535 upb_oneofdef *o = malloc(sizeof(*o)); | |
1536 o->parent = NULL; | |
1537 if (!o) return NULL; | |
1538 if (!upb_def_init(upb_oneofdef_upcast_mutable(o), UPB_DEF_ONEOF, &vtbl, | |
1539 owner)) | |
1540 goto err2; | |
1541 if (!upb_inttable_init(&o->itof, UPB_CTYPE_PTR)) goto err2; | |
1542 if (!upb_strtable_init(&o->ntof, UPB_CTYPE_PTR)) goto err1; | |
1543 return o; | |
1544 | |
1545 err1: | |
1546 upb_inttable_uninit(&o->itof); | |
1547 err2: | |
1548 free(o); | |
1549 return NULL; | |
1550 } | |
1551 | |
1552 upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner) { | |
1553 bool ok; | |
1554 upb_oneof_iter i; | |
1555 upb_oneofdef *newo = upb_oneofdef_new(owner); | |
1556 if (!newo) return NULL; | |
1557 ok = upb_def_setfullname(upb_oneofdef_upcast_mutable(newo), | |
1558 upb_def_fullname(upb_oneofdef_upcast(o)), NULL); | |
1559 UPB_ASSERT_VAR(ok, ok); | |
1560 for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) { | |
1561 upb_fielddef *f = upb_fielddef_dup(upb_oneof_iter_field(&i), &f); | |
1562 if (!f || !upb_oneofdef_addfield(newo, f, &f, NULL)) { | |
1563 upb_oneofdef_unref(newo, owner); | |
1564 return NULL; | |
1565 } | |
1566 } | |
1567 return newo; | |
1568 } | |
1569 | |
1570 const char *upb_oneofdef_name(const upb_oneofdef *o) { | |
1571 return upb_def_fullname(upb_oneofdef_upcast(o)); | |
1572 } | |
1573 | |
1574 bool upb_oneofdef_setname(upb_oneofdef *o, const char *fullname, | |
1575 upb_status *s) { | |
1576 if (upb_oneofdef_containingtype(o)) { | |
1577 upb_status_seterrmsg(s, "oneof already added to a message"); | |
1578 return false; | |
1579 } | |
1580 return upb_def_setfullname(upb_oneofdef_upcast_mutable(o), fullname, s); | |
1581 } | |
1582 | |
1583 const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o) { | |
1584 return o->parent; | |
1585 } | |
1586 | |
1587 int upb_oneofdef_numfields(const upb_oneofdef *o) { | |
1588 return upb_strtable_count(&o->ntof); | |
1589 } | |
1590 | |
1591 bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f, | |
1592 const void *ref_donor, | |
1593 upb_status *s) { | |
1594 assert(!upb_oneofdef_isfrozen(o)); | |
1595 assert(!o->parent || !upb_msgdef_isfrozen(o->parent)); | |
1596 | |
1597 /* This method is idempotent. Check if |f| is already part of this oneofdef | |
1598 * and return immediately if so. */ | |
1599 if (upb_fielddef_containingoneof(f) == o) { | |
1600 return true; | |
1601 } | |
1602 | |
1603 /* The field must have an OPTIONAL label. */ | |
1604 if (upb_fielddef_label(f) != UPB_LABEL_OPTIONAL) { | |
1605 upb_status_seterrmsg(s, "fields in oneof must have OPTIONAL label"); | |
1606 return false; | |
1607 } | |
1608 | |
1609 /* Check that no field with this name or number exists already in the oneof. | |
1610 * Also check that the field is not already part of a oneof. */ | |
1611 if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { | |
1612 upb_status_seterrmsg(s, "field name or number were not set"); | |
1613 return false; | |
1614 } else if (upb_oneofdef_itof(o, upb_fielddef_number(f)) || | |
1615 upb_oneofdef_ntofz(o, upb_fielddef_name(f))) { | |
1616 upb_status_seterrmsg(s, "duplicate field name or number"); | |
1617 return false; | |
1618 } else if (upb_fielddef_containingoneof(f) != NULL) { | |
1619 upb_status_seterrmsg(s, "fielddef already belongs to a oneof"); | |
1620 return false; | |
1621 } | |
1622 | |
1623 /* We allow adding a field to the oneof either if the field is not part of a | |
1624 * msgdef, or if it is and we are also part of the same msgdef. */ | |
1625 if (o->parent == NULL) { | |
1626 /* If we're not in a msgdef, the field cannot be either. Otherwise we would | |
1627 * need to magically add this oneof to a msgdef to remain consistent, which | |
1628 * is surprising behavior. */ | |
1629 if (upb_fielddef_containingtype(f) != NULL) { | |
1630 upb_status_seterrmsg(s, "fielddef already belongs to a message, but " | |
1631 "oneof does not"); | |
1632 return false; | |
1633 } | |
1634 } else { | |
1635 /* If we're in a msgdef, the user can add fields that either aren't in any | |
1636 * msgdef (in which case they're added to our msgdef) or already a part of | |
1637 * our msgdef. */ | |
1638 if (upb_fielddef_containingtype(f) != NULL && | |
1639 upb_fielddef_containingtype(f) != o->parent) { | |
1640 upb_status_seterrmsg(s, "fielddef belongs to a different message " | |
1641 "than oneof"); | |
1642 return false; | |
1643 } | |
1644 } | |
1645 | |
1646 /* Commit phase. First add the field to our parent msgdef, if any, because | |
1647 * that may fail; then add the field to our own tables. */ | |
1648 | |
1649 if (o->parent != NULL && upb_fielddef_containingtype(f) == NULL) { | |
1650 if (!upb_msgdef_addfield((upb_msgdef*)o->parent, f, NULL, s)) { | |
1651 return false; | |
1652 } | |
1653 } | |
1654 | |
1655 release_containingtype(f); | |
1656 f->oneof = o; | |
1657 upb_inttable_insert(&o->itof, upb_fielddef_number(f), upb_value_ptr(f)); | |
1658 upb_strtable_insert(&o->ntof, upb_fielddef_name(f), upb_value_ptr(f)); | |
1659 upb_ref2(f, o); | |
1660 upb_ref2(o, f); | |
1661 if (ref_donor) upb_fielddef_unref(f, ref_donor); | |
1662 | |
1663 return true; | |
1664 } | |
1665 | |
1666 const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o, | |
1667 const char *name, size_t length) { | |
1668 upb_value val; | |
1669 return upb_strtable_lookup2(&o->ntof, name, length, &val) ? | |
1670 upb_value_getptr(val) : NULL; | |
1671 } | |
1672 | |
1673 const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num) { | |
1674 upb_value val; | |
1675 return upb_inttable_lookup32(&o->itof, num, &val) ? | |
1676 upb_value_getptr(val) : NULL; | |
1677 } | |
1678 | |
1679 void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o) { | |
1680 upb_inttable_begin(iter, &o->itof); | |
1681 } | |
1682 | |
1683 void upb_oneof_next(upb_oneof_iter *iter) { | |
1684 upb_inttable_next(iter); | |
1685 } | |
1686 | |
1687 bool upb_oneof_done(upb_oneof_iter *iter) { | |
1688 return upb_inttable_done(iter); | |
1689 } | |
1690 | |
1691 upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter) { | |
1692 return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter)); | |
1693 } | |
1694 | |
1695 void upb_oneof_iter_setdone(upb_oneof_iter *iter) { | |
1696 upb_inttable_iter_setdone(iter); | |
1697 } | |
1698 | |
1699 | |
1700 #include <stdlib.h> | |
1701 #include <stdio.h> | |
1702 #include <string.h> | |
1703 | |
1704 typedef struct cleanup_ent { | |
1705 upb_cleanup_func *cleanup; | |
1706 void *ud; | |
1707 struct cleanup_ent *next; | |
1708 } cleanup_ent; | |
1709 | |
1710 static void *seeded_alloc(void *ud, void *ptr, size_t oldsize, size_t size); | |
1711 | |
1712 /* Default allocator **********************************************************/ | |
1713 | |
1714 /* Just use realloc, keeping all allocated blocks in a linked list to destroy at | |
1715 * the end. */ | |
1716 | |
1717 typedef struct mem_block { | |
1718 /* List is doubly-linked, because in cases where realloc() moves an existing | |
1719 * block, we need to be able to remove the old pointer from the list | |
1720 * efficiently. */ | |
1721 struct mem_block *prev, *next; | |
1722 #ifndef NDEBUG | |
1723 size_t size; /* Doesn't include mem_block structure. */ | |
1724 #endif | |
1725 } mem_block; | |
1726 | |
1727 typedef struct { | |
1728 mem_block *head; | |
1729 } default_alloc_ud; | |
1730 | |
1731 static void *default_alloc(void *_ud, void *ptr, size_t oldsize, size_t size) { | |
1732 default_alloc_ud *ud = _ud; | |
1733 mem_block *from, *block; | |
1734 void *ret; | |
1735 UPB_UNUSED(oldsize); | |
1736 | |
1737 from = ptr ? (void*)((char*)ptr - sizeof(mem_block)) : NULL; | |
1738 | |
1739 #ifndef NDEBUG | |
1740 if (from) { | |
1741 assert(oldsize <= from->size); | |
1742 } | |
1743 #endif | |
1744 | |
1745 /* TODO(haberman): we probably need to provide even better alignment here, | |
1746 * like 16-byte alignment of the returned data pointer. */ | |
1747 block = realloc(from, size + sizeof(mem_block)); | |
1748 if (!block) return NULL; | |
1749 ret = (char*)block + sizeof(*block); | |
1750 | |
1751 #ifndef NDEBUG | |
1752 block->size = size; | |
1753 #endif | |
1754 | |
1755 if (from) { | |
1756 if (block != from) { | |
1757 /* The block was moved, so pointers in next and prev blocks must be | |
1758 * updated to its new location. */ | |
1759 if (block->next) block->next->prev = block; | |
1760 if (block->prev) block->prev->next = block; | |
1761 if (ud->head == from) ud->head = block; | |
1762 } | |
1763 } else { | |
1764 /* Insert at head of linked list. */ | |
1765 block->prev = NULL; | |
1766 block->next = ud->head; | |
1767 if (block->next) block->next->prev = block; | |
1768 ud->head = block; | |
1769 } | |
1770 | |
1771 return ret; | |
1772 } | |
1773 | |
1774 static void default_alloc_cleanup(void *_ud) { | |
1775 default_alloc_ud *ud = _ud; | |
1776 mem_block *block = ud->head; | |
1777 | |
1778 while (block) { | |
1779 void *to_free = block; | |
1780 block = block->next; | |
1781 free(to_free); | |
1782 } | |
1783 } | |
1784 | |
1785 | |
1786 /* Standard error functions ***************************************************/ | |
1787 | |
1788 static bool default_err(void *ud, const upb_status *status) { | |
1789 UPB_UNUSED(ud); | |
1790 UPB_UNUSED(status); | |
1791 return false; | |
1792 } | |
1793 | |
1794 static bool write_err_to(void *ud, const upb_status *status) { | |
1795 upb_status *copy_to = ud; | |
1796 upb_status_copy(copy_to, status); | |
1797 return false; | |
1798 } | |
1799 | |
1800 | |
1801 /* upb_env ********************************************************************/ | |
1802 | |
1803 void upb_env_init(upb_env *e) { | |
1804 default_alloc_ud *ud = (default_alloc_ud*)&e->default_alloc_ud; | |
1805 e->ok_ = true; | |
1806 e->bytes_allocated = 0; | |
1807 e->cleanup_head = NULL; | |
1808 | |
1809 ud->head = NULL; | |
1810 | |
1811 /* Set default functions. */ | |
1812 upb_env_setallocfunc(e, default_alloc, ud); | |
1813 upb_env_seterrorfunc(e, default_err, NULL); | |
1814 } | |
1815 | |
1816 void upb_env_uninit(upb_env *e) { | |
1817 cleanup_ent *ent = e->cleanup_head; | |
1818 | |
1819 while (ent) { | |
1820 ent->cleanup(ent->ud); | |
1821 ent = ent->next; | |
1822 } | |
1823 | |
1824 /* Must do this after running cleanup functions, because this will delete | |
1825 the memory we store our cleanup entries in! */ | |
1826 if (e->alloc == default_alloc) { | |
1827 default_alloc_cleanup(e->alloc_ud); | |
1828 } | |
1829 } | |
1830 | |
1831 UPB_FORCEINLINE void upb_env_setallocfunc(upb_env *e, upb_alloc_func *alloc, | |
1832 void *ud) { | |
1833 e->alloc = alloc; | |
1834 e->alloc_ud = ud; | |
1835 } | |
1836 | |
1837 UPB_FORCEINLINE void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, | |
1838 void *ud) { | |
1839 e->err = func; | |
1840 e->err_ud = ud; | |
1841 } | |
1842 | |
1843 void upb_env_reporterrorsto(upb_env *e, upb_status *status) { | |
1844 e->err = write_err_to; | |
1845 e->err_ud = status; | |
1846 } | |
1847 | |
1848 bool upb_env_ok(const upb_env *e) { | |
1849 return e->ok_; | |
1850 } | |
1851 | |
1852 bool upb_env_reporterror(upb_env *e, const upb_status *status) { | |
1853 e->ok_ = false; | |
1854 return e->err(e->err_ud, status); | |
1855 } | |
1856 | |
1857 bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud) { | |
1858 cleanup_ent *ent = upb_env_malloc(e, sizeof(cleanup_ent)); | |
1859 if (!ent) return false; | |
1860 | |
1861 ent->cleanup = func; | |
1862 ent->ud = ud; | |
1863 ent->next = e->cleanup_head; | |
1864 e->cleanup_head = ent; | |
1865 | |
1866 return true; | |
1867 } | |
1868 | |
1869 void *upb_env_malloc(upb_env *e, size_t size) { | |
1870 e->bytes_allocated += size; | |
1871 if (e->alloc == seeded_alloc) { | |
1872 /* This is equivalent to the next branch, but allows inlining for a | |
1873 * measurable perf benefit. */ | |
1874 return seeded_alloc(e->alloc_ud, NULL, 0, size); | |
1875 } else { | |
1876 return e->alloc(e->alloc_ud, NULL, 0, size); | |
1877 } | |
1878 } | |
1879 | |
1880 void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size) { | |
1881 char *ret; | |
1882 assert(oldsize <= size); | |
1883 ret = e->alloc(e->alloc_ud, ptr, oldsize, size); | |
1884 | |
1885 #ifndef NDEBUG | |
1886 /* Overwrite non-preserved memory to ensure callers are passing the oldsize | |
1887 * that they truly require. */ | |
1888 memset(ret + oldsize, 0xff, size - oldsize); | |
1889 #endif | |
1890 | |
1891 return ret; | |
1892 } | |
1893 | |
1894 size_t upb_env_bytesallocated(const upb_env *e) { | |
1895 return e->bytes_allocated; | |
1896 } | |
1897 | |
1898 | |
1899 /* upb_seededalloc ************************************************************/ | |
1900 | |
1901 /* Be conservative and choose 16 in case anyone is using SSE. */ | |
1902 static const size_t maxalign = 16; | |
1903 | |
1904 static size_t align_up(size_t size) { | |
1905 return ((size + maxalign - 1) / maxalign) * maxalign; | |
1906 } | |
1907 | |
1908 UPB_FORCEINLINE static void *seeded_alloc(void *ud, void *ptr, size_t oldsize, | |
1909 size_t size) { | |
1910 upb_seededalloc *a = ud; | |
1911 | |
1912 size = align_up(size); | |
1913 | |
1914 assert(a->mem_limit >= a->mem_ptr); | |
1915 | |
1916 if (oldsize == 0 && size <= (size_t)(a->mem_limit - a->mem_ptr)) { | |
1917 /* Fast path: we can satisfy from the initial allocation. */ | |
1918 void *ret = a->mem_ptr; | |
1919 a->mem_ptr += size; | |
1920 return ret; | |
1921 } else { | |
1922 char *chptr = ptr; | |
1923 /* Slow path: fallback to other allocator. */ | |
1924 a->need_cleanup = true; | |
1925 /* Is `ptr` part of the user-provided initial block? Don't pass it to the | |
1926 * default allocator if so; otherwise, it may try to realloc() the block. */ | |
1927 if (chptr >= a->mem_base && chptr < a->mem_limit) { | |
1928 void *ret; | |
1929 assert(chptr + oldsize <= a->mem_limit); | |
1930 ret = a->alloc(a->alloc_ud, NULL, 0, size); | |
1931 if (ret) memcpy(ret, ptr, oldsize); | |
1932 return ret; | |
1933 } else { | |
1934 return a->alloc(a->alloc_ud, ptr, oldsize, size); | |
1935 } | |
1936 } | |
1937 } | |
1938 | |
1939 void upb_seededalloc_init(upb_seededalloc *a, void *mem, size_t len) { | |
1940 default_alloc_ud *ud = (default_alloc_ud*)&a->default_alloc_ud; | |
1941 a->mem_base = mem; | |
1942 a->mem_ptr = mem; | |
1943 a->mem_limit = (char*)mem + len; | |
1944 a->need_cleanup = false; | |
1945 a->returned_allocfunc = false; | |
1946 | |
1947 ud->head = NULL; | |
1948 | |
1949 upb_seededalloc_setfallbackalloc(a, default_alloc, ud); | |
1950 } | |
1951 | |
1952 void upb_seededalloc_uninit(upb_seededalloc *a) { | |
1953 if (a->alloc == default_alloc && a->need_cleanup) { | |
1954 default_alloc_cleanup(a->alloc_ud); | |
1955 } | |
1956 } | |
1957 | |
1958 UPB_FORCEINLINE void upb_seededalloc_setfallbackalloc(upb_seededalloc *a, | |
1959 upb_alloc_func *alloc, | |
1960 void *ud) { | |
1961 assert(!a->returned_allocfunc); | |
1962 a->alloc = alloc; | |
1963 a->alloc_ud = ud; | |
1964 } | |
1965 | |
1966 upb_alloc_func *upb_seededalloc_getallocfunc(upb_seededalloc *a) { | |
1967 a->returned_allocfunc = true; | |
1968 return seeded_alloc; | |
1969 } | |
1970 /* | |
1971 ** TODO(haberman): it's unclear whether a lot of the consistency checks should | |
1972 ** assert() or return false. | |
1973 */ | |
1974 | |
1975 | |
1976 #include <stdlib.h> | |
1977 #include <string.h> | |
1978 | |
1979 | |
1980 | |
1981 /* Defined for the sole purpose of having a unique pointer value for | |
1982 * UPB_NO_CLOSURE. */ | |
1983 char _upb_noclosure; | |
1984 | |
1985 static void freehandlers(upb_refcounted *r) { | |
1986 upb_handlers *h = (upb_handlers*)r; | |
1987 | |
1988 upb_inttable_iter i; | |
1989 upb_inttable_begin(&i, &h->cleanup_); | |
1990 for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
1991 void *val = (void*)upb_inttable_iter_key(&i); | |
1992 upb_value func_val = upb_inttable_iter_value(&i); | |
1993 upb_handlerfree *func = upb_value_getfptr(func_val); | |
1994 func(val); | |
1995 } | |
1996 | |
1997 upb_inttable_uninit(&h->cleanup_); | |
1998 upb_msgdef_unref(h->msg, h); | |
1999 free(h->sub); | |
2000 free(h); | |
2001 } | |
2002 | |
2003 static void visithandlers(const upb_refcounted *r, upb_refcounted_visit *visit, | |
2004 void *closure) { | |
2005 const upb_handlers *h = (const upb_handlers*)r; | |
2006 upb_msg_field_iter i; | |
2007 for(upb_msg_field_begin(&i, h->msg); | |
2008 !upb_msg_field_done(&i); | |
2009 upb_msg_field_next(&i)) { | |
2010 upb_fielddef *f = upb_msg_iter_field(&i); | |
2011 const upb_handlers *sub; | |
2012 if (!upb_fielddef_issubmsg(f)) continue; | |
2013 sub = upb_handlers_getsubhandlers(h, f); | |
2014 if (sub) visit(r, upb_handlers_upcast(sub), closure); | |
2015 } | |
2016 } | |
2017 | |
2018 static const struct upb_refcounted_vtbl vtbl = {visithandlers, freehandlers}; | |
2019 | |
2020 typedef struct { | |
2021 upb_inttable tab; /* maps upb_msgdef* -> upb_handlers*. */ | |
2022 upb_handlers_callback *callback; | |
2023 const void *closure; | |
2024 } dfs_state; | |
2025 | |
2026 /* TODO(haberman): discard upb_handlers* objects that do not actually have any | |
2027 * handlers set and cannot reach any upb_handlers* object that does. This is | |
2028 * slightly tricky to do correctly. */ | |
2029 static upb_handlers *newformsg(const upb_msgdef *m, const void *owner, | |
2030 dfs_state *s) { | |
2031 upb_msg_field_iter i; | |
2032 upb_handlers *h = upb_handlers_new(m, owner); | |
2033 if (!h) return NULL; | |
2034 if (!upb_inttable_insertptr(&s->tab, m, upb_value_ptr(h))) goto oom; | |
2035 | |
2036 s->callback(s->closure, h); | |
2037 | |
2038 /* For each submessage field, get or create a handlers object and set it as | |
2039 * the subhandlers. */ | |
2040 for(upb_msg_field_begin(&i, m); | |
2041 !upb_msg_field_done(&i); | |
2042 upb_msg_field_next(&i)) { | |
2043 upb_fielddef *f = upb_msg_iter_field(&i); | |
2044 const upb_msgdef *subdef; | |
2045 upb_value subm_ent; | |
2046 | |
2047 if (!upb_fielddef_issubmsg(f)) continue; | |
2048 | |
2049 subdef = upb_downcast_msgdef(upb_fielddef_subdef(f)); | |
2050 if (upb_inttable_lookupptr(&s->tab, subdef, &subm_ent)) { | |
2051 upb_handlers_setsubhandlers(h, f, upb_value_getptr(subm_ent)); | |
2052 } else { | |
2053 upb_handlers *sub_mh = newformsg(subdef, &sub_mh, s); | |
2054 if (!sub_mh) goto oom; | |
2055 upb_handlers_setsubhandlers(h, f, sub_mh); | |
2056 upb_handlers_unref(sub_mh, &sub_mh); | |
2057 } | |
2058 } | |
2059 return h; | |
2060 | |
2061 oom: | |
2062 upb_handlers_unref(h, owner); | |
2063 return NULL; | |
2064 } | |
2065 | |
2066 /* Given a selector for a STARTSUBMSG handler, resolves to a pointer to the | |
2067 * subhandlers for this submessage field. */ | |
2068 #define SUBH(h, selector) (h->sub[selector]) | |
2069 | |
2070 /* The selector for a submessage field is the field index. */ | |
2071 #define SUBH_F(h, f) SUBH(h, f->index_) | |
2072 | |
2073 static int32_t trygetsel(upb_handlers *h, const upb_fielddef *f, | |
2074 upb_handlertype_t type) { | |
2075 upb_selector_t sel; | |
2076 assert(!upb_handlers_isfrozen(h)); | |
2077 if (upb_handlers_msgdef(h) != upb_fielddef_containingtype(f)) { | |
2078 upb_status_seterrf( | |
2079 &h->status_, "type mismatch: field %s does not belong to message %s", | |
2080 upb_fielddef_name(f), upb_msgdef_fullname(upb_handlers_msgdef(h))); | |
2081 return -1; | |
2082 } | |
2083 if (!upb_handlers_getselector(f, type, &sel)) { | |
2084 upb_status_seterrf( | |
2085 &h->status_, | |
2086 "type mismatch: cannot register handler type %d for field %s", | |
2087 type, upb_fielddef_name(f)); | |
2088 return -1; | |
2089 } | |
2090 return sel; | |
2091 } | |
2092 | |
2093 static upb_selector_t handlers_getsel(upb_handlers *h, const upb_fielddef *f, | |
2094 upb_handlertype_t type) { | |
2095 int32_t sel = trygetsel(h, f, type); | |
2096 assert(sel >= 0); | |
2097 return sel; | |
2098 } | |
2099 | |
2100 static const void **returntype(upb_handlers *h, const upb_fielddef *f, | |
2101 upb_handlertype_t type) { | |
2102 return &h->table[handlers_getsel(h, f, type)].attr.return_closure_type_; | |
2103 } | |
2104 | |
2105 static bool doset(upb_handlers *h, int32_t sel, const upb_fielddef *f, | |
2106 upb_handlertype_t type, upb_func *func, | |
2107 upb_handlerattr *attr) { | |
2108 upb_handlerattr set_attr = UPB_HANDLERATTR_INITIALIZER; | |
2109 const void *closure_type; | |
2110 const void **context_closure_type; | |
2111 | |
2112 assert(!upb_handlers_isfrozen(h)); | |
2113 | |
2114 if (sel < 0) { | |
2115 upb_status_seterrmsg(&h->status_, | |
2116 "incorrect handler type for this field."); | |
2117 return false; | |
2118 } | |
2119 | |
2120 if (h->table[sel].func) { | |
2121 upb_status_seterrmsg(&h->status_, | |
2122 "cannot change handler once it has been set."); | |
2123 return false; | |
2124 } | |
2125 | |
2126 if (attr) { | |
2127 set_attr = *attr; | |
2128 } | |
2129 | |
2130 /* Check that the given closure type matches the closure type that has been | |
2131 * established for this context (if any). */ | |
2132 closure_type = upb_handlerattr_closuretype(&set_attr); | |
2133 | |
2134 if (type == UPB_HANDLER_STRING) { | |
2135 context_closure_type = returntype(h, f, UPB_HANDLER_STARTSTR); | |
2136 } else if (f && upb_fielddef_isseq(f) && | |
2137 type != UPB_HANDLER_STARTSEQ && | |
2138 type != UPB_HANDLER_ENDSEQ) { | |
2139 context_closure_type = returntype(h, f, UPB_HANDLER_STARTSEQ); | |
2140 } else { | |
2141 context_closure_type = &h->top_closure_type; | |
2142 } | |
2143 | |
2144 if (closure_type && *context_closure_type && | |
2145 closure_type != *context_closure_type) { | |
2146 /* TODO(haberman): better message for debugging. */ | |
2147 if (f) { | |
2148 upb_status_seterrf(&h->status_, | |
2149 "closure type does not match for field %s", | |
2150 upb_fielddef_name(f)); | |
2151 } else { | |
2152 upb_status_seterrmsg( | |
2153 &h->status_, "closure type does not match for message-level handler"); | |
2154 } | |
2155 return false; | |
2156 } | |
2157 | |
2158 if (closure_type) | |
2159 *context_closure_type = closure_type; | |
2160 | |
2161 /* If this is a STARTSEQ or STARTSTR handler, check that the returned pointer | |
2162 * matches any pre-existing expectations about what type is expected. */ | |
2163 if (type == UPB_HANDLER_STARTSEQ || type == UPB_HANDLER_STARTSTR) { | |
2164 const void *return_type = upb_handlerattr_returnclosuretype(&set_attr); | |
2165 const void *table_return_type = | |
2166 upb_handlerattr_returnclosuretype(&h->table[sel].attr); | |
2167 if (return_type && table_return_type && return_type != table_return_type) { | |
2168 upb_status_seterrmsg(&h->status_, "closure return type does not match"); | |
2169 return false; | |
2170 } | |
2171 | |
2172 if (table_return_type && !return_type) | |
2173 upb_handlerattr_setreturnclosuretype(&set_attr, table_return_type); | |
2174 } | |
2175 | |
2176 h->table[sel].func = (upb_func*)func; | |
2177 h->table[sel].attr = set_attr; | |
2178 return true; | |
2179 } | |
2180 | |
2181 /* Returns the effective closure type for this handler (which will propagate | |
2182 * from outer frames if this frame has no START* handler). Not implemented for | |
2183 * UPB_HANDLER_STRING at the moment since this is not needed. Returns NULL is | |
2184 * the effective closure type is unspecified (either no handler was registered | |
2185 * to specify it or the handler that was registered did not specify the closure | |
2186 * type). */ | |
2187 const void *effective_closure_type(upb_handlers *h, const upb_fielddef *f, | |
2188 upb_handlertype_t type) { | |
2189 const void *ret; | |
2190 upb_selector_t sel; | |
2191 | |
2192 assert(type != UPB_HANDLER_STRING); | |
2193 ret = h->top_closure_type; | |
2194 | |
2195 if (upb_fielddef_isseq(f) && | |
2196 type != UPB_HANDLER_STARTSEQ && | |
2197 type != UPB_HANDLER_ENDSEQ && | |
2198 h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)].func) { | |
2199 ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); | |
2200 } | |
2201 | |
2202 if (type == UPB_HANDLER_STRING && | |
2203 h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSTR)].func) { | |
2204 ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); | |
2205 } | |
2206 | |
2207 /* The effective type of the submessage; not used yet. | |
2208 * if (type == SUBMESSAGE && | |
2209 * h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)].func) { | |
2210 * ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); | |
2211 * } */ | |
2212 | |
2213 return ret; | |
2214 } | |
2215 | |
2216 /* Checks whether the START* handler specified by f & type is missing even | |
2217 * though it is required to convert the established type of an outer frame | |
2218 * ("closure_type") into the established type of an inner frame (represented in | |
2219 * the return closure type of this handler's attr. */ | |
2220 bool checkstart(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type, | |
2221 upb_status *status) { | |
2222 const void *closure_type; | |
2223 const upb_handlerattr *attr; | |
2224 const void *return_closure_type; | |
2225 | |
2226 upb_selector_t sel = handlers_getsel(h, f, type); | |
2227 if (h->table[sel].func) return true; | |
2228 closure_type = effective_closure_type(h, f, type); | |
2229 attr = &h->table[sel].attr; | |
2230 return_closure_type = upb_handlerattr_returnclosuretype(attr); | |
2231 if (closure_type && return_closure_type && | |
2232 closure_type != return_closure_type) { | |
2233 upb_status_seterrf(status, | |
2234 "expected start handler to return sub type for field %f", | |
2235 upb_fielddef_name(f)); | |
2236 return false; | |
2237 } | |
2238 return true; | |
2239 } | |
2240 | |
2241 /* Public interface ***********************************************************/ | |
2242 | |
2243 upb_handlers *upb_handlers_new(const upb_msgdef *md, const void *owner) { | |
2244 int extra; | |
2245 upb_handlers *h; | |
2246 | |
2247 assert(upb_msgdef_isfrozen(md)); | |
2248 | |
2249 extra = sizeof(upb_handlers_tabent) * (md->selector_count - 1); | |
2250 h = calloc(sizeof(*h) + extra, 1); | |
2251 if (!h) return NULL; | |
2252 | |
2253 h->msg = md; | |
2254 upb_msgdef_ref(h->msg, h); | |
2255 upb_status_clear(&h->status_); | |
2256 h->sub = calloc(md->submsg_field_count, sizeof(*h->sub)); | |
2257 if (!h->sub) goto oom; | |
2258 if (!upb_refcounted_init(upb_handlers_upcast_mutable(h), &vtbl, owner)) | |
2259 goto oom; | |
2260 if (!upb_inttable_init(&h->cleanup_, UPB_CTYPE_FPTR)) goto oom; | |
2261 | |
2262 /* calloc() above initialized all handlers to NULL. */ | |
2263 return h; | |
2264 | |
2265 oom: | |
2266 freehandlers(upb_handlers_upcast_mutable(h)); | |
2267 return NULL; | |
2268 } | |
2269 | |
2270 const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m, | |
2271 const void *owner, | |
2272 upb_handlers_callback *callback, | |
2273 const void *closure) { | |
2274 dfs_state state; | |
2275 upb_handlers *ret; | |
2276 bool ok; | |
2277 upb_refcounted *r; | |
2278 | |
2279 state.callback = callback; | |
2280 state.closure = closure; | |
2281 if (!upb_inttable_init(&state.tab, UPB_CTYPE_PTR)) return NULL; | |
2282 | |
2283 ret = newformsg(m, owner, &state); | |
2284 | |
2285 upb_inttable_uninit(&state.tab); | |
2286 if (!ret) return NULL; | |
2287 | |
2288 r = upb_handlers_upcast_mutable(ret); | |
2289 ok = upb_refcounted_freeze(&r, 1, NULL, UPB_MAX_HANDLER_DEPTH); | |
2290 UPB_ASSERT_VAR(ok, ok); | |
2291 | |
2292 return ret; | |
2293 } | |
2294 | |
2295 const upb_status *upb_handlers_status(upb_handlers *h) { | |
2296 assert(!upb_handlers_isfrozen(h)); | |
2297 return &h->status_; | |
2298 } | |
2299 | |
2300 void upb_handlers_clearerr(upb_handlers *h) { | |
2301 assert(!upb_handlers_isfrozen(h)); | |
2302 upb_status_clear(&h->status_); | |
2303 } | |
2304 | |
2305 #define SETTER(name, handlerctype, handlertype) \ | |
2306 bool upb_handlers_set ## name(upb_handlers *h, const upb_fielddef *f, \ | |
2307 handlerctype func, upb_handlerattr *attr) { \ | |
2308 int32_t sel = trygetsel(h, f, handlertype); \ | |
2309 return doset(h, sel, f, handlertype, (upb_func*)func, attr); \ | |
2310 } | |
2311 | |
2312 SETTER(int32, upb_int32_handlerfunc*, UPB_HANDLER_INT32) | |
2313 SETTER(int64, upb_int64_handlerfunc*, UPB_HANDLER_INT64) | |
2314 SETTER(uint32, upb_uint32_handlerfunc*, UPB_HANDLER_UINT32) | |
2315 SETTER(uint64, upb_uint64_handlerfunc*, UPB_HANDLER_UINT64) | |
2316 SETTER(float, upb_float_handlerfunc*, UPB_HANDLER_FLOAT) | |
2317 SETTER(double, upb_double_handlerfunc*, UPB_HANDLER_DOUBLE) | |
2318 SETTER(bool, upb_bool_handlerfunc*, UPB_HANDLER_BOOL) | |
2319 SETTER(startstr, upb_startstr_handlerfunc*, UPB_HANDLER_STARTSTR) | |
2320 SETTER(string, upb_string_handlerfunc*, UPB_HANDLER_STRING) | |
2321 SETTER(endstr, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSTR) | |
2322 SETTER(startseq, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSEQ) | |
2323 SETTER(startsubmsg, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSUBMSG) | |
2324 SETTER(endsubmsg, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSUBMSG) | |
2325 SETTER(endseq, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSEQ) | |
2326 | |
2327 #undef SETTER | |
2328 | |
2329 bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, | |
2330 upb_handlerattr *attr) { | |
2331 return doset(h, UPB_STARTMSG_SELECTOR, NULL, UPB_HANDLER_INT32, | |
2332 (upb_func *)func, attr); | |
2333 } | |
2334 | |
2335 bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, | |
2336 upb_handlerattr *attr) { | |
2337 assert(!upb_handlers_isfrozen(h)); | |
2338 return doset(h, UPB_ENDMSG_SELECTOR, NULL, UPB_HANDLER_INT32, | |
2339 (upb_func *)func, attr); | |
2340 } | |
2341 | |
2342 bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f, | |
2343 const upb_handlers *sub) { | |
2344 assert(sub); | |
2345 assert(!upb_handlers_isfrozen(h)); | |
2346 assert(upb_fielddef_issubmsg(f)); | |
2347 if (SUBH_F(h, f)) return false; /* Can't reset. */ | |
2348 if (upb_msgdef_upcast(upb_handlers_msgdef(sub)) != upb_fielddef_subdef(f)) { | |
2349 return false; | |
2350 } | |
2351 SUBH_F(h, f) = sub; | |
2352 upb_ref2(sub, h); | |
2353 return true; | |
2354 } | |
2355 | |
2356 const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, | |
2357 const upb_fielddef *f) { | |
2358 assert(upb_fielddef_issubmsg(f)); | |
2359 return SUBH_F(h, f); | |
2360 } | |
2361 | |
2362 bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t sel, | |
2363 upb_handlerattr *attr) { | |
2364 if (!upb_handlers_gethandler(h, sel)) | |
2365 return false; | |
2366 *attr = h->table[sel].attr; | |
2367 return true; | |
2368 } | |
2369 | |
2370 const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, | |
2371 upb_selector_t sel) { | |
2372 /* STARTSUBMSG selector in sel is the field's selector base. */ | |
2373 return SUBH(h, sel - UPB_STATIC_SELECTOR_COUNT); | |
2374 } | |
2375 | |
2376 const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h) { return h->msg; } | |
2377 | |
2378 bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *func) { | |
2379 bool ok; | |
2380 if (upb_inttable_lookupptr(&h->cleanup_, p, NULL)) { | |
2381 return false; | |
2382 } | |
2383 ok = upb_inttable_insertptr(&h->cleanup_, p, upb_value_fptr(func)); | |
2384 UPB_ASSERT_VAR(ok, ok); | |
2385 return true; | |
2386 } | |
2387 | |
2388 | |
2389 /* "Static" methods ***********************************************************/ | |
2390 | |
2391 bool upb_handlers_freeze(upb_handlers *const*handlers, int n, upb_status *s) { | |
2392 /* TODO: verify we have a transitive closure. */ | |
2393 int i; | |
2394 for (i = 0; i < n; i++) { | |
2395 upb_msg_field_iter j; | |
2396 upb_handlers *h = handlers[i]; | |
2397 | |
2398 if (!upb_ok(&h->status_)) { | |
2399 upb_status_seterrf(s, "handlers for message %s had error status: %s", | |
2400 upb_msgdef_fullname(upb_handlers_msgdef(h)), | |
2401 upb_status_errmsg(&h->status_)); | |
2402 return false; | |
2403 } | |
2404 | |
2405 /* Check that there are no closure mismatches due to missing Start* handlers | |
2406 * or subhandlers with different type-level types. */ | |
2407 for(upb_msg_field_begin(&j, h->msg); | |
2408 !upb_msg_field_done(&j); | |
2409 upb_msg_field_next(&j)) { | |
2410 | |
2411 const upb_fielddef *f = upb_msg_iter_field(&j); | |
2412 if (upb_fielddef_isseq(f)) { | |
2413 if (!checkstart(h, f, UPB_HANDLER_STARTSEQ, s)) | |
2414 return false; | |
2415 } | |
2416 | |
2417 if (upb_fielddef_isstring(f)) { | |
2418 if (!checkstart(h, f, UPB_HANDLER_STARTSTR, s)) | |
2419 return false; | |
2420 } | |
2421 | |
2422 if (upb_fielddef_issubmsg(f)) { | |
2423 bool hashandler = false; | |
2424 if (upb_handlers_gethandler( | |
2425 h, handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)) || | |
2426 upb_handlers_gethandler( | |
2427 h, handlers_getsel(h, f, UPB_HANDLER_ENDSUBMSG))) { | |
2428 hashandler = true; | |
2429 } | |
2430 | |
2431 if (upb_fielddef_isseq(f) && | |
2432 (upb_handlers_gethandler( | |
2433 h, handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)) || | |
2434 upb_handlers_gethandler( | |
2435 h, handlers_getsel(h, f, UPB_HANDLER_ENDSEQ)))) { | |
2436 hashandler = true; | |
2437 } | |
2438 | |
2439 if (hashandler && !upb_handlers_getsubhandlers(h, f)) { | |
2440 /* For now we add an empty subhandlers in this case. It makes the | |
2441 * decoder code generator simpler, because it only has to handle two | |
2442 * cases (submessage has handlers or not) as opposed to three | |
2443 * (submessage has handlers in enclosing message but no subhandlers). | |
2444 * | |
2445 * This makes parsing less efficient in the case that we want to | |
2446 * notice a submessage but skip its contents (like if we're testing | |
2447 * for submessage presence or counting the number of repeated | |
2448 * submessages). In this case we will end up parsing the submessage | |
2449 * field by field and throwing away the results for each, instead of | |
2450 * skipping the whole delimited thing at once. If this is an issue we | |
2451 * can revisit it, but do remember that this only arises when you have | |
2452 * handlers (startseq/startsubmsg/endsubmsg/endseq) set for the | |
2453 * submessage but no subhandlers. The uses cases for this are | |
2454 * limited. */ | |
2455 upb_handlers *sub = upb_handlers_new(upb_fielddef_msgsubdef(f), &sub); | |
2456 upb_handlers_setsubhandlers(h, f, sub); | |
2457 upb_handlers_unref(sub, &sub); | |
2458 } | |
2459 | |
2460 /* TODO(haberman): check type of submessage. | |
2461 * This is slightly tricky; also consider whether we should check that | |
2462 * they match at setsubhandlers time. */ | |
2463 } | |
2464 } | |
2465 } | |
2466 | |
2467 if (!upb_refcounted_freeze((upb_refcounted*const*)handlers, n, s, | |
2468 UPB_MAX_HANDLER_DEPTH)) { | |
2469 return false; | |
2470 } | |
2471 | |
2472 return true; | |
2473 } | |
2474 | |
2475 upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f) { | |
2476 switch (upb_fielddef_type(f)) { | |
2477 case UPB_TYPE_INT32: | |
2478 case UPB_TYPE_ENUM: return UPB_HANDLER_INT32; | |
2479 case UPB_TYPE_INT64: return UPB_HANDLER_INT64; | |
2480 case UPB_TYPE_UINT32: return UPB_HANDLER_UINT32; | |
2481 case UPB_TYPE_UINT64: return UPB_HANDLER_UINT64; | |
2482 case UPB_TYPE_FLOAT: return UPB_HANDLER_FLOAT; | |
2483 case UPB_TYPE_DOUBLE: return UPB_HANDLER_DOUBLE; | |
2484 case UPB_TYPE_BOOL: return UPB_HANDLER_BOOL; | |
2485 default: assert(false); return -1; /* Invalid input. */ | |
2486 } | |
2487 } | |
2488 | |
2489 bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, | |
2490 upb_selector_t *s) { | |
2491 switch (type) { | |
2492 case UPB_HANDLER_INT32: | |
2493 case UPB_HANDLER_INT64: | |
2494 case UPB_HANDLER_UINT32: | |
2495 case UPB_HANDLER_UINT64: | |
2496 case UPB_HANDLER_FLOAT: | |
2497 case UPB_HANDLER_DOUBLE: | |
2498 case UPB_HANDLER_BOOL: | |
2499 if (!upb_fielddef_isprimitive(f) || | |
2500 upb_handlers_getprimitivehandlertype(f) != type) | |
2501 return false; | |
2502 *s = f->selector_base; | |
2503 break; | |
2504 case UPB_HANDLER_STRING: | |
2505 if (upb_fielddef_isstring(f)) { | |
2506 *s = f->selector_base; | |
2507 } else if (upb_fielddef_lazy(f)) { | |
2508 *s = f->selector_base + 3; | |
2509 } else { | |
2510 return false; | |
2511 } | |
2512 break; | |
2513 case UPB_HANDLER_STARTSTR: | |
2514 if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { | |
2515 *s = f->selector_base + 1; | |
2516 } else { | |
2517 return false; | |
2518 } | |
2519 break; | |
2520 case UPB_HANDLER_ENDSTR: | |
2521 if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { | |
2522 *s = f->selector_base + 2; | |
2523 } else { | |
2524 return false; | |
2525 } | |
2526 break; | |
2527 case UPB_HANDLER_STARTSEQ: | |
2528 if (!upb_fielddef_isseq(f)) return false; | |
2529 *s = f->selector_base - 2; | |
2530 break; | |
2531 case UPB_HANDLER_ENDSEQ: | |
2532 if (!upb_fielddef_isseq(f)) return false; | |
2533 *s = f->selector_base - 1; | |
2534 break; | |
2535 case UPB_HANDLER_STARTSUBMSG: | |
2536 if (!upb_fielddef_issubmsg(f)) return false; | |
2537 /* Selectors for STARTSUBMSG are at the beginning of the table so that the | |
2538 * selector can also be used as an index into the "sub" array of | |
2539 * subhandlers. The indexes for the two into these two tables are the | |
2540 * same, except that in the handler table the static selectors come first.
*/ | |
2541 *s = f->index_ + UPB_STATIC_SELECTOR_COUNT; | |
2542 break; | |
2543 case UPB_HANDLER_ENDSUBMSG: | |
2544 if (!upb_fielddef_issubmsg(f)) return false; | |
2545 *s = f->selector_base; | |
2546 break; | |
2547 } | |
2548 assert((size_t)*s < upb_fielddef_containingtype(f)->selector_count); | |
2549 return true; | |
2550 } | |
2551 | |
2552 uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f) { | |
2553 return upb_fielddef_isseq(f) ? 2 : 0; | |
2554 } | |
2555 | |
2556 uint32_t upb_handlers_selectorcount(const upb_fielddef *f) { | |
2557 uint32_t ret = 1; | |
2558 if (upb_fielddef_isseq(f)) ret += 2; /* STARTSEQ/ENDSEQ */ | |
2559 if (upb_fielddef_isstring(f)) ret += 2; /* [STRING]/STARTSTR/ENDSTR */ | |
2560 if (upb_fielddef_issubmsg(f)) { | |
2561 /* ENDSUBMSG (STARTSUBMSG is at table beginning) */ | |
2562 ret += 0; | |
2563 if (upb_fielddef_lazy(f)) { | |
2564 /* STARTSTR/ENDSTR/STRING (for lazy) */ | |
2565 ret += 3; | |
2566 } | |
2567 } | |
2568 return ret; | |
2569 } | |
2570 | |
2571 | |
2572 /* upb_handlerattr ************************************************************/ | |
2573 | |
2574 void upb_handlerattr_init(upb_handlerattr *attr) { | |
2575 upb_handlerattr from = UPB_HANDLERATTR_INITIALIZER; | |
2576 memcpy(attr, &from, sizeof(*attr)); | |
2577 } | |
2578 | |
2579 void upb_handlerattr_uninit(upb_handlerattr *attr) { | |
2580 UPB_UNUSED(attr); | |
2581 } | |
2582 | |
2583 bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd) { | |
2584 attr->handler_data_ = hd; | |
2585 return true; | |
2586 } | |
2587 | |
2588 bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type) { | |
2589 attr->closure_type_ = type; | |
2590 return true; | |
2591 } | |
2592 | |
2593 const void *upb_handlerattr_closuretype(const upb_handlerattr *attr) { | |
2594 return attr->closure_type_; | |
2595 } | |
2596 | |
2597 bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr, | |
2598 const void *type) { | |
2599 attr->return_closure_type_ = type; | |
2600 return true; | |
2601 } | |
2602 | |
2603 const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr) { | |
2604 return attr->return_closure_type_; | |
2605 } | |
2606 | |
2607 bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok) { | |
2608 attr->alwaysok_ = alwaysok; | |
2609 return true; | |
2610 } | |
2611 | |
2612 bool upb_handlerattr_alwaysok(const upb_handlerattr *attr) { | |
2613 return attr->alwaysok_; | |
2614 } | |
2615 | |
2616 /* upb_bufhandle **************************************************************/ | |
2617 | |
2618 size_t upb_bufhandle_objofs(const upb_bufhandle *h) { | |
2619 return h->objofs_; | |
2620 } | |
2621 | |
2622 /* upb_byteshandler ***********************************************************/ | |
2623 | |
2624 void upb_byteshandler_init(upb_byteshandler* h) { | |
2625 memset(h, 0, sizeof(*h)); | |
2626 } | |
2627 | |
2628 /* For when we support handlerfree callbacks. */ | |
2629 void upb_byteshandler_uninit(upb_byteshandler* h) { | |
2630 UPB_UNUSED(h); | |
2631 } | |
2632 | |
2633 bool upb_byteshandler_setstartstr(upb_byteshandler *h, | |
2634 upb_startstr_handlerfunc *func, void *d) { | |
2635 h->table[UPB_STARTSTR_SELECTOR].func = (upb_func*)func; | |
2636 h->table[UPB_STARTSTR_SELECTOR].attr.handler_data_ = d; | |
2637 return true; | |
2638 } | |
2639 | |
2640 bool upb_byteshandler_setstring(upb_byteshandler *h, | |
2641 upb_string_handlerfunc *func, void *d) { | |
2642 h->table[UPB_STRING_SELECTOR].func = (upb_func*)func; | |
2643 h->table[UPB_STRING_SELECTOR].attr.handler_data_ = d; | |
2644 return true; | |
2645 } | |
2646 | |
2647 bool upb_byteshandler_setendstr(upb_byteshandler *h, | |
2648 upb_endfield_handlerfunc *func, void *d) { | |
2649 h->table[UPB_ENDSTR_SELECTOR].func = (upb_func*)func; | |
2650 h->table[UPB_ENDSTR_SELECTOR].attr.handler_data_ = d; | |
2651 return true; | |
2652 } | |
2653 /* | |
2654 ** upb::RefCounted Implementation | |
2655 ** | |
2656 ** Our key invariants are: | |
2657 ** 1. reference cycles never span groups | |
2658 ** 2. for ref2(to, from), we increment to's count iff group(from) != group(to) | |
2659 ** | |
2660 ** The previous two are how we avoid leaking cycles. Other important | |
2661 ** invariants are: | |
2662 ** 3. for mutable objects "from" and "to", if there exists a ref2(to, from) | |
2663 ** this implies group(from) == group(to). (In practice, what we implement | |
2664 ** is even stronger; "from" and "to" will share a group if there has *ever* | |
2665 ** been a ref2(to, from), but all that is necessary for correctness is the | |
2666 ** weaker one). | |
2667 ** 4. mutable and immutable objects are never in the same group. | |
2668 */ | |
2669 | |
2670 | |
2671 #include <setjmp.h> | |
2672 #include <stdlib.h> | |
2673 | |
2674 static void freeobj(upb_refcounted *o); | |
2675 | |
2676 const char untracked_val; | |
2677 const void *UPB_UNTRACKED_REF = &untracked_val; | |
2678 | |
2679 /* arch-specific atomic primitives *******************************************/ | |
2680 | |
2681 #ifdef UPB_THREAD_UNSAFE /*---------------------------------------------------*/ | |
2682 | |
2683 static void atomic_inc(uint32_t *a) { (*a)++; } | |
2684 static bool atomic_dec(uint32_t *a) { return --(*a) == 0; } | |
2685 | |
2686 #elif defined(__GNUC__) || defined(__clang__) /*------------------------------*/ | |
2687 | |
2688 static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); } | |
2689 static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; } | |
2690 | |
2691 #elif defined(WIN32) /*-------------------------------------------------------*/ | |
2692 | |
2693 #include <Windows.h> | |
2694 | |
2695 static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); } | |
2696 static bool atomic_dec(upb_atomic_t *a) { | |
2697 return InterlockedDecrement(&a->val) == 0; | |
2698 } | |
2699 | |
2700 #else | |
2701 #error Atomic primitives not defined for your platform/CPU. \ | |
2702 Implement them or compile with UPB_THREAD_UNSAFE. | |
2703 #endif | |
2704 | |
2705 /* All static objects point to this refcount. | |
2706 * It is special-cased in ref/unref below. */ | |
2707 uint32_t static_refcount = -1; | |
2708 | |
2709 /* We can avoid atomic ops for statically-declared objects. | |
2710 * This is a minor optimization but nice since we can avoid degrading under | |
2711 * contention in this case. */ | |
2712 | |
2713 static void refgroup(uint32_t *group) { | |
2714 if (group != &static_refcount) | |
2715 atomic_inc(group); | |
2716 } | |
2717 | |
2718 static bool unrefgroup(uint32_t *group) { | |
2719 if (group == &static_refcount) { | |
2720 return false; | |
2721 } else { | |
2722 return atomic_dec(group); | |
2723 } | |
2724 } | |
2725 | |
2726 | |
2727 /* Reference tracking (debug only) ********************************************/ | |
2728 | |
2729 #ifdef UPB_DEBUG_REFS | |
2730 | |
2731 #ifdef UPB_THREAD_UNSAFE | |
2732 | |
2733 static void upb_lock() {} | |
2734 static void upb_unlock() {} | |
2735 | |
2736 #else | |
2737 | |
2738 /* User must define functions that lock/unlock a global mutex and link this | |
2739 * file against them. */ | |
2740 void upb_lock(); | |
2741 void upb_unlock(); | |
2742 | |
2743 #endif | |
2744 | |
2745 /* UPB_DEBUG_REFS mode counts on being able to malloc() memory in some | |
2746 * code-paths that can normally never fail, like upb_refcounted_ref(). Since | |
2747 * we have no way to propagage out-of-memory errors back to the user, and since | |
2748 * these errors can only occur in UPB_DEBUG_REFS mode, we immediately fail. */ | |
2749 #define CHECK_OOM(predicate) if (!(predicate)) { assert(predicate); exit(1); } | |
2750 | |
2751 typedef struct { | |
2752 int count; /* How many refs there are (duplicates only allowed for ref2). */ | |
2753 bool is_ref2; | |
2754 } trackedref; | |
2755 | |
2756 static trackedref *trackedref_new(bool is_ref2) { | |
2757 trackedref *ret = malloc(sizeof(*ret)); | |
2758 CHECK_OOM(ret); | |
2759 ret->count = 1; | |
2760 ret->is_ref2 = is_ref2; | |
2761 return ret; | |
2762 } | |
2763 | |
2764 static void track(const upb_refcounted *r, const void *owner, bool ref2) { | |
2765 upb_value v; | |
2766 | |
2767 assert(owner); | |
2768 if (owner == UPB_UNTRACKED_REF) return; | |
2769 | |
2770 upb_lock(); | |
2771 if (upb_inttable_lookupptr(r->refs, owner, &v)) { | |
2772 trackedref *ref = upb_value_getptr(v); | |
2773 /* Since we allow multiple ref2's for the same to/from pair without | |
2774 * allocating separate memory for each one, we lose the fine-grained | |
2775 * tracking behavior we get with regular refs. Since ref2s only happen | |
2776 * inside upb, we'll accept this limitation until/unless there is a really | |
2777 * difficult upb-internal bug that can't be figured out without it. */ | |
2778 assert(ref2); | |
2779 assert(ref->is_ref2); | |
2780 ref->count++; | |
2781 } else { | |
2782 trackedref *ref = trackedref_new(ref2); | |
2783 bool ok = upb_inttable_insertptr(r->refs, owner, upb_value_ptr(ref)); | |
2784 CHECK_OOM(ok); | |
2785 if (ref2) { | |
2786 /* We know this cast is safe when it is a ref2, because it's coming from | |
2787 * another refcounted object. */ | |
2788 const upb_refcounted *from = owner; | |
2789 assert(!upb_inttable_lookupptr(from->ref2s, r, NULL)); | |
2790 ok = upb_inttable_insertptr(from->ref2s, r, upb_value_ptr(NULL)); | |
2791 CHECK_OOM(ok); | |
2792 } | |
2793 } | |
2794 upb_unlock(); | |
2795 } | |
2796 | |
2797 static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { | |
2798 upb_value v; | |
2799 bool found; | |
2800 trackedref *ref; | |
2801 | |
2802 assert(owner); | |
2803 if (owner == UPB_UNTRACKED_REF) return; | |
2804 | |
2805 upb_lock(); | |
2806 found = upb_inttable_lookupptr(r->refs, owner, &v); | |
2807 /* This assert will fail if an owner attempts to release a ref it didn't have.
*/ | |
2808 UPB_ASSERT_VAR(found, found); | |
2809 ref = upb_value_getptr(v); | |
2810 assert(ref->is_ref2 == ref2); | |
2811 if (--ref->count == 0) { | |
2812 free(ref); | |
2813 upb_inttable_removeptr(r->refs, owner, NULL); | |
2814 if (ref2) { | |
2815 /* We know this cast is safe when it is a ref2, because it's coming from | |
2816 * another refcounted object. */ | |
2817 const upb_refcounted *from = owner; | |
2818 bool removed = upb_inttable_removeptr(from->ref2s, r, NULL); | |
2819 assert(removed); | |
2820 } | |
2821 } | |
2822 upb_unlock(); | |
2823 } | |
2824 | |
2825 static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { | |
2826 upb_value v; | |
2827 bool found; | |
2828 trackedref *ref; | |
2829 | |
2830 upb_lock(); | |
2831 found = upb_inttable_lookupptr(r->refs, owner, &v); | |
2832 UPB_ASSERT_VAR(found, found); | |
2833 ref = upb_value_getptr(v); | |
2834 assert(ref->is_ref2 == ref2); | |
2835 upb_unlock(); | |
2836 } | |
2837 | |
2838 /* Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that | |
2839 * originate from the given owner. */ | |
2840 static void getref2s(const upb_refcounted *owner, upb_inttable *tab) { | |
2841 upb_inttable_iter i; | |
2842 | |
2843 upb_lock(); | |
2844 upb_inttable_begin(&i, owner->ref2s); | |
2845 for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
2846 upb_value v; | |
2847 upb_value count; | |
2848 trackedref *ref; | |
2849 bool ok; | |
2850 bool found; | |
2851 | |
2852 upb_refcounted *to = (upb_refcounted*)upb_inttable_iter_key(&i); | |
2853 | |
2854 /* To get the count we need to look in the target's table. */ | |
2855 found = upb_inttable_lookupptr(to->refs, owner, &v); | |
2856 assert(found); | |
2857 ref = upb_value_getptr(v); | |
2858 count = upb_value_int32(ref->count); | |
2859 | |
2860 ok = upb_inttable_insertptr(tab, to, count); | |
2861 CHECK_OOM(ok); | |
2862 } | |
2863 upb_unlock(); | |
2864 } | |
2865 | |
2866 typedef struct { | |
2867 upb_inttable ref2; | |
2868 const upb_refcounted *obj; | |
2869 } check_state; | |
2870 | |
2871 static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj, | |
2872 void *closure) { | |
2873 check_state *s = closure; | |
2874 upb_inttable *ref2 = &s->ref2; | |
2875 upb_value v; | |
2876 bool removed; | |
2877 int32_t newcount; | |
2878 | |
2879 assert(obj == s->obj); | |
2880 assert(subobj); | |
2881 removed = upb_inttable_removeptr(ref2, subobj, &v); | |
2882 /* The following assertion will fail if the visit() function visits a subobj | |
2883 * that it did not have a ref2 on, or visits the same subobj too many times. *
/ | |
2884 assert(removed); | |
2885 newcount = upb_value_getint32(v) - 1; | |
2886 if (newcount > 0) { | |
2887 upb_inttable_insert(ref2, (uintptr_t)subobj, upb_value_int32(newcount)); | |
2888 } | |
2889 } | |
2890 | |
2891 static void visit(const upb_refcounted *r, upb_refcounted_visit *v, | |
2892 void *closure) { | |
2893 bool ok; | |
2894 | |
2895 /* In DEBUG_REFS mode we know what existing ref2 refs there are, so we know | |
2896 * exactly the set of nodes that visit() should visit. So we verify visit()'s | |
2897 * correctness here. */ | |
2898 check_state state; | |
2899 state.obj = r; | |
2900 ok = upb_inttable_init(&state.ref2, UPB_CTYPE_INT32); | |
2901 CHECK_OOM(ok); | |
2902 getref2s(r, &state.ref2); | |
2903 | |
2904 /* This should visit any children in the ref2 table. */ | |
2905 if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state); | |
2906 | |
2907 /* This assertion will fail if the visit() function missed any children. */ | |
2908 assert(upb_inttable_count(&state.ref2) == 0); | |
2909 upb_inttable_uninit(&state.ref2); | |
2910 if (r->vtbl->visit) r->vtbl->visit(r, v, closure); | |
2911 } | |
2912 | |
2913 static bool trackinit(upb_refcounted *r) { | |
2914 r->refs = malloc(sizeof(*r->refs)); | |
2915 r->ref2s = malloc(sizeof(*r->ref2s)); | |
2916 if (!r->refs || !r->ref2s) goto err1; | |
2917 | |
2918 if (!upb_inttable_init(r->refs, UPB_CTYPE_PTR)) goto err1; | |
2919 if (!upb_inttable_init(r->ref2s, UPB_CTYPE_PTR)) goto err2; | |
2920 return true; | |
2921 | |
2922 err2: | |
2923 upb_inttable_uninit(r->refs); | |
2924 err1: | |
2925 free(r->refs); | |
2926 free(r->ref2s); | |
2927 return false; | |
2928 } | |
2929 | |
2930 static void trackfree(const upb_refcounted *r) { | |
2931 upb_inttable_uninit(r->refs); | |
2932 upb_inttable_uninit(r->ref2s); | |
2933 free(r->refs); | |
2934 free(r->ref2s); | |
2935 } | |
2936 | |
2937 #else | |
2938 | |
2939 static void track(const upb_refcounted *r, const void *owner, bool ref2) { | |
2940 UPB_UNUSED(r); | |
2941 UPB_UNUSED(owner); | |
2942 UPB_UNUSED(ref2); | |
2943 } | |
2944 | |
2945 static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { | |
2946 UPB_UNUSED(r); | |
2947 UPB_UNUSED(owner); | |
2948 UPB_UNUSED(ref2); | |
2949 } | |
2950 | |
2951 static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { | |
2952 UPB_UNUSED(r); | |
2953 UPB_UNUSED(owner); | |
2954 UPB_UNUSED(ref2); | |
2955 } | |
2956 | |
2957 static bool trackinit(upb_refcounted *r) { | |
2958 UPB_UNUSED(r); | |
2959 return true; | |
2960 } | |
2961 | |
2962 static void trackfree(const upb_refcounted *r) { | |
2963 UPB_UNUSED(r); | |
2964 } | |
2965 | |
2966 static void visit(const upb_refcounted *r, upb_refcounted_visit *v, | |
2967 void *closure) { | |
2968 if (r->vtbl->visit) r->vtbl->visit(r, v, closure); | |
2969 } | |
2970 | |
2971 #endif /* UPB_DEBUG_REFS */ | |
2972 | |
2973 | |
2974 /* freeze() *******************************************************************/ | |
2975 | |
2976 /* The freeze() operation is by far the most complicated part of this scheme. | |
2977 * We compute strongly-connected components and then mutate the graph such that | |
2978 * we preserve the invariants documented at the top of this file. And we must | |
2979 * handle out-of-memory errors gracefully (without leaving the graph | |
2980 * inconsistent), which adds to the fun. */ | |
2981 | |
2982 /* The state used by the freeze operation (shared across many functions). */ | |
2983 typedef struct { | |
2984 int depth; | |
2985 int maxdepth; | |
2986 uint64_t index; | |
2987 /* Maps upb_refcounted* -> attributes (color, etc). attr layout varies by | |
2988 * color. */ | |
2989 upb_inttable objattr; | |
2990 upb_inttable stack; /* stack of upb_refcounted* for Tarjan's algorithm. */ | |
2991 upb_inttable groups; /* array of uint32_t*, malloc'd refcounts for new groups
*/ | |
2992 upb_status *status; | |
2993 jmp_buf err; | |
2994 } tarjan; | |
2995 | |
2996 static void release_ref2(const upb_refcounted *obj, | |
2997 const upb_refcounted *subobj, | |
2998 void *closure); | |
2999 | |
3000 /* Node attributes -----------------------------------------------------------*/ | |
3001 | |
3002 /* After our analysis phase all nodes will be either GRAY or WHITE. */ | |
3003 | |
3004 typedef enum { | |
3005 BLACK = 0, /* Object has not been seen. */ | |
3006 GRAY, /* Object has been found via a refgroup but may not be reachable. */ | |
3007 GREEN, /* Object is reachable and is currently on the Tarjan stack. */ | |
3008 WHITE /* Object is reachable and has been assigned a group (SCC). */ | |
3009 } color_t; | |
3010 | |
3011 UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); } | |
3012 UPB_NORETURN static void oom(tarjan *t) { | |
3013 upb_status_seterrmsg(t->status, "out of memory"); | |
3014 err(t); | |
3015 } | |
3016 | |
3017 static uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) { | |
3018 upb_value v; | |
3019 return upb_inttable_lookupptr(&t->objattr, r, &v) ? | |
3020 upb_value_getuint64(v) : 0; | |
3021 } | |
3022 | |
3023 static uint64_t getattr(const tarjan *t, const upb_refcounted *r) { | |
3024 upb_value v; | |
3025 bool found = upb_inttable_lookupptr(&t->objattr, r, &v); | |
3026 UPB_ASSERT_VAR(found, found); | |
3027 return upb_value_getuint64(v); | |
3028 } | |
3029 | |
3030 static void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) { | |
3031 upb_inttable_removeptr(&t->objattr, r, NULL); | |
3032 upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr)); | |
3033 } | |
3034 | |
3035 static color_t color(tarjan *t, const upb_refcounted *r) { | |
3036 return trygetattr(t, r) & 0x3; /* Color is always stored in the low 2 bits. *
/ | |
3037 } | |
3038 | |
3039 static void set_gray(tarjan *t, const upb_refcounted *r) { | |
3040 assert(color(t, r) == BLACK); | |
3041 setattr(t, r, GRAY); | |
3042 } | |
3043 | |
3044 /* Pushes an obj onto the Tarjan stack and sets it to GREEN. */ | |
3045 static void push(tarjan *t, const upb_refcounted *r) { | |
3046 assert(color(t, r) == BLACK || color(t, r) == GRAY); | |
3047 /* This defines the attr layout for the GREEN state. "index" and "lowlink" | |
3048 * get 31 bits, which is plenty (limit of 2B objects frozen at a time). */ | |
3049 setattr(t, r, GREEN | (t->index << 2) | (t->index << 33)); | |
3050 if (++t->index == 0x80000000) { | |
3051 upb_status_seterrmsg(t->status, "too many objects to freeze"); | |
3052 err(t); | |
3053 } | |
3054 upb_inttable_push(&t->stack, upb_value_ptr((void*)r)); | |
3055 } | |
3056 | |
3057 /* Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its | |
3058 * SCC group. */ | |
3059 static upb_refcounted *pop(tarjan *t) { | |
3060 upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack)); | |
3061 assert(color(t, r) == GREEN); | |
3062 /* This defines the attr layout for nodes in the WHITE state. | |
3063 * Top of group stack is [group, NULL]; we point at group. */ | |
3064 setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8); | |
3065 return r; | |
3066 } | |
3067 | |
3068 static void tarjan_newgroup(tarjan *t) { | |
3069 uint32_t *group = malloc(sizeof(*group)); | |
3070 if (!group) oom(t); | |
3071 /* Push group and empty group leader (we'll fill in leader later). */ | |
3072 if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) || | |
3073 !upb_inttable_push(&t->groups, upb_value_ptr(NULL))) { | |
3074 free(group); | |
3075 oom(t); | |
3076 } | |
3077 *group = 0; | |
3078 } | |
3079 | |
3080 static uint32_t idx(tarjan *t, const upb_refcounted *r) { | |
3081 assert(color(t, r) == GREEN); | |
3082 return (getattr(t, r) >> 2) & 0x7FFFFFFF; | |
3083 } | |
3084 | |
3085 static uint32_t lowlink(tarjan *t, const upb_refcounted *r) { | |
3086 if (color(t, r) == GREEN) { | |
3087 return getattr(t, r) >> 33; | |
3088 } else { | |
3089 return UINT32_MAX; | |
3090 } | |
3091 } | |
3092 | |
3093 static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) { | |
3094 assert(color(t, r) == GREEN); | |
3095 setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF)); | |
3096 } | |
3097 | |
3098 static uint32_t *group(tarjan *t, upb_refcounted *r) { | |
3099 uint64_t groupnum; | |
3100 upb_value v; | |
3101 bool found; | |
3102 | |
3103 assert(color(t, r) == WHITE); | |
3104 groupnum = getattr(t, r) >> 8; | |
3105 found = upb_inttable_lookup(&t->groups, groupnum, &v); | |
3106 UPB_ASSERT_VAR(found, found); | |
3107 return upb_value_getptr(v); | |
3108 } | |
3109 | |
3110 /* If the group leader for this object's group has not previously been set, | |
3111 * the given object is assigned to be its leader. */ | |
3112 static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) { | |
3113 uint64_t leader_slot; | |
3114 upb_value v; | |
3115 bool found; | |
3116 | |
3117 assert(color(t, r) == WHITE); | |
3118 leader_slot = (getattr(t, r) >> 8) + 1; | |
3119 found = upb_inttable_lookup(&t->groups, leader_slot, &v); | |
3120 UPB_ASSERT_VAR(found, found); | |
3121 if (upb_value_getptr(v)) { | |
3122 return upb_value_getptr(v); | |
3123 } else { | |
3124 upb_inttable_remove(&t->groups, leader_slot, NULL); | |
3125 upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r)); | |
3126 return r; | |
3127 } | |
3128 } | |
3129 | |
3130 | |
3131 /* Tarjan's algorithm --------------------------------------------------------*/ | |
3132 | |
3133 /* See: | |
3134 * http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algor
ithm */ | |
3135 static void do_tarjan(const upb_refcounted *obj, tarjan *t); | |
3136 | |
3137 static void tarjan_visit(const upb_refcounted *obj, | |
3138 const upb_refcounted *subobj, | |
3139 void *closure) { | |
3140 tarjan *t = closure; | |
3141 if (++t->depth > t->maxdepth) { | |
3142 upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth); | |
3143 err(t); | |
3144 } else if (subobj->is_frozen || color(t, subobj) == WHITE) { | |
3145 /* Do nothing: we don't want to visit or color already-frozen nodes, | |
3146 * and WHITE nodes have already been assigned a SCC. */ | |
3147 } else if (color(t, subobj) < GREEN) { | |
3148 /* Subdef has not yet been visited; recurse on it. */ | |
3149 do_tarjan(subobj, t); | |
3150 set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj))); | |
3151 } else if (color(t, subobj) == GREEN) { | |
3152 /* Subdef is in the stack and hence in the current SCC. */ | |
3153 set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj))); | |
3154 } | |
3155 --t->depth; | |
3156 } | |
3157 | |
3158 static void do_tarjan(const upb_refcounted *obj, tarjan *t) { | |
3159 if (color(t, obj) == BLACK) { | |
3160 /* We haven't seen this object's group; mark the whole group GRAY. */ | |
3161 const upb_refcounted *o = obj; | |
3162 do { set_gray(t, o); } while ((o = o->next) != obj); | |
3163 } | |
3164 | |
3165 push(t, obj); | |
3166 visit(obj, tarjan_visit, t); | |
3167 if (lowlink(t, obj) == idx(t, obj)) { | |
3168 tarjan_newgroup(t); | |
3169 while (pop(t) != obj) | |
3170 ; | |
3171 } | |
3172 } | |
3173 | |
3174 | |
3175 /* freeze() ------------------------------------------------------------------*/ | |
3176 | |
3177 static void crossref(const upb_refcounted *r, const upb_refcounted *subobj, | |
3178 void *_t) { | |
3179 tarjan *t = _t; | |
3180 assert(color(t, r) > BLACK); | |
3181 if (color(t, subobj) > BLACK && r->group != subobj->group) { | |
3182 /* Previously this ref was not reflected in subobj->group because they | |
3183 * were in the same group; now that they are split a ref must be taken. */ | |
3184 refgroup(subobj->group); | |
3185 } | |
3186 } | |
3187 | |
3188 static bool freeze(upb_refcounted *const*roots, int n, upb_status *s, | |
3189 int maxdepth) { | |
3190 volatile bool ret = false; | |
3191 int i; | |
3192 upb_inttable_iter iter; | |
3193 | |
3194 /* We run in two passes so that we can allocate all memory before performing | |
3195 * any mutation of the input -- this allows us to leave the input unchanged | |
3196 * in the case of memory allocation failure. */ | |
3197 tarjan t; | |
3198 t.index = 0; | |
3199 t.depth = 0; | |
3200 t.maxdepth = maxdepth; | |
3201 t.status = s; | |
3202 if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1; | |
3203 if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2; | |
3204 if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3; | |
3205 if (setjmp(t.err) != 0) goto err4; | |
3206 | |
3207 | |
3208 for (i = 0; i < n; i++) { | |
3209 if (color(&t, roots[i]) < GREEN) { | |
3210 do_tarjan(roots[i], &t); | |
3211 } | |
3212 } | |
3213 | |
3214 /* If we've made it this far, no further errors are possible so it's safe to | |
3215 * mutate the objects without risk of leaving them in an inconsistent state. *
/ | |
3216 ret = true; | |
3217 | |
3218 /* The transformation that follows requires care. The preconditions are: | |
3219 * - all objects in attr map are WHITE or GRAY, and are in mutable groups | |
3220 * (groups of all mutable objs) | |
3221 * - no ref2(to, from) refs have incremented count(to) if both "to" and | |
3222 * "from" are in our attr map (this follows from invariants (2) and (3)) */ | |
3223 | |
3224 /* Pass 1: we remove WHITE objects from their mutable groups, and add them to | |
3225 * new groups according to the SCC's we computed. These new groups will | |
3226 * consist of only frozen objects. None will be immediately collectible, | |
3227 * because WHITE objects are by definition reachable from one of "roots", | |
3228 * which the caller must own refs on. */ | |
3229 upb_inttable_begin(&iter, &t.objattr); | |
3230 for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { | |
3231 upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); | |
3232 /* Since removal from a singly-linked list requires access to the object's | |
3233 * predecessor, we consider obj->next instead of obj for moving. With the | |
3234 * while() loop we guarantee that we will visit every node's predecessor. | |
3235 * Proof: | |
3236 * 1. every node's predecessor is in our attr map. | |
3237 * 2. though the loop body may change a node's predecessor, it will only | |
3238 * change it to be the node we are currently operating on, so with a | |
3239 * while() loop we guarantee ourselves the chance to remove each node. *
/ | |
3240 while (color(&t, obj->next) == WHITE && | |
3241 group(&t, obj->next) != obj->next->group) { | |
3242 upb_refcounted *leader; | |
3243 | |
3244 /* Remove from old group. */ | |
3245 upb_refcounted *move = obj->next; | |
3246 if (obj == move) { | |
3247 /* Removing the last object from a group. */ | |
3248 assert(*obj->group == obj->individual_count); | |
3249 free(obj->group); | |
3250 } else { | |
3251 obj->next = move->next; | |
3252 /* This may decrease to zero; we'll collect GRAY objects (if any) that | |
3253 * remain in the group in the third pass. */ | |
3254 assert(*move->group >= move->individual_count); | |
3255 *move->group -= move->individual_count; | |
3256 } | |
3257 | |
3258 /* Add to new group. */ | |
3259 leader = groupleader(&t, move); | |
3260 if (move == leader) { | |
3261 /* First object added to new group is its leader. */ | |
3262 move->group = group(&t, move); | |
3263 move->next = move; | |
3264 *move->group = move->individual_count; | |
3265 } else { | |
3266 /* Group already has at least one object in it. */ | |
3267 assert(leader->group == group(&t, move)); | |
3268 move->group = group(&t, move); | |
3269 move->next = leader->next; | |
3270 leader->next = move; | |
3271 *move->group += move->individual_count; | |
3272 } | |
3273 | |
3274 move->is_frozen = true; | |
3275 } | |
3276 } | |
3277 | |
3278 /* Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must | |
3279 * increment count(to) if group(obj) != group(to) (which could now be the | |
3280 * case if "to" was just frozen). */ | |
3281 upb_inttable_begin(&iter, &t.objattr); | |
3282 for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { | |
3283 upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); | |
3284 visit(obj, crossref, &t); | |
3285 } | |
3286 | |
3287 /* Pass 3: GRAY objects are collected if their group's refcount dropped to | |
3288 * zero when we removed its white nodes. This can happen if they had only | |
3289 * been kept alive by virtue of sharing a group with an object that was just | |
3290 * frozen. | |
3291 * | |
3292 * It is important that we do this last, since the GRAY object's free() | |
3293 * function could call unref2() on just-frozen objects, which will decrement | |
3294 * refs that were added in pass 2. */ | |
3295 upb_inttable_begin(&iter, &t.objattr); | |
3296 for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { | |
3297 upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); | |
3298 if (obj->group == NULL || *obj->group == 0) { | |
3299 if (obj->group) { | |
3300 upb_refcounted *o; | |
3301 | |
3302 /* We eagerly free() the group's count (since we can't easily determine | |
3303 * the group's remaining size it's the easiest way to ensure it gets | |
3304 * done). */ | |
3305 free(obj->group); | |
3306 | |
3307 /* Visit to release ref2's (done in a separate pass since release_ref2 | |
3308 * depends on o->group being unmodified so it can test merged()). */ | |
3309 o = obj; | |
3310 do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj); | |
3311 | |
3312 /* Mark "group" fields as NULL so we know to free the objects later in | |
3313 * this loop, but also don't try to delete the group twice. */ | |
3314 o = obj; | |
3315 do { o->group = NULL; } while ((o = o->next) != obj); | |
3316 } | |
3317 freeobj(obj); | |
3318 } | |
3319 } | |
3320 | |
3321 err4: | |
3322 if (!ret) { | |
3323 upb_inttable_begin(&iter, &t.groups); | |
3324 for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) | |
3325 free(upb_value_getptr(upb_inttable_iter_value(&iter))); | |
3326 } | |
3327 upb_inttable_uninit(&t.groups); | |
3328 err3: | |
3329 upb_inttable_uninit(&t.stack); | |
3330 err2: | |
3331 upb_inttable_uninit(&t.objattr); | |
3332 err1: | |
3333 return ret; | |
3334 } | |
3335 | |
3336 | |
3337 /* Misc internal functions ***************************************************/ | |
3338 | |
3339 static bool merged(const upb_refcounted *r, const upb_refcounted *r2) { | |
3340 return r->group == r2->group; | |
3341 } | |
3342 | |
3343 static void merge(upb_refcounted *r, upb_refcounted *from) { | |
3344 upb_refcounted *base; | |
3345 upb_refcounted *tmp; | |
3346 | |
3347 if (merged(r, from)) return; | |
3348 *r->group += *from->group; | |
3349 free(from->group); | |
3350 base = from; | |
3351 | |
3352 /* Set all refcount pointers in the "from" chain to the merged refcount. | |
3353 * | |
3354 * TODO(haberman): this linear algorithm can result in an overall O(n^2) bound | |
3355 * if the user continuously extends a group by one object. Prevent this by | |
3356 * using one of the techniques in this paper: | |
3357 * ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf */ | |
3358 do { from->group = r->group; } while ((from = from->next) != base); | |
3359 | |
3360 /* Merge the two circularly linked lists by swapping their next pointers. */ | |
3361 tmp = r->next; | |
3362 r->next = base->next; | |
3363 base->next = tmp; | |
3364 } | |
3365 | |
3366 static void unref(const upb_refcounted *r); | |
3367 | |
3368 static void release_ref2(const upb_refcounted *obj, | |
3369 const upb_refcounted *subobj, | |
3370 void *closure) { | |
3371 UPB_UNUSED(closure); | |
3372 untrack(subobj, obj, true); | |
3373 if (!merged(obj, subobj)) { | |
3374 assert(subobj->is_frozen); | |
3375 unref(subobj); | |
3376 } | |
3377 } | |
3378 | |
3379 static void unref(const upb_refcounted *r) { | |
3380 if (unrefgroup(r->group)) { | |
3381 const upb_refcounted *o; | |
3382 | |
3383 free(r->group); | |
3384 | |
3385 /* In two passes, since release_ref2 needs a guarantee that any subobjs | |
3386 * are alive. */ | |
3387 o = r; | |
3388 do { visit(o, release_ref2, NULL); } while((o = o->next) != r); | |
3389 | |
3390 o = r; | |
3391 do { | |
3392 const upb_refcounted *next = o->next; | |
3393 assert(o->is_frozen || o->individual_count == 0); | |
3394 freeobj((upb_refcounted*)o); | |
3395 o = next; | |
3396 } while(o != r); | |
3397 } | |
3398 } | |
3399 | |
3400 static void freeobj(upb_refcounted *o) { | |
3401 trackfree(o); | |
3402 o->vtbl->free((upb_refcounted*)o); | |
3403 } | |
3404 | |
3405 | |
3406 /* Public interface ***********************************************************/ | |
3407 | |
3408 bool upb_refcounted_init(upb_refcounted *r, | |
3409 const struct upb_refcounted_vtbl *vtbl, | |
3410 const void *owner) { | |
3411 #ifndef NDEBUG | |
3412 /* Endianness check. This is unrelated to upb_refcounted, it's just a | |
3413 * convenient place to put the check that we can be assured will run for | |
3414 * basically every program using upb. */ | |
3415 const int x = 1; | |
3416 #ifdef UPB_BIG_ENDIAN | |
3417 assert(*(char*)&x != 1); | |
3418 #else | |
3419 assert(*(char*)&x == 1); | |
3420 #endif | |
3421 #endif | |
3422 | |
3423 r->next = r; | |
3424 r->vtbl = vtbl; | |
3425 r->individual_count = 0; | |
3426 r->is_frozen = false; | |
3427 r->group = malloc(sizeof(*r->group)); | |
3428 if (!r->group) return false; | |
3429 *r->group = 0; | |
3430 if (!trackinit(r)) { | |
3431 free(r->group); | |
3432 return false; | |
3433 } | |
3434 upb_refcounted_ref(r, owner); | |
3435 return true; | |
3436 } | |
3437 | |
3438 bool upb_refcounted_isfrozen(const upb_refcounted *r) { | |
3439 return r->is_frozen; | |
3440 } | |
3441 | |
3442 void upb_refcounted_ref(const upb_refcounted *r, const void *owner) { | |
3443 track(r, owner, false); | |
3444 if (!r->is_frozen) | |
3445 ((upb_refcounted*)r)->individual_count++; | |
3446 refgroup(r->group); | |
3447 } | |
3448 | |
3449 void upb_refcounted_unref(const upb_refcounted *r, const void *owner) { | |
3450 untrack(r, owner, false); | |
3451 if (!r->is_frozen) | |
3452 ((upb_refcounted*)r)->individual_count--; | |
3453 unref(r); | |
3454 } | |
3455 | |
3456 void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) { | |
3457 assert(!from->is_frozen); /* Non-const pointer implies this. */ | |
3458 track(r, from, true); | |
3459 if (r->is_frozen) { | |
3460 refgroup(r->group); | |
3461 } else { | |
3462 merge((upb_refcounted*)r, from); | |
3463 } | |
3464 } | |
3465 | |
3466 void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) { | |
3467 assert(!from->is_frozen); /* Non-const pointer implies this. */ | |
3468 untrack(r, from, true); | |
3469 if (r->is_frozen) { | |
3470 unref(r); | |
3471 } else { | |
3472 assert(merged(r, from)); | |
3473 } | |
3474 } | |
3475 | |
3476 void upb_refcounted_donateref( | |
3477 const upb_refcounted *r, const void *from, const void *to) { | |
3478 assert(from != to); | |
3479 if (to != NULL) | |
3480 upb_refcounted_ref(r, to); | |
3481 if (from != NULL) | |
3482 upb_refcounted_unref(r, from); | |
3483 } | |
3484 | |
3485 void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) { | |
3486 checkref(r, owner, false); | |
3487 } | |
3488 | |
3489 bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s, | |
3490 int maxdepth) { | |
3491 int i; | |
3492 for (i = 0; i < n; i++) { | |
3493 assert(!roots[i]->is_frozen); | |
3494 } | |
3495 return freeze(roots, n, s, maxdepth); | |
3496 } | |
3497 | |
3498 | |
3499 #include <stdlib.h> | |
3500 | |
3501 /* Fallback implementation if the shim is not specialized by the JIT. */ | |
3502 #define SHIM_WRITER(type, ctype) \ | |
3503 bool upb_shim_set ## type (void *c, const void *hd, ctype val) { \ | |
3504 uint8_t *m = c; \ | |
3505 const upb_shim_data *d = hd; \ | |
3506 if (d->hasbit > 0) \ | |
3507 *(uint8_t*)&m[d->hasbit / 8] |= 1 << (d->hasbit % 8); \ | |
3508 *(ctype*)&m[d->offset] = val; \ | |
3509 return true; \ | |
3510 } \ | |
3511 | |
3512 SHIM_WRITER(double, double) | |
3513 SHIM_WRITER(float, float) | |
3514 SHIM_WRITER(int32, int32_t) | |
3515 SHIM_WRITER(int64, int64_t) | |
3516 SHIM_WRITER(uint32, uint32_t) | |
3517 SHIM_WRITER(uint64, uint64_t) | |
3518 SHIM_WRITER(bool, bool) | |
3519 #undef SHIM_WRITER | |
3520 | |
3521 bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset, | |
3522 int32_t hasbit) { | |
3523 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | |
3524 bool ok; | |
3525 | |
3526 upb_shim_data *d = malloc(sizeof(*d)); | |
3527 if (!d) return false; | |
3528 d->offset = offset; | |
3529 d->hasbit = hasbit; | |
3530 | |
3531 upb_handlerattr_sethandlerdata(&attr, d); | |
3532 upb_handlerattr_setalwaysok(&attr, true); | |
3533 upb_handlers_addcleanup(h, d, free); | |
3534 | |
3535 #define TYPE(u, l) \ | |
3536 case UPB_TYPE_##u: \ | |
3537 ok = upb_handlers_set##l(h, f, upb_shim_set##l, &attr); break; | |
3538 | |
3539 ok = false; | |
3540 | |
3541 switch (upb_fielddef_type(f)) { | |
3542 TYPE(INT64, int64); | |
3543 TYPE(INT32, int32); | |
3544 TYPE(ENUM, int32); | |
3545 TYPE(UINT64, uint64); | |
3546 TYPE(UINT32, uint32); | |
3547 TYPE(DOUBLE, double); | |
3548 TYPE(FLOAT, float); | |
3549 TYPE(BOOL, bool); | |
3550 default: assert(false); break; | |
3551 } | |
3552 #undef TYPE | |
3553 | |
3554 upb_handlerattr_uninit(&attr); | |
3555 return ok; | |
3556 } | |
3557 | |
3558 const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s, | |
3559 upb_fieldtype_t *type) { | |
3560 upb_func *f = upb_handlers_gethandler(h, s); | |
3561 | |
3562 if ((upb_int64_handlerfunc*)f == upb_shim_setint64) { | |
3563 *type = UPB_TYPE_INT64; | |
3564 } else if ((upb_int32_handlerfunc*)f == upb_shim_setint32) { | |
3565 *type = UPB_TYPE_INT32; | |
3566 } else if ((upb_uint64_handlerfunc*)f == upb_shim_setuint64) { | |
3567 *type = UPB_TYPE_UINT64; | |
3568 } else if ((upb_uint32_handlerfunc*)f == upb_shim_setuint32) { | |
3569 *type = UPB_TYPE_UINT32; | |
3570 } else if ((upb_double_handlerfunc*)f == upb_shim_setdouble) { | |
3571 *type = UPB_TYPE_DOUBLE; | |
3572 } else if ((upb_float_handlerfunc*)f == upb_shim_setfloat) { | |
3573 *type = UPB_TYPE_FLOAT; | |
3574 } else if ((upb_bool_handlerfunc*)f == upb_shim_setbool) { | |
3575 *type = UPB_TYPE_BOOL; | |
3576 } else { | |
3577 return NULL; | |
3578 } | |
3579 | |
3580 return (const upb_shim_data*)upb_handlers_gethandlerdata(h, s); | |
3581 } | |
3582 | |
3583 | |
3584 #include <stdlib.h> | |
3585 #include <string.h> | |
3586 | |
3587 static void upb_symtab_free(upb_refcounted *r) { | |
3588 upb_symtab *s = (upb_symtab*)r; | |
3589 upb_strtable_iter i; | |
3590 upb_strtable_begin(&i, &s->symtab); | |
3591 for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { | |
3592 const upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); | |
3593 upb_def_unref(def, s); | |
3594 } | |
3595 upb_strtable_uninit(&s->symtab); | |
3596 free(s); | |
3597 } | |
3598 | |
3599 | |
3600 upb_symtab *upb_symtab_new(const void *owner) { | |
3601 static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_symtab_free}; | |
3602 upb_symtab *s = malloc(sizeof(*s)); | |
3603 upb_refcounted_init(upb_symtab_upcast_mutable(s), &vtbl, owner); | |
3604 upb_strtable_init(&s->symtab, UPB_CTYPE_PTR); | |
3605 return s; | |
3606 } | |
3607 | |
3608 void upb_symtab_freeze(upb_symtab *s) { | |
3609 upb_refcounted *r; | |
3610 bool ok; | |
3611 | |
3612 assert(!upb_symtab_isfrozen(s)); | |
3613 r = upb_symtab_upcast_mutable(s); | |
3614 /* The symtab does not take ref2's (see refcounted.h) on the defs, because | |
3615 * defs cannot refer back to the table and therefore cannot create cycles. So | |
3616 * 0 will suffice for maxdepth here. */ | |
3617 ok = upb_refcounted_freeze(&r, 1, NULL, 0); | |
3618 UPB_ASSERT_VAR(ok, ok); | |
3619 } | |
3620 | |
3621 const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym) { | |
3622 upb_value v; | |
3623 upb_def *ret = upb_strtable_lookup(&s->symtab, sym, &v) ? | |
3624 upb_value_getptr(v) : NULL; | |
3625 return ret; | |
3626 } | |
3627 | |
3628 const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) { | |
3629 upb_value v; | |
3630 upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ? | |
3631 upb_value_getptr(v) : NULL; | |
3632 return def ? upb_dyncast_msgdef(def) : NULL; | |
3633 } | |
3634 | |
3635 const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) { | |
3636 upb_value v; | |
3637 upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ? | |
3638 upb_value_getptr(v) : NULL; | |
3639 return def ? upb_dyncast_enumdef(def) : NULL; | |
3640 } | |
3641 | |
3642 /* Given a symbol and the base symbol inside which it is defined, find the | |
3643 * symbol's definition in t. */ | |
3644 static upb_def *upb_resolvename(const upb_strtable *t, | |
3645 const char *base, const char *sym) { | |
3646 if(strlen(sym) == 0) return NULL; | |
3647 if(sym[0] == '.') { | |
3648 /* Symbols starting with '.' are absolute, so we do a single lookup. | |
3649 * Slice to omit the leading '.' */ | |
3650 upb_value v; | |
3651 return upb_strtable_lookup(t, sym + 1, &v) ? upb_value_getptr(v) : NULL; | |
3652 } else { | |
3653 /* Remove components from base until we find an entry or run out. | |
3654 * TODO: This branch is totally broken, but currently not used. */ | |
3655 (void)base; | |
3656 assert(false); | |
3657 return NULL; | |
3658 } | |
3659 } | |
3660 | |
3661 const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base, | |
3662 const char *sym) { | |
3663 upb_def *ret = upb_resolvename(&s->symtab, base, sym); | |
3664 return ret; | |
3665 } | |
3666 | |
3667 /* Starts a depth-first traversal at "def", recursing into any subdefs | |
3668 * (ie. submessage types). Adds duplicates of existing defs to addtab | |
3669 * wherever necessary, so that the resulting symtab will be consistent once | |
3670 * addtab is added. | |
3671 * | |
3672 * More specifically, if any def D is found in the DFS that: | |
3673 * | |
3674 * 1. can reach a def that is being replaced by something in addtab, AND | |
3675 * | |
3676 * 2. is not itself being replaced already (ie. this name doesn't already | |
3677 * exist in addtab) | |
3678 * | |
3679 * ...then a duplicate (new copy) of D will be added to addtab. | |
3680 * | |
3681 * Returns true if this happened for any def reachable from "def." | |
3682 * | |
3683 * It is slightly tricky to do this correctly in the presence of cycles. If we | |
3684 * detect that our DFS has hit a cycle, we might not yet know if any SCCs on | |
3685 * our stack can reach a def in addtab or not. Once we figure this out, that | |
3686 * answer needs to apply to *all* defs in these SCCs, even if we visited them | |
3687 * already. So a straight up one-pass cycle-detecting DFS won't work. | |
3688 * | |
3689 * To work around this problem, we traverse each SCC (which we already | |
3690 * computed, since these defs are frozen) as a single node. We first compute | |
3691 * whether the SCC as a whole can reach any def in addtab, then we dup (or not) | |
3692 * the entire SCC. This requires breaking the encapsulation of upb_refcounted, | |
3693 * since that is where we get the data about what SCC we are in. */ | |
3694 static bool upb_resolve_dfs(const upb_def *def, upb_strtable *addtab, | |
3695 const void *new_owner, upb_inttable *seen, | |
3696 upb_status *s) { | |
3697 upb_value v; | |
3698 bool need_dup; | |
3699 const upb_def *base; | |
3700 const void* memoize_key; | |
3701 | |
3702 /* Memoize results of this function for efficiency (since we're traversing a | |
3703 * DAG this is not needed to limit the depth of the search). | |
3704 * | |
3705 * We memoize by SCC instead of by individual def. */ | |
3706 memoize_key = def->base.group; | |
3707 | |
3708 if (upb_inttable_lookupptr(seen, memoize_key, &v)) | |
3709 return upb_value_getbool(v); | |
3710 | |
3711 /* Visit submessages for all messages in the SCC. */ | |
3712 need_dup = false; | |
3713 base = def; | |
3714 do { | |
3715 upb_value v; | |
3716 const upb_msgdef *m; | |
3717 | |
3718 assert(upb_def_isfrozen(def)); | |
3719 if (def->type == UPB_DEF_FIELD) continue; | |
3720 if (upb_strtable_lookup(addtab, upb_def_fullname(def), &v)) { | |
3721 need_dup = true; | |
3722 } | |
3723 | |
3724 /* For messages, continue the recursion by visiting all subdefs, but only | |
3725 * ones in different SCCs. */ | |
3726 m = upb_dyncast_msgdef(def); | |
3727 if (m) { | |
3728 upb_msg_field_iter i; | |
3729 for(upb_msg_field_begin(&i, m); | |
3730 !upb_msg_field_done(&i); | |
3731 upb_msg_field_next(&i)) { | |
3732 upb_fielddef *f = upb_msg_iter_field(&i); | |
3733 const upb_def *subdef; | |
3734 | |
3735 if (!upb_fielddef_hassubdef(f)) continue; | |
3736 subdef = upb_fielddef_subdef(f); | |
3737 | |
3738 /* Skip subdefs in this SCC. */ | |
3739 if (def->base.group == subdef->base.group) continue; | |
3740 | |
3741 /* |= to avoid short-circuit; we need its side-effects. */ | |
3742 need_dup |= upb_resolve_dfs(subdef, addtab, new_owner, seen, s); | |
3743 if (!upb_ok(s)) return false; | |
3744 } | |
3745 } | |
3746 } while ((def = (upb_def*)def->base.next) != base); | |
3747 | |
3748 if (need_dup) { | |
3749 /* Dup all defs in this SCC that don't already have entries in addtab. */ | |
3750 def = base; | |
3751 do { | |
3752 const char *name; | |
3753 | |
3754 if (def->type == UPB_DEF_FIELD) continue; | |
3755 name = upb_def_fullname(def); | |
3756 if (!upb_strtable_lookup(addtab, name, NULL)) { | |
3757 upb_def *newdef = upb_def_dup(def, new_owner); | |
3758 if (!newdef) goto oom; | |
3759 newdef->came_from_user = false; | |
3760 if (!upb_strtable_insert(addtab, name, upb_value_ptr(newdef))) | |
3761 goto oom; | |
3762 } | |
3763 } while ((def = (upb_def*)def->base.next) != base); | |
3764 } | |
3765 | |
3766 upb_inttable_insertptr(seen, memoize_key, upb_value_bool(need_dup)); | |
3767 return need_dup; | |
3768 | |
3769 oom: | |
3770 upb_status_seterrmsg(s, "out of memory"); | |
3771 return false; | |
3772 } | |
3773 | |
3774 /* TODO(haberman): we need a lot more testing of error conditions. | |
3775 * The came_from_user stuff in particular is not tested. */ | |
3776 bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, int n, void *ref_donor, | |
3777 upb_status *status) { | |
3778 int i; | |
3779 upb_strtable_iter iter; | |
3780 upb_def **add_defs = NULL; | |
3781 upb_strtable addtab; | |
3782 upb_inttable seen; | |
3783 | |
3784 assert(!upb_symtab_isfrozen(s)); | |
3785 if (!upb_strtable_init(&addtab, UPB_CTYPE_PTR)) { | |
3786 upb_status_seterrmsg(status, "out of memory"); | |
3787 return false; | |
3788 } | |
3789 | |
3790 /* Add new defs to our "add" set. */ | |
3791 for (i = 0; i < n; i++) { | |
3792 upb_def *def = defs[i]; | |
3793 const char *fullname; | |
3794 upb_fielddef *f; | |
3795 | |
3796 if (upb_def_isfrozen(def)) { | |
3797 upb_status_seterrmsg(status, "added defs must be mutable"); | |
3798 goto err; | |
3799 } | |
3800 assert(!upb_def_isfrozen(def)); | |
3801 fullname = upb_def_fullname(def); | |
3802 if (!fullname) { | |
3803 upb_status_seterrmsg( | |
3804 status, "Anonymous defs cannot be added to a symtab"); | |
3805 goto err; | |
3806 } | |
3807 | |
3808 f = upb_dyncast_fielddef_mutable(def); | |
3809 | |
3810 if (f) { | |
3811 if (!upb_fielddef_containingtypename(f)) { | |
3812 upb_status_seterrmsg(status, | |
3813 "Standalone fielddefs must have a containing type " | |
3814 "(extendee) name set"); | |
3815 goto err; | |
3816 } | |
3817 } else { | |
3818 if (upb_strtable_lookup(&addtab, fullname, NULL)) { | |
3819 upb_status_seterrf(status, "Conflicting defs named '%s'", fullname); | |
3820 goto err; | |
3821 } | |
3822 /* We need this to back out properly, because if there is a failure we | |
3823 * need to donate the ref back to the caller. */ | |
3824 def->came_from_user = true; | |
3825 upb_def_donateref(def, ref_donor, s); | |
3826 if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def))) | |
3827 goto oom_err; | |
3828 } | |
3829 } | |
3830 | |
3831 /* Add standalone fielddefs (ie. extensions) to the appropriate messages. | |
3832 * If the appropriate message only exists in the existing symtab, duplicate | |
3833 * it so we have a mutable copy we can add the fields to. */ | |
3834 for (i = 0; i < n; i++) { | |
3835 upb_def *def = defs[i]; | |
3836 upb_fielddef *f = upb_dyncast_fielddef_mutable(def); | |
3837 const char *msgname; | |
3838 upb_value v; | |
3839 upb_msgdef *m; | |
3840 | |
3841 if (!f) continue; | |
3842 msgname = upb_fielddef_containingtypename(f); | |
3843 /* We validated this earlier in this function. */ | |
3844 assert(msgname); | |
3845 | |
3846 /* If the extendee name is absolutely qualified, move past the initial ".". | |
3847 * TODO(haberman): it is not obvious what it would mean if this was not | |
3848 * absolutely qualified. */ | |
3849 if (msgname[0] == '.') { | |
3850 msgname++; | |
3851 } | |
3852 | |
3853 if (upb_strtable_lookup(&addtab, msgname, &v)) { | |
3854 /* Extendee is in the set of defs the user asked us to add. */ | |
3855 m = upb_value_getptr(v); | |
3856 } else { | |
3857 /* Need to find and dup the extendee from the existing symtab. */ | |
3858 const upb_msgdef *frozen_m = upb_symtab_lookupmsg(s, msgname); | |
3859 if (!frozen_m) { | |
3860 upb_status_seterrf(status, | |
3861 "Tried to extend message %s that does not exist " | |
3862 "in this SymbolTable.", | |
3863 msgname); | |
3864 goto err; | |
3865 } | |
3866 m = upb_msgdef_dup(frozen_m, s); | |
3867 if (!m) goto oom_err; | |
3868 if (!upb_strtable_insert(&addtab, msgname, upb_value_ptr(m))) { | |
3869 upb_msgdef_unref(m, s); | |
3870 goto oom_err; | |
3871 } | |
3872 } | |
3873 | |
3874 if (!upb_msgdef_addfield(m, f, ref_donor, status)) { | |
3875 goto err; | |
3876 } | |
3877 } | |
3878 | |
3879 /* Add dups of any existing def that can reach a def with the same name as | |
3880 * anything in our "add" set. */ | |
3881 if (!upb_inttable_init(&seen, UPB_CTYPE_BOOL)) goto oom_err; | |
3882 upb_strtable_begin(&iter, &s->symtab); | |
3883 for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { | |
3884 upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); | |
3885 upb_resolve_dfs(def, &addtab, s, &seen, status); | |
3886 if (!upb_ok(status)) goto err; | |
3887 } | |
3888 upb_inttable_uninit(&seen); | |
3889 | |
3890 /* Now using the table, resolve symbolic references for subdefs. */ | |
3891 upb_strtable_begin(&iter, &addtab); | |
3892 for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { | |
3893 const char *base; | |
3894 upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); | |
3895 upb_msgdef *m = upb_dyncast_msgdef_mutable(def); | |
3896 upb_msg_field_iter j; | |
3897 | |
3898 if (!m) continue; | |
3899 /* Type names are resolved relative to the message in which they appear. */ | |
3900 base = upb_msgdef_fullname(m); | |
3901 | |
3902 for(upb_msg_field_begin(&j, m); | |
3903 !upb_msg_field_done(&j); | |
3904 upb_msg_field_next(&j)) { | |
3905 upb_fielddef *f = upb_msg_iter_field(&j); | |
3906 const char *name = upb_fielddef_subdefname(f); | |
3907 if (name && !upb_fielddef_subdef(f)) { | |
3908 /* Try the lookup in the current set of to-be-added defs first. If not | |
3909 * there, try existing defs. */ | |
3910 upb_def *subdef = upb_resolvename(&addtab, base, name); | |
3911 if (subdef == NULL) { | |
3912 subdef = upb_resolvename(&s->symtab, base, name); | |
3913 } | |
3914 if (subdef == NULL) { | |
3915 upb_status_seterrf( | |
3916 status, "couldn't resolve name '%s' in message '%s'", name, base); | |
3917 goto err; | |
3918 } else if (!upb_fielddef_setsubdef(f, subdef, status)) { | |
3919 goto err; | |
3920 } | |
3921 } | |
3922 } | |
3923 } | |
3924 | |
3925 /* We need an array of the defs in addtab, for passing to upb_def_freeze. */ | |
3926 add_defs = malloc(sizeof(void*) * upb_strtable_count(&addtab)); | |
3927 if (add_defs == NULL) goto oom_err; | |
3928 upb_strtable_begin(&iter, &addtab); | |
3929 for (n = 0; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { | |
3930 add_defs[n++] = upb_value_getptr(upb_strtable_iter_value(&iter)); | |
3931 } | |
3932 | |
3933 if (!upb_def_freeze(add_defs, n, status)) goto err; | |
3934 | |
3935 /* This must be delayed until all errors have been detected, since error | |
3936 * recovery code uses this table to cleanup defs. */ | |
3937 upb_strtable_uninit(&addtab); | |
3938 | |
3939 /* TODO(haberman) we don't properly handle errors after this point (like | |
3940 * OOM in upb_strtable_insert() below). */ | |
3941 for (i = 0; i < n; i++) { | |
3942 upb_def *def = add_defs[i]; | |
3943 const char *name = upb_def_fullname(def); | |
3944 upb_value v; | |
3945 bool success; | |
3946 | |
3947 if (upb_strtable_remove(&s->symtab, name, &v)) { | |
3948 const upb_def *def = upb_value_getptr(v); | |
3949 upb_def_unref(def, s); | |
3950 } | |
3951 success = upb_strtable_insert(&s->symtab, name, upb_value_ptr(def)); | |
3952 UPB_ASSERT_VAR(success, success == true); | |
3953 } | |
3954 free(add_defs); | |
3955 return true; | |
3956 | |
3957 oom_err: | |
3958 upb_status_seterrmsg(status, "out of memory"); | |
3959 err: { | |
3960 /* For defs the user passed in, we need to donate the refs back. For defs | |
3961 * we dup'd, we need to just unref them. */ | |
3962 upb_strtable_begin(&iter, &addtab); | |
3963 for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { | |
3964 upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); | |
3965 bool came_from_user = def->came_from_user; | |
3966 def->came_from_user = false; | |
3967 if (came_from_user) { | |
3968 upb_def_donateref(def, s, ref_donor); | |
3969 } else { | |
3970 upb_def_unref(def, s); | |
3971 } | |
3972 } | |
3973 } | |
3974 upb_strtable_uninit(&addtab); | |
3975 free(add_defs); | |
3976 assert(!upb_ok(status)); | |
3977 return false; | |
3978 } | |
3979 | |
3980 /* Iteration. */ | |
3981 | |
3982 static void advance_to_matching(upb_symtab_iter *iter) { | |
3983 if (iter->type == UPB_DEF_ANY) | |
3984 return; | |
3985 | |
3986 while (!upb_strtable_done(&iter->iter) && | |
3987 iter->type != upb_symtab_iter_def(iter)->type) { | |
3988 upb_strtable_next(&iter->iter); | |
3989 } | |
3990 } | |
3991 | |
3992 void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s, | |
3993 upb_deftype_t type) { | |
3994 upb_strtable_begin(&iter->iter, &s->symtab); | |
3995 iter->type = type; | |
3996 advance_to_matching(iter); | |
3997 } | |
3998 | |
3999 void upb_symtab_next(upb_symtab_iter *iter) { | |
4000 upb_strtable_next(&iter->iter); | |
4001 advance_to_matching(iter); | |
4002 } | |
4003 | |
4004 bool upb_symtab_done(const upb_symtab_iter *iter) { | |
4005 return upb_strtable_done(&iter->iter); | |
4006 } | |
4007 | |
4008 const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter) { | |
4009 return upb_value_getptr(upb_strtable_iter_value(&iter->iter)); | |
4010 } | |
4011 /* | |
4012 ** upb_table Implementation | |
4013 ** | |
4014 ** Implementation is heavily inspired by Lua's ltable.c. | |
4015 */ | |
4016 | |
4017 | |
4018 #include <stdlib.h> | |
4019 #include <string.h> | |
4020 | |
4021 #define UPB_MAXARRSIZE 16 /* 64k. */ | |
4022 | |
4023 /* From Chromium. */ | |
4024 #define ARRAY_SIZE(x) \ | |
4025 ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) | |
4026 | |
4027 static const double MAX_LOAD = 0.85; | |
4028 | |
4029 /* The minimum utilization of the array part of a mixed hash/array table. This | |
4030 * is a speed/memory-usage tradeoff (though it's not straightforward because of | |
4031 * cache effects). The lower this is, the more memory we'll use. */ | |
4032 static const double MIN_DENSITY = 0.1; | |
4033 | |
4034 bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } | |
4035 | |
4036 int log2ceil(uint64_t v) { | |
4037 int ret = 0; | |
4038 bool pow2 = is_pow2(v); | |
4039 while (v >>= 1) ret++; | |
4040 ret = pow2 ? ret : ret + 1; /* Ceiling. */ | |
4041 return UPB_MIN(UPB_MAXARRSIZE, ret); | |
4042 } | |
4043 | |
4044 char *upb_strdup(const char *s) { | |
4045 return upb_strdup2(s, strlen(s)); | |
4046 } | |
4047 | |
4048 char *upb_strdup2(const char *s, size_t len) { | |
4049 size_t n; | |
4050 char *p; | |
4051 | |
4052 /* Prevent overflow errors. */ | |
4053 if (len == SIZE_MAX) return NULL; | |
4054 /* Always null-terminate, even if binary data; but don't rely on the input to | |
4055 * have a null-terminating byte since it may be a raw binary buffer. */ | |
4056 n = len + 1; | |
4057 p = malloc(n); | |
4058 if (p) { | |
4059 memcpy(p, s, len); | |
4060 p[len] = 0; | |
4061 } | |
4062 return p; | |
4063 } | |
4064 | |
4065 /* A type to represent the lookup key of either a strtable or an inttable. */ | |
4066 typedef union { | |
4067 uintptr_t num; | |
4068 struct { | |
4069 const char *str; | |
4070 size_t len; | |
4071 } str; | |
4072 } lookupkey_t; | |
4073 | |
4074 static lookupkey_t strkey2(const char *str, size_t len) { | |
4075 lookupkey_t k; | |
4076 k.str.str = str; | |
4077 k.str.len = len; | |
4078 return k; | |
4079 } | |
4080 | |
4081 static lookupkey_t intkey(uintptr_t key) { | |
4082 lookupkey_t k; | |
4083 k.num = key; | |
4084 return k; | |
4085 } | |
4086 | |
4087 typedef uint32_t hashfunc_t(upb_tabkey key); | |
4088 typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); | |
4089 | |
4090 /* Base table (shared code) ***************************************************/ | |
4091 | |
4092 /* For when we need to cast away const. */ | |
4093 static upb_tabent *mutable_entries(upb_table *t) { | |
4094 return (upb_tabent*)t->entries; | |
4095 } | |
4096 | |
4097 static bool isfull(upb_table *t) { | |
4098 return (double)(t->count + 1) / upb_table_size(t) > MAX_LOAD; | |
4099 } | |
4100 | |
4101 static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2) { | |
4102 size_t bytes; | |
4103 | |
4104 t->count = 0; | |
4105 t->ctype = ctype; | |
4106 t->size_lg2 = size_lg2; | |
4107 t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; | |
4108 bytes = upb_table_size(t) * sizeof(upb_tabent); | |
4109 if (bytes > 0) { | |
4110 t->entries = malloc(bytes); | |
4111 if (!t->entries) return false; | |
4112 memset(mutable_entries(t), 0, bytes); | |
4113 } else { | |
4114 t->entries = NULL; | |
4115 } | |
4116 return true; | |
4117 } | |
4118 | |
4119 static void uninit(upb_table *t) { free(mutable_entries(t)); } | |
4120 | |
4121 static upb_tabent *emptyent(upb_table *t) { | |
4122 upb_tabent *e = mutable_entries(t) + upb_table_size(t); | |
4123 while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); } | |
4124 } | |
4125 | |
4126 static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) { | |
4127 return (upb_tabent*)upb_getentry(t, hash); | |
4128 } | |
4129 | |
4130 static const upb_tabent *findentry(const upb_table *t, lookupkey_t key, | |
4131 uint32_t hash, eqlfunc_t *eql) { | |
4132 const upb_tabent *e; | |
4133 | |
4134 if (t->size_lg2 == 0) return NULL; | |
4135 e = upb_getentry(t, hash); | |
4136 if (upb_tabent_isempty(e)) return NULL; | |
4137 while (1) { | |
4138 if (eql(e->key, key)) return e; | |
4139 if ((e = e->next) == NULL) return NULL; | |
4140 } | |
4141 } | |
4142 | |
4143 static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key, | |
4144 uint32_t hash, eqlfunc_t *eql) { | |
4145 return (upb_tabent*)findentry(t, key, hash, eql); | |
4146 } | |
4147 | |
4148 static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v, | |
4149 uint32_t hash, eqlfunc_t *eql) { | |
4150 const upb_tabent *e = findentry(t, key, hash, eql); | |
4151 if (e) { | |
4152 if (v) { | |
4153 _upb_value_setval(v, e->val.val, t->ctype); | |
4154 } | |
4155 return true; | |
4156 } else { | |
4157 return false; | |
4158 } | |
4159 } | |
4160 | |
4161 /* The given key must not already exist in the table. */ | |
4162 static void insert(upb_table *t, lookupkey_t key, upb_tabkey tabkey, | |
4163 upb_value val, uint32_t hash, | |
4164 hashfunc_t *hashfunc, eqlfunc_t *eql) { | |
4165 upb_tabent *mainpos_e; | |
4166 upb_tabent *our_e; | |
4167 | |
4168 UPB_UNUSED(eql); | |
4169 UPB_UNUSED(key); | |
4170 assert(findentry(t, key, hash, eql) == NULL); | |
4171 assert(val.ctype == t->ctype); | |
4172 | |
4173 t->count++; | |
4174 mainpos_e = getentry_mutable(t, hash); | |
4175 our_e = mainpos_e; | |
4176 | |
4177 if (upb_tabent_isempty(mainpos_e)) { | |
4178 /* Our main position is empty; use it. */ | |
4179 our_e->next = NULL; | |
4180 } else { | |
4181 /* Collision. */ | |
4182 upb_tabent *new_e = emptyent(t); | |
4183 /* Head of collider's chain. */ | |
4184 upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key)); | |
4185 if (chain == mainpos_e) { | |
4186 /* Existing ent is in its main posisiton (it has the same hash as us, and | |
4187 * is the head of our chain). Insert to new ent and append to this chain.
*/ | |
4188 new_e->next = mainpos_e->next; | |
4189 mainpos_e->next = new_e; | |
4190 our_e = new_e; | |
4191 } else { | |
4192 /* Existing ent is not in its main position (it is a node in some other | |
4193 * chain). This implies that no existing ent in the table has our hash. | |
4194 * Evict it (updating its chain) and use its ent for head of our chain. */ | |
4195 *new_e = *mainpos_e; /* copies next. */ | |
4196 while (chain->next != mainpos_e) { | |
4197 chain = (upb_tabent*)chain->next; | |
4198 assert(chain); | |
4199 } | |
4200 chain->next = new_e; | |
4201 our_e = mainpos_e; | |
4202 our_e->next = NULL; | |
4203 } | |
4204 } | |
4205 our_e->key = tabkey; | |
4206 our_e->val.val = val.val; | |
4207 assert(findentry(t, key, hash, eql) == our_e); | |
4208 } | |
4209 | |
4210 static bool rm(upb_table *t, lookupkey_t key, upb_value *val, | |
4211 upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) { | |
4212 upb_tabent *chain = getentry_mutable(t, hash); | |
4213 if (upb_tabent_isempty(chain)) return false; | |
4214 if (eql(chain->key, key)) { | |
4215 /* Element to remove is at the head of its chain. */ | |
4216 t->count--; | |
4217 if (val) { | |
4218 _upb_value_setval(val, chain->val.val, t->ctype); | |
4219 } | |
4220 if (chain->next) { | |
4221 upb_tabent *move = (upb_tabent*)chain->next; | |
4222 *chain = *move; | |
4223 if (removed) *removed = move->key; | |
4224 move->key = 0; /* Make the slot empty. */ | |
4225 } else { | |
4226 if (removed) *removed = chain->key; | |
4227 chain->key = 0; /* Make the slot empty. */ | |
4228 } | |
4229 return true; | |
4230 } else { | |
4231 /* Element to remove is either in a non-head position or not in the | |
4232 * table. */ | |
4233 while (chain->next && !eql(chain->next->key, key)) | |
4234 chain = (upb_tabent*)chain->next; | |
4235 if (chain->next) { | |
4236 /* Found element to remove. */ | |
4237 upb_tabent *rm; | |
4238 | |
4239 if (val) { | |
4240 _upb_value_setval(val, chain->next->val.val, t->ctype); | |
4241 } | |
4242 rm = (upb_tabent*)chain->next; | |
4243 if (removed) *removed = rm->key; | |
4244 rm->key = 0; | |
4245 chain->next = rm->next; | |
4246 t->count--; | |
4247 return true; | |
4248 } else { | |
4249 return false; | |
4250 } | |
4251 } | |
4252 } | |
4253 | |
4254 static size_t next(const upb_table *t, size_t i) { | |
4255 do { | |
4256 if (++i >= upb_table_size(t)) | |
4257 return SIZE_MAX; | |
4258 } while(upb_tabent_isempty(&t->entries[i])); | |
4259 | |
4260 return i; | |
4261 } | |
4262 | |
4263 static size_t begin(const upb_table *t) { | |
4264 return next(t, -1); | |
4265 } | |
4266 | |
4267 | |
4268 /* upb_strtable ***************************************************************/ | |
4269 | |
4270 /* A simple "subclass" of upb_table that only adds a hash function for strings.
*/ | |
4271 | |
4272 static upb_tabkey strcopy(lookupkey_t k2) { | |
4273 char *str = malloc(k2.str.len + sizeof(uint32_t) + 1); | |
4274 if (str == NULL) return 0; | |
4275 memcpy(str, &k2.str.len, sizeof(uint32_t)); | |
4276 memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len + 1); | |
4277 return (uintptr_t)str; | |
4278 } | |
4279 | |
4280 static uint32_t strhash(upb_tabkey key) { | |
4281 uint32_t len; | |
4282 char *str = upb_tabstr(key, &len); | |
4283 return MurmurHash2(str, len, 0); | |
4284 } | |
4285 | |
4286 static bool streql(upb_tabkey k1, lookupkey_t k2) { | |
4287 uint32_t len; | |
4288 char *str = upb_tabstr(k1, &len); | |
4289 return len == k2.str.len && memcmp(str, k2.str.str, len) == 0; | |
4290 } | |
4291 | |
4292 bool upb_strtable_init(upb_strtable *t, upb_ctype_t ctype) { | |
4293 return init(&t->t, ctype, 2); | |
4294 } | |
4295 | |
4296 void upb_strtable_uninit(upb_strtable *t) { | |
4297 size_t i; | |
4298 for (i = 0; i < upb_table_size(&t->t); i++) | |
4299 free((void*)t->t.entries[i].key); | |
4300 uninit(&t->t); | |
4301 } | |
4302 | |
4303 bool upb_strtable_resize(upb_strtable *t, size_t size_lg2) { | |
4304 upb_strtable new_table; | |
4305 upb_strtable_iter i; | |
4306 | |
4307 if (!init(&new_table.t, t->t.ctype, size_lg2)) | |
4308 return false; | |
4309 upb_strtable_begin(&i, t); | |
4310 for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { | |
4311 upb_strtable_insert2( | |
4312 &new_table, | |
4313 upb_strtable_iter_key(&i), | |
4314 upb_strtable_iter_keylength(&i), | |
4315 upb_strtable_iter_value(&i)); | |
4316 } | |
4317 upb_strtable_uninit(t); | |
4318 *t = new_table; | |
4319 return true; | |
4320 } | |
4321 | |
4322 bool upb_strtable_insert2(upb_strtable *t, const char *k, size_t len, | |
4323 upb_value v) { | |
4324 lookupkey_t key; | |
4325 upb_tabkey tabkey; | |
4326 uint32_t hash; | |
4327 | |
4328 if (isfull(&t->t)) { | |
4329 /* Need to resize. New table of double the size, add old elements to it. */ | |
4330 if (!upb_strtable_resize(t, t->t.size_lg2 + 1)) { | |
4331 return false; | |
4332 } | |
4333 } | |
4334 | |
4335 key = strkey2(k, len); | |
4336 tabkey = strcopy(key); | |
4337 if (tabkey == 0) return false; | |
4338 | |
4339 hash = MurmurHash2(key.str.str, key.str.len, 0); | |
4340 insert(&t->t, key, tabkey, v, hash, &strhash, &streql); | |
4341 return true; | |
4342 } | |
4343 | |
4344 bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, | |
4345 upb_value *v) { | |
4346 uint32_t hash = MurmurHash2(key, len, 0); | |
4347 return lookup(&t->t, strkey2(key, len), v, hash, &streql); | |
4348 } | |
4349 | |
4350 bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len, | |
4351 upb_value *val) { | |
4352 uint32_t hash = MurmurHash2(key, strlen(key), 0); | |
4353 upb_tabkey tabkey; | |
4354 if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) { | |
4355 free((void*)tabkey); | |
4356 return true; | |
4357 } else { | |
4358 return false; | |
4359 } | |
4360 } | |
4361 | |
4362 /* Iteration */ | |
4363 | |
4364 static const upb_tabent *str_tabent(const upb_strtable_iter *i) { | |
4365 return &i->t->t.entries[i->index]; | |
4366 } | |
4367 | |
4368 void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { | |
4369 i->t = t; | |
4370 i->index = begin(&t->t); | |
4371 } | |
4372 | |
4373 void upb_strtable_next(upb_strtable_iter *i) { | |
4374 i->index = next(&i->t->t, i->index); | |
4375 } | |
4376 | |
4377 bool upb_strtable_done(const upb_strtable_iter *i) { | |
4378 return i->index >= upb_table_size(&i->t->t) || | |
4379 upb_tabent_isempty(str_tabent(i)); | |
4380 } | |
4381 | |
4382 const char *upb_strtable_iter_key(upb_strtable_iter *i) { | |
4383 assert(!upb_strtable_done(i)); | |
4384 return upb_tabstr(str_tabent(i)->key, NULL); | |
4385 } | |
4386 | |
4387 size_t upb_strtable_iter_keylength(upb_strtable_iter *i) { | |
4388 uint32_t len; | |
4389 assert(!upb_strtable_done(i)); | |
4390 upb_tabstr(str_tabent(i)->key, &len); | |
4391 return len; | |
4392 } | |
4393 | |
4394 upb_value upb_strtable_iter_value(const upb_strtable_iter *i) { | |
4395 assert(!upb_strtable_done(i)); | |
4396 return _upb_value_val(str_tabent(i)->val.val, i->t->t.ctype); | |
4397 } | |
4398 | |
4399 void upb_strtable_iter_setdone(upb_strtable_iter *i) { | |
4400 i->index = SIZE_MAX; | |
4401 } | |
4402 | |
4403 bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, | |
4404 const upb_strtable_iter *i2) { | |
4405 if (upb_strtable_done(i1) && upb_strtable_done(i2)) | |
4406 return true; | |
4407 return i1->t == i2->t && i1->index == i2->index; | |
4408 } | |
4409 | |
4410 | |
4411 /* upb_inttable ***************************************************************/ | |
4412 | |
4413 /* For inttables we use a hybrid structure where small keys are kept in an | |
4414 * array and large keys are put in the hash table. */ | |
4415 | |
4416 static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } | |
4417 | |
4418 static bool inteql(upb_tabkey k1, lookupkey_t k2) { | |
4419 return k1 == k2.num; | |
4420 } | |
4421 | |
4422 static upb_tabval *mutable_array(upb_inttable *t) { | |
4423 return (upb_tabval*)t->array; | |
4424 } | |
4425 | |
4426 static upb_tabval *inttable_val(upb_inttable *t, uintptr_t key) { | |
4427 if (key < t->array_size) { | |
4428 return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; | |
4429 } else { | |
4430 upb_tabent *e = | |
4431 findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); | |
4432 return e ? &e->val : NULL; | |
4433 } | |
4434 } | |
4435 | |
4436 static const upb_tabval *inttable_val_const(const upb_inttable *t, | |
4437 uintptr_t key) { | |
4438 return inttable_val((upb_inttable*)t, key); | |
4439 } | |
4440 | |
4441 size_t upb_inttable_count(const upb_inttable *t) { | |
4442 return t->t.count + t->array_count; | |
4443 } | |
4444 | |
4445 static void check(upb_inttable *t) { | |
4446 UPB_UNUSED(t); | |
4447 #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) | |
4448 { | |
4449 /* This check is very expensive (makes inserts/deletes O(N)). */ | |
4450 size_t count = 0; | |
4451 upb_inttable_iter i; | |
4452 upb_inttable_begin(&i, t); | |
4453 for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { | |
4454 assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); | |
4455 } | |
4456 assert(count == upb_inttable_count(t)); | |
4457 } | |
4458 #endif | |
4459 } | |
4460 | |
4461 bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype, | |
4462 size_t asize, int hsize_lg2) { | |
4463 size_t array_bytes; | |
4464 | |
4465 if (!init(&t->t, ctype, hsize_lg2)) return false; | |
4466 /* Always make the array part at least 1 long, so that we know key 0 | |
4467 * won't be in the hash part, which simplifies things. */ | |
4468 t->array_size = UPB_MAX(1, asize); | |
4469 t->array_count = 0; | |
4470 array_bytes = t->array_size * sizeof(upb_value); | |
4471 t->array = malloc(array_bytes); | |
4472 if (!t->array) { | |
4473 uninit(&t->t); | |
4474 return false; | |
4475 } | |
4476 memset(mutable_array(t), 0xff, array_bytes); | |
4477 check(t); | |
4478 return true; | |
4479 } | |
4480 | |
4481 bool upb_inttable_init(upb_inttable *t, upb_ctype_t ctype) { | |
4482 return upb_inttable_sizedinit(t, ctype, 0, 4); | |
4483 } | |
4484 | |
4485 void upb_inttable_uninit(upb_inttable *t) { | |
4486 uninit(&t->t); | |
4487 free(mutable_array(t)); | |
4488 } | |
4489 | |
4490 bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) { | |
4491 /* XXX: Table can't store value (uint64_t)-1. Need to somehow statically | |
4492 * guarantee that this is not necessary, or fix the limitation. */ | |
4493 upb_tabval tabval; | |
4494 tabval.val = val.val; | |
4495 UPB_UNUSED(tabval); | |
4496 assert(upb_arrhas(tabval)); | |
4497 | |
4498 if (key < t->array_size) { | |
4499 assert(!upb_arrhas(t->array[key])); | |
4500 t->array_count++; | |
4501 mutable_array(t)[key].val = val.val; | |
4502 } else { | |
4503 if (isfull(&t->t)) { | |
4504 /* Need to resize the hash part, but we re-use the array part. */ | |
4505 size_t i; | |
4506 upb_table new_table; | |
4507 if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1)) | |
4508 return false; | |
4509 for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { | |
4510 const upb_tabent *e = &t->t.entries[i]; | |
4511 uint32_t hash; | |
4512 upb_value v; | |
4513 | |
4514 _upb_value_setval(&v, e->val.val, t->t.ctype); | |
4515 hash = upb_inthash(e->key); | |
4516 insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); | |
4517 } | |
4518 | |
4519 assert(t->t.count == new_table.count); | |
4520 | |
4521 uninit(&t->t); | |
4522 t->t = new_table; | |
4523 } | |
4524 insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); | |
4525 } | |
4526 check(t); | |
4527 return true; | |
4528 } | |
4529 | |
4530 bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { | |
4531 const upb_tabval *table_v = inttable_val_const(t, key); | |
4532 if (!table_v) return false; | |
4533 if (v) _upb_value_setval(v, table_v->val, t->t.ctype); | |
4534 return true; | |
4535 } | |
4536 | |
4537 bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { | |
4538 upb_tabval *table_v = inttable_val(t, key); | |
4539 if (!table_v) return false; | |
4540 table_v->val = val.val; | |
4541 return true; | |
4542 } | |
4543 | |
4544 bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { | |
4545 bool success; | |
4546 if (key < t->array_size) { | |
4547 if (upb_arrhas(t->array[key])) { | |
4548 upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; | |
4549 t->array_count--; | |
4550 if (val) { | |
4551 _upb_value_setval(val, t->array[key].val, t->t.ctype); | |
4552 } | |
4553 mutable_array(t)[key] = empty; | |
4554 success = true; | |
4555 } else { | |
4556 success = false; | |
4557 } | |
4558 } else { | |
4559 upb_tabkey removed; | |
4560 uint32_t hash = upb_inthash(key); | |
4561 success = rm(&t->t, intkey(key), val, &removed, hash, &inteql); | |
4562 } | |
4563 check(t); | |
4564 return success; | |
4565 } | |
4566 | |
4567 bool upb_inttable_push(upb_inttable *t, upb_value val) { | |
4568 return upb_inttable_insert(t, upb_inttable_count(t), val); | |
4569 } | |
4570 | |
4571 upb_value upb_inttable_pop(upb_inttable *t) { | |
4572 upb_value val; | |
4573 bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val); | |
4574 UPB_ASSERT_VAR(ok, ok); | |
4575 return val; | |
4576 } | |
4577 | |
4578 bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) { | |
4579 return upb_inttable_insert(t, (uintptr_t)key, val); | |
4580 } | |
4581 | |
4582 bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, | |
4583 upb_value *v) { | |
4584 return upb_inttable_lookup(t, (uintptr_t)key, v); | |
4585 } | |
4586 | |
4587 bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { | |
4588 return upb_inttable_remove(t, (uintptr_t)key, val); | |
4589 } | |
4590 | |
4591 void upb_inttable_compact(upb_inttable *t) { | |
4592 /* Create a power-of-two histogram of the table keys. */ | |
4593 int counts[UPB_MAXARRSIZE + 1] = {0}; | |
4594 uintptr_t max_key = 0; | |
4595 upb_inttable_iter i; | |
4596 size_t arr_size; | |
4597 int arr_count; | |
4598 upb_inttable new_t; | |
4599 | |
4600 upb_inttable_begin(&i, t); | |
4601 for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
4602 uintptr_t key = upb_inttable_iter_key(&i); | |
4603 if (key > max_key) { | |
4604 max_key = key; | |
4605 } | |
4606 counts[log2ceil(key)]++; | |
4607 } | |
4608 | |
4609 arr_size = 1; | |
4610 arr_count = upb_inttable_count(t); | |
4611 | |
4612 if (upb_inttable_count(t) >= max_key * MIN_DENSITY) { | |
4613 /* We can put 100% of the entries in the array part. */ | |
4614 arr_size = max_key + 1; | |
4615 } else { | |
4616 /* Find the largest power of two that satisfies the MIN_DENSITY | |
4617 * definition. */ | |
4618 int size_lg2; | |
4619 for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 1; size_lg2--) { | |
4620 arr_size = 1 << size_lg2; | |
4621 arr_count -= counts[size_lg2]; | |
4622 if (arr_count >= arr_size * MIN_DENSITY) { | |
4623 break; | |
4624 } | |
4625 } | |
4626 } | |
4627 | |
4628 /* Array part must always be at least 1 entry large to catch lookups of key | |
4629 * 0. Key 0 must always be in the array part because "0" in the hash part | |
4630 * denotes an empty entry. */ | |
4631 arr_size = UPB_MAX(arr_size, 1); | |
4632 | |
4633 { | |
4634 /* Insert all elements into new, perfectly-sized table. */ | |
4635 int hash_count = upb_inttable_count(t) - arr_count; | |
4636 int hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; | |
4637 int hashsize_lg2 = log2ceil(hash_size); | |
4638 | |
4639 assert(hash_count >= 0); | |
4640 upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2); | |
4641 upb_inttable_begin(&i, t); | |
4642 for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
4643 uintptr_t k = upb_inttable_iter_key(&i); | |
4644 upb_inttable_insert(&new_t, k, upb_inttable_iter_value(&i)); | |
4645 } | |
4646 assert(new_t.array_size == arr_size); | |
4647 assert(new_t.t.size_lg2 == hashsize_lg2); | |
4648 } | |
4649 upb_inttable_uninit(t); | |
4650 *t = new_t; | |
4651 } | |
4652 | |
4653 /* Iteration. */ | |
4654 | |
4655 static const upb_tabent *int_tabent(const upb_inttable_iter *i) { | |
4656 assert(!i->array_part); | |
4657 return &i->t->t.entries[i->index]; | |
4658 } | |
4659 | |
4660 static upb_tabval int_arrent(const upb_inttable_iter *i) { | |
4661 assert(i->array_part); | |
4662 return i->t->array[i->index]; | |
4663 } | |
4664 | |
4665 void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { | |
4666 i->t = t; | |
4667 i->index = -1; | |
4668 i->array_part = true; | |
4669 upb_inttable_next(i); | |
4670 } | |
4671 | |
4672 void upb_inttable_next(upb_inttable_iter *iter) { | |
4673 const upb_inttable *t = iter->t; | |
4674 if (iter->array_part) { | |
4675 while (++iter->index < t->array_size) { | |
4676 if (upb_arrhas(int_arrent(iter))) { | |
4677 return; | |
4678 } | |
4679 } | |
4680 iter->array_part = false; | |
4681 iter->index = begin(&t->t); | |
4682 } else { | |
4683 iter->index = next(&t->t, iter->index); | |
4684 } | |
4685 } | |
4686 | |
4687 bool upb_inttable_done(const upb_inttable_iter *i) { | |
4688 if (i->array_part) { | |
4689 return i->index >= i->t->array_size || | |
4690 !upb_arrhas(int_arrent(i)); | |
4691 } else { | |
4692 return i->index >= upb_table_size(&i->t->t) || | |
4693 upb_tabent_isempty(int_tabent(i)); | |
4694 } | |
4695 } | |
4696 | |
4697 uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) { | |
4698 assert(!upb_inttable_done(i)); | |
4699 return i->array_part ? i->index : int_tabent(i)->key; | |
4700 } | |
4701 | |
4702 upb_value upb_inttable_iter_value(const upb_inttable_iter *i) { | |
4703 assert(!upb_inttable_done(i)); | |
4704 return _upb_value_val( | |
4705 i->array_part ? i->t->array[i->index].val : int_tabent(i)->val.val, | |
4706 i->t->t.ctype); | |
4707 } | |
4708 | |
4709 void upb_inttable_iter_setdone(upb_inttable_iter *i) { | |
4710 i->index = SIZE_MAX; | |
4711 i->array_part = false; | |
4712 } | |
4713 | |
4714 bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, | |
4715 const upb_inttable_iter *i2) { | |
4716 if (upb_inttable_done(i1) && upb_inttable_done(i2)) | |
4717 return true; | |
4718 return i1->t == i2->t && i1->index == i2->index && | |
4719 i1->array_part == i2->array_part; | |
4720 } | |
4721 | |
4722 #ifdef UPB_UNALIGNED_READS_OK | |
4723 /* ----------------------------------------------------------------------------- | |
4724 * MurmurHash2, by Austin Appleby (released as public domain). | |
4725 * Reformatted and C99-ified by Joshua Haberman. | |
4726 * Note - This code makes a few assumptions about how your machine behaves - | |
4727 * 1. We can read a 4-byte value from any address without crashing | |
4728 * 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t | |
4729 * And it has a few limitations - | |
4730 * 1. It will not work incrementally. | |
4731 * 2. It will not produce the same results on little-endian and big-endian | |
4732 * machines. */ | |
4733 uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) { | |
4734 /* 'm' and 'r' are mixing constants generated offline. | |
4735 * They're not really 'magic', they just happen to work well. */ | |
4736 const uint32_t m = 0x5bd1e995; | |
4737 const int32_t r = 24; | |
4738 | |
4739 /* Initialize the hash to a 'random' value */ | |
4740 uint32_t h = seed ^ len; | |
4741 | |
4742 /* Mix 4 bytes at a time into the hash */ | |
4743 const uint8_t * data = (const uint8_t *)key; | |
4744 while(len >= 4) { | |
4745 uint32_t k = *(uint32_t *)data; | |
4746 | |
4747 k *= m; | |
4748 k ^= k >> r; | |
4749 k *= m; | |
4750 | |
4751 h *= m; | |
4752 h ^= k; | |
4753 | |
4754 data += 4; | |
4755 len -= 4; | |
4756 } | |
4757 | |
4758 /* Handle the last few bytes of the input array */ | |
4759 switch(len) { | |
4760 case 3: h ^= data[2] << 16; | |
4761 case 2: h ^= data[1] << 8; | |
4762 case 1: h ^= data[0]; h *= m; | |
4763 }; | |
4764 | |
4765 /* Do a few final mixes of the hash to ensure the last few | |
4766 * bytes are well-incorporated. */ | |
4767 h ^= h >> 13; | |
4768 h *= m; | |
4769 h ^= h >> 15; | |
4770 | |
4771 return h; | |
4772 } | |
4773 | |
4774 #else /* !UPB_UNALIGNED_READS_OK */ | |
4775 | |
4776 /* ----------------------------------------------------------------------------- | |
4777 * MurmurHashAligned2, by Austin Appleby | |
4778 * Same algorithm as MurmurHash2, but only does aligned reads - should be safer | |
4779 * on certain platforms. | |
4780 * Performance will be lower than MurmurHash2 */ | |
4781 | |
4782 #define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } | |
4783 | |
4784 uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) { | |
4785 const uint32_t m = 0x5bd1e995; | |
4786 const int32_t r = 24; | |
4787 const uint8_t * data = (const uint8_t *)key; | |
4788 uint32_t h = seed ^ len; | |
4789 uint8_t align = (uintptr_t)data & 3; | |
4790 | |
4791 if(align && (len >= 4)) { | |
4792 /* Pre-load the temp registers */ | |
4793 uint32_t t = 0, d = 0; | |
4794 int32_t sl; | |
4795 int32_t sr; | |
4796 | |
4797 switch(align) { | |
4798 case 1: t |= data[2] << 16; | |
4799 case 2: t |= data[1] << 8; | |
4800 case 3: t |= data[0]; | |
4801 } | |
4802 | |
4803 t <<= (8 * align); | |
4804 | |
4805 data += 4-align; | |
4806 len -= 4-align; | |
4807 | |
4808 sl = 8 * (4-align); | |
4809 sr = 8 * align; | |
4810 | |
4811 /* Mix */ | |
4812 | |
4813 while(len >= 4) { | |
4814 uint32_t k; | |
4815 | |
4816 d = *(uint32_t *)data; | |
4817 t = (t >> sr) | (d << sl); | |
4818 | |
4819 k = t; | |
4820 | |
4821 MIX(h,k,m); | |
4822 | |
4823 t = d; | |
4824 | |
4825 data += 4; | |
4826 len -= 4; | |
4827 } | |
4828 | |
4829 /* Handle leftover data in temp registers */ | |
4830 | |
4831 d = 0; | |
4832 | |
4833 if(len >= align) { | |
4834 uint32_t k; | |
4835 | |
4836 switch(align) { | |
4837 case 3: d |= data[2] << 16; | |
4838 case 2: d |= data[1] << 8; | |
4839 case 1: d |= data[0]; | |
4840 } | |
4841 | |
4842 k = (t >> sr) | (d << sl); | |
4843 MIX(h,k,m); | |
4844 | |
4845 data += align; | |
4846 len -= align; | |
4847 | |
4848 /* ---------- | |
4849 * Handle tail bytes */ | |
4850 | |
4851 switch(len) { | |
4852 case 3: h ^= data[2] << 16; | |
4853 case 2: h ^= data[1] << 8; | |
4854 case 1: h ^= data[0]; h *= m; | |
4855 }; | |
4856 } else { | |
4857 switch(len) { | |
4858 case 3: d |= data[2] << 16; | |
4859 case 2: d |= data[1] << 8; | |
4860 case 1: d |= data[0]; | |
4861 case 0: h ^= (t >> sr) | (d << sl); h *= m; | |
4862 } | |
4863 } | |
4864 | |
4865 h ^= h >> 13; | |
4866 h *= m; | |
4867 h ^= h >> 15; | |
4868 | |
4869 return h; | |
4870 } else { | |
4871 while(len >= 4) { | |
4872 uint32_t k = *(uint32_t *)data; | |
4873 | |
4874 MIX(h,k,m); | |
4875 | |
4876 data += 4; | |
4877 len -= 4; | |
4878 } | |
4879 | |
4880 /* ---------- | |
4881 * Handle tail bytes */ | |
4882 | |
4883 switch(len) { | |
4884 case 3: h ^= data[2] << 16; | |
4885 case 2: h ^= data[1] << 8; | |
4886 case 1: h ^= data[0]; h *= m; | |
4887 }; | |
4888 | |
4889 h ^= h >> 13; | |
4890 h *= m; | |
4891 h ^= h >> 15; | |
4892 | |
4893 return h; | |
4894 } | |
4895 } | |
4896 #undef MIX | |
4897 | |
4898 #endif /* UPB_UNALIGNED_READS_OK */ | |
4899 | |
4900 #include <errno.h> | |
4901 #include <stdarg.h> | |
4902 #include <stddef.h> | |
4903 #include <stdint.h> | |
4904 #include <stdio.h> | |
4905 #include <stdlib.h> | |
4906 #include <string.h> | |
4907 | |
4908 bool upb_dumptostderr(void *closure, const upb_status* status) { | |
4909 UPB_UNUSED(closure); | |
4910 fprintf(stderr, "%s\n", upb_status_errmsg(status)); | |
4911 return false; | |
4912 } | |
4913 | |
4914 /* Guarantee null-termination and provide ellipsis truncation. | |
4915 * It may be tempting to "optimize" this by initializing these final | |
4916 * four bytes up-front and then being careful never to overwrite them, | |
4917 * this is safer and simpler. */ | |
4918 static void nullz(upb_status *status) { | |
4919 const char *ellipsis = "..."; | |
4920 size_t len = strlen(ellipsis); | |
4921 assert(sizeof(status->msg) > len); | |
4922 memcpy(status->msg + sizeof(status->msg) - len, ellipsis, len); | |
4923 } | |
4924 | |
4925 void upb_status_clear(upb_status *status) { | |
4926 if (!status) return; | |
4927 status->ok_ = true; | |
4928 status->code_ = 0; | |
4929 status->msg[0] = '\0'; | |
4930 } | |
4931 | |
4932 bool upb_ok(const upb_status *status) { return status->ok_; } | |
4933 | |
4934 upb_errorspace *upb_status_errspace(const upb_status *status) { | |
4935 return status->error_space_; | |
4936 } | |
4937 | |
4938 int upb_status_errcode(const upb_status *status) { return status->code_; } | |
4939 | |
4940 const char *upb_status_errmsg(const upb_status *status) { return status->msg; } | |
4941 | |
4942 void upb_status_seterrmsg(upb_status *status, const char *msg) { | |
4943 if (!status) return; | |
4944 status->ok_ = false; | |
4945 strncpy(status->msg, msg, sizeof(status->msg)); | |
4946 nullz(status); | |
4947 } | |
4948 | |
4949 void upb_status_seterrf(upb_status *status, const char *fmt, ...) { | |
4950 va_list args; | |
4951 va_start(args, fmt); | |
4952 upb_status_vseterrf(status, fmt, args); | |
4953 va_end(args); | |
4954 } | |
4955 | |
4956 void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args) { | |
4957 if (!status) return; | |
4958 status->ok_ = false; | |
4959 _upb_vsnprintf(status->msg, sizeof(status->msg), fmt, args); | |
4960 nullz(status); | |
4961 } | |
4962 | |
4963 void upb_status_seterrcode(upb_status *status, upb_errorspace *space, | |
4964 int code) { | |
4965 if (!status) return; | |
4966 status->ok_ = false; | |
4967 status->error_space_ = space; | |
4968 status->code_ = code; | |
4969 space->set_message(status, code); | |
4970 } | |
4971 | |
4972 void upb_status_copy(upb_status *to, const upb_status *from) { | |
4973 if (!to) return; | |
4974 *to = *from; | |
4975 } | |
4976 /* This file was generated by upbc (the upb compiler). | |
4977 * Do not edit -- your changes will be discarded when the file is | |
4978 * regenerated. */ | |
4979 | |
4980 | |
4981 static const upb_msgdef msgs[20]; | |
4982 static const upb_fielddef fields[81]; | |
4983 static const upb_enumdef enums[4]; | |
4984 static const upb_tabent strentries[236]; | |
4985 static const upb_tabent intentries[14]; | |
4986 static const upb_tabval arrays[232]; | |
4987 | |
4988 #ifdef UPB_DEBUG_REFS | |
4989 static upb_inttable reftables[212]; | |
4990 #endif | |
4991 | |
4992 static const upb_msgdef msgs[20] = { | |
4993 UPB_MSGDEF_INIT("google.protobuf.DescriptorProto", 27, 6, UPB_INTTABLE_INIT(0,
0, UPB_CTYPE_PTR, 0, NULL, &arrays[0], 8, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYP
E_PTR, 4, &strentries[0]),&reftables[0], &reftables[1]), | |
4994 UPB_MSGDEF_INIT("google.protobuf.DescriptorProto.ExtensionRange", 4, 0, UPB_IN
TTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[8], 3, 2), UPB_STRTABLE_INIT(2
, 3, UPB_CTYPE_PTR, 2, &strentries[16]),&reftables[2], &reftables[3]), | |
4995 UPB_MSGDEF_INIT("google.protobuf.EnumDescriptorProto", 11, 2, UPB_INTTABLE_INI
T(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[11], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_
CTYPE_PTR, 2, &strentries[20]),&reftables[4], &reftables[5]), | |
4996 UPB_MSGDEF_INIT("google.protobuf.EnumOptions", 7, 1, UPB_INTTABLE_INIT(1, 1, U
PB_CTYPE_PTR, 1, &intentries[0], &arrays[15], 8, 1), UPB_STRTABLE_INIT(2, 3, UPB
_CTYPE_PTR, 2, &strentries[24]),&reftables[6], &reftables[7]), | |
4997 UPB_MSGDEF_INIT("google.protobuf.EnumValueDescriptorProto", 8, 1, UPB_INTTABLE
_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[23], 4, 3), UPB_STRTABLE_INIT(3, 3,
UPB_CTYPE_PTR, 2, &strentries[28]),&reftables[8], &reftables[9]), | |
4998 UPB_MSGDEF_INIT("google.protobuf.EnumValueOptions", 6, 1, UPB_INTTABLE_INIT(1,
1, UPB_CTYPE_PTR, 1, &intentries[2], &arrays[27], 4, 0), UPB_STRTABLE_INIT(1, 3
, UPB_CTYPE_PTR, 2, &strentries[32]),&reftables[10], &reftables[11]), | |
4999 UPB_MSGDEF_INIT("google.protobuf.FieldDescriptorProto", 19, 1, UPB_INTTABLE_IN
IT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[31], 9, 8), UPB_STRTABLE_INIT(8, 15, UP
B_CTYPE_PTR, 4, &strentries[36]),&reftables[12], &reftables[13]), | |
5000 UPB_MSGDEF_INIT("google.protobuf.FieldOptions", 14, 1, UPB_INTTABLE_INIT(1, 1,
UPB_CTYPE_PTR, 1, &intentries[4], &arrays[40], 32, 6), UPB_STRTABLE_INIT(7, 15,
UPB_CTYPE_PTR, 4, &strentries[52]),&reftables[14], &reftables[15]), | |
5001 UPB_MSGDEF_INIT("google.protobuf.FileDescriptorProto", 39, 6, UPB_INTTABLE_INI
T(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[72], 12, 11), UPB_STRTABLE_INIT(11, 15,
UPB_CTYPE_PTR, 4, &strentries[68]),&reftables[16], &reftables[17]), | |
5002 UPB_MSGDEF_INIT("google.protobuf.FileDescriptorSet", 6, 1, UPB_INTTABLE_INIT(0
, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[84], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTY
PE_PTR, 2, &strentries[84]),&reftables[18], &reftables[19]), | |
5003 UPB_MSGDEF_INIT("google.protobuf.FileOptions", 21, 1, UPB_INTTABLE_INIT(1, 1,
UPB_CTYPE_PTR, 1, &intentries[6], &arrays[86], 64, 9), UPB_STRTABLE_INIT(10, 15,
UPB_CTYPE_PTR, 4, &strentries[88]),&reftables[20], &reftables[21]), | |
5004 UPB_MSGDEF_INIT("google.protobuf.MessageOptions", 8, 1, UPB_INTTABLE_INIT(1, 1
, UPB_CTYPE_PTR, 1, &intentries[8], &arrays[150], 16, 2), UPB_STRTABLE_INIT(3, 3
, UPB_CTYPE_PTR, 2, &strentries[104]),&reftables[22], &reftables[23]), | |
5005 UPB_MSGDEF_INIT("google.protobuf.MethodDescriptorProto", 13, 1, UPB_INTTABLE_I
NIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[166], 5, 4), UPB_STRTABLE_INIT(4, 7, U
PB_CTYPE_PTR, 3, &strentries[108]),&reftables[24], &reftables[25]), | |
5006 UPB_MSGDEF_INIT("google.protobuf.MethodOptions", 6, 1, UPB_INTTABLE_INIT(1, 1,
UPB_CTYPE_PTR, 1, &intentries[10], &arrays[171], 4, 0), UPB_STRTABLE_INIT(1, 3,
UPB_CTYPE_PTR, 2, &strentries[116]),&reftables[26], &reftables[27]), | |
5007 UPB_MSGDEF_INIT("google.protobuf.ServiceDescriptorProto", 11, 2, UPB_INTTABLE_
INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[175], 4, 3), UPB_STRTABLE_INIT(3, 3,
UPB_CTYPE_PTR, 2, &strentries[120]),&reftables[28], &reftables[29]), | |
5008 UPB_MSGDEF_INIT("google.protobuf.ServiceOptions", 6, 1, UPB_INTTABLE_INIT(1, 1
, UPB_CTYPE_PTR, 1, &intentries[12], &arrays[179], 4, 0), UPB_STRTABLE_INIT(1, 3
, UPB_CTYPE_PTR, 2, &strentries[124]),&reftables[30], &reftables[31]), | |
5009 UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo", 6, 1, UPB_INTTABLE_INIT(0, 0
, UPB_CTYPE_PTR, 0, NULL, &arrays[183], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE
_PTR, 2, &strentries[128]),&reftables[32], &reftables[33]), | |
5010 UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo.Location", 14, 0, UPB_INTTABLE
_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[185], 5, 4), UPB_STRTABLE_INIT(4, 7,
UPB_CTYPE_PTR, 3, &strentries[132]),&reftables[34], &reftables[35]), | |
5011 UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption", 18, 1, UPB_INTTABLE_INI
T(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[190], 9, 7), UPB_STRTABLE_INIT(7, 15, UP
B_CTYPE_PTR, 4, &strentries[140]),&reftables[36], &reftables[37]), | |
5012 UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption.NamePart", 6, 0, UPB_INTT
ABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[199], 3, 2), UPB_STRTABLE_INIT(2
, 3, UPB_CTYPE_PTR, 2, &strentries[156]),&reftables[38], &reftables[39]), | |
5013 }; | |
5014 | |
5015 static const upb_fielddef fields[81] = { | |
5016 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "aggregate_value", 8, &msgs[18], NULL, 15, 6, {0},&reftables[40], &refta
bles[41]), | |
5017 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "allow_alias", 2, &msgs[3], NULL, 6, 1, {0},&reftables[42], &reftables[43]
), | |
5018 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "cc_generic_services", 16, &msgs[10], NULL, 17, 6, {0},&reftables[44], &re
ftables[45]), | |
5019 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, f
alse, "ctype", 1, &msgs[7], (const upb_def*)(&enums[2]), 6, 1, {0},&reftables[46
], &reftables[47]), | |
5020 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "default_value", 7, &msgs[6], NULL, 16, 7, {0},&reftables[48], &reftable
s[49]), | |
5021 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_STRING, 0, false, false, false,
false, "dependency", 3, &msgs[8], NULL, 30, 8, {0},&reftables[50], &reftables[5
1]), | |
5022 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "deprecated", 3, &msgs[7], NULL, 8, 3, {0},&reftables[52], &reftables[53])
, | |
5023 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_DOUBLE, 0, false, false, false,
false, "double_value", 6, &msgs[18], NULL, 11, 4, {0},&reftables[54], &reftable
s[55]), | |
5024 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, fal
se, false, false, false, "end", 2, &msgs[1], NULL, 3, 1, {0},&reftables[56], &re
ftables[57]), | |
5025 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "enum_type", 4, &msgs[0], (const upb_def*)(&msgs[2]), 16, 2, {0},&refta
bles[58], &reftables[59]), | |
5026 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "enum_type", 5, &msgs[8], (const upb_def*)(&msgs[2]), 13, 1, {0},&refta
bles[60], &reftables[61]), | |
5027 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "experimental_map_key", 9, &msgs[7], NULL, 10, 5, {0},&reftables[62], &r
eftables[63]), | |
5028 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "extendee", 2, &msgs[6], NULL, 7, 2, {0},&reftables[64], &reftables[65])
, | |
5029 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "extension", 7, &msgs[8], (const upb_def*)(&msgs[6]), 19, 3, {0},&refta
bles[66], &reftables[67]), | |
5030 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "extension", 6, &msgs[0], (const upb_def*)(&msgs[6]), 22, 4, {0},&refta
bles[68], &reftables[69]), | |
5031 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "extension_range", 5, &msgs[0], (const upb_def*)(&msgs[1]), 19, 3, {0},
&reftables[70], &reftables[71]), | |
5032 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "field", 2, &msgs[0], (const upb_def*)(&msgs[6]), 10, 0, {0},&reftables
[72], &reftables[73]), | |
5033 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "file", 1, &msgs[9], (const upb_def*)(&msgs[8]), 5, 0, {0},&reftables[7
4], &reftables[75]), | |
5034 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "go_package", 11, &msgs[10], NULL, 14, 5, {0},&reftables[76], &reftables
[77]), | |
5035 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "identifier_value", 3, &msgs[18], NULL, 6, 1, {0},&reftables[78], &refta
bles[79]), | |
5036 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "input_type", 2, &msgs[12], NULL, 7, 2, {0},&reftables[80], &reftables[8
1]), | |
5037 UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "is_extension", 2, &msgs[19], NULL, 5, 1, {0},&reftables[82], &reftables[8
3]), | |
5038 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "java_generate_equals_and_hash", 20, &msgs[10], NULL, 20, 9, {0},&reftable
s[84], &reftables[85]), | |
5039 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "java_generic_services", 17, &msgs[10], NULL, 18, 7, {0},&reftables[86], &
reftables[87]), | |
5040 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "java_multiple_files", 10, &msgs[10], NULL, 13, 4, {0},&reftables[88], &re
ftables[89]), | |
5041 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "java_outer_classname", 8, &msgs[10], NULL, 9, 2, {0},&reftables[90], &r
eftables[91]), | |
5042 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "java_package", 1, &msgs[10], NULL, 6, 1, {0},&reftables[92], &reftables
[93]), | |
5043 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, f
alse, "label", 4, &msgs[6], (const upb_def*)(&enums[0]), 11, 4, {0},&reftables[9
4], &reftables[95]), | |
5044 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "lazy", 5, &msgs[7], NULL, 9, 4, {0},&reftables[96], &reftables[97]), | |
5045 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "leading_comments", 3, &msgs[17], NULL, 8, 2, {0},&reftables[98], &refta
bles[99]), | |
5046 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "location", 1, &msgs[16], (const upb_def*)(&msgs[17]), 5, 0, {0},&refta
bles[100], &reftables[101]), | |
5047 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "message_set_wire_format", 1, &msgs[11], NULL, 6, 1, {0},&reftables[102],
&reftables[103]), | |
5048 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "message_type", 4, &msgs[8], (const upb_def*)(&msgs[0]), 10, 0, {0},&re
ftables[104], &reftables[105]), | |
5049 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "method", 2, &msgs[14], (const upb_def*)(&msgs[12]), 6, 0, {0},&reftabl
es[106], &reftables[107]), | |
5050 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "name", 1, &msgs[8], NULL, 22, 6, {0},&reftables[108], &reftables[109]), | |
5051 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "name", 1, &msgs[14], NULL, 8, 2, {0},&reftables[110], &reftables[111]), | |
5052 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "name", 2, &msgs[18], (const upb_def*)(&msgs[19]), 5, 0, {0},&reftables
[112], &reftables[113]), | |
5053 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "name", 1, &msgs[4], NULL, 4, 1, {0},&reftables[114], &reftables[115]), | |
5054 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "name", 1, &msgs[0], NULL, 24, 6, {0},&reftables[116], &reftables[117]), | |
5055 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "name", 1, &msgs[12], NULL, 4, 1, {0},&reftables[118], &reftables[119]), | |
5056 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "name", 1, &msgs[2], NULL, 8, 2, {0},&reftables[120], &reftables[121]), | |
5057 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "name", 1, &msgs[6], NULL, 4, 1, {0},&reftables[122], &reftables[123]), | |
5058 UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_STRING, 0, false, false, false,
false, "name_part", 1, &msgs[19], NULL, 2, 0, {0},&reftables[124], &reftables[1
25]), | |
5059 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT64, UPB_INTFMT_VARIABLE, fal
se, false, false, false, "negative_int_value", 5, &msgs[18], NULL, 10, 3, {0},&r
eftables[126], &reftables[127]), | |
5060 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "nested_type", 3, &msgs[0], (const upb_def*)(&msgs[0]), 13, 1, {0},&ref
tables[128], &reftables[129]), | |
5061 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "no_standard_descriptor_accessor", 2, &msgs[11], NULL, 7, 2, {0},&reftable
s[130], &reftables[131]), | |
5062 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, fal
se, false, false, false, "number", 3, &msgs[6], NULL, 10, 3, {0},&reftables[132]
, &reftables[133]), | |
5063 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, fal
se, false, false, false, "number", 2, &msgs[4], NULL, 7, 2, {0},&reftables[134],
&reftables[135]), | |
5064 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, f
alse, "optimize_for", 9, &msgs[10], (const upb_def*)(&enums[3]), 12, 3, {0},&ref
tables[136], &reftables[137]), | |
5065 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "options", 7, &msgs[0], (const upb_def*)(&msgs[11]), 23, 5, {0},&reftab
les[138], &reftables[139]), | |
5066 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "options", 3, &msgs[2], (const upb_def*)(&msgs[3]), 7, 1, {0},&reftable
s[140], &reftables[141]), | |
5067 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "options", 8, &msgs[6], (const upb_def*)(&msgs[7]), 3, 0, {0},&reftable
s[142], &reftables[143]), | |
5068 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "options", 3, &msgs[4], (const upb_def*)(&msgs[5]), 3, 0, {0},&reftable
s[144], &reftables[145]), | |
5069 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "options", 8, &msgs[8], (const upb_def*)(&msgs[10]), 20, 4, {0},&reftab
les[146], &reftables[147]), | |
5070 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "options", 3, &msgs[14], (const upb_def*)(&msgs[15]), 7, 1, {0},&reftab
les[148], &reftables[149]), | |
5071 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "options", 4, &msgs[12], (const upb_def*)(&msgs[13]), 3, 0, {0},&reftab
les[150], &reftables[151]), | |
5072 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "output_type", 3, &msgs[12], NULL, 10, 3, {0},&reftables[152], &reftable
s[153]), | |
5073 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "package", 2, &msgs[8], NULL, 25, 7, {0},&reftables[154], &reftables[155
]), | |
5074 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "packed", 2, &msgs[7], NULL, 7, 2, {0},&reftables[156], &reftables[157]), | |
5075 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, fal
se, false, false, true, "path", 1, &msgs[17], NULL, 4, 0, {0},&reftables[158], &
reftables[159]), | |
5076 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_UINT64, UPB_INTFMT_VARIABLE, fa
lse, false, false, false, "positive_int_value", 4, &msgs[18], NULL, 9, 2, {0},&r
eftables[160], &reftables[161]), | |
5077 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, fal
se, false, false, false, "public_dependency", 10, &msgs[8], NULL, 35, 9, {0},&re
ftables[162], &reftables[163]), | |
5078 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "py_generic_services", 18, &msgs[10], NULL, 19, 8, {0},&reftables[164], &r
eftables[165]), | |
5079 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "service", 6, &msgs[8], (const upb_def*)(&msgs[14]), 16, 2, {0},&reftab
les[166], &reftables[167]), | |
5080 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "source_code_info", 9, &msgs[8], (const upb_def*)(&msgs[16]), 21, 5, {0
},&reftables[168], &reftables[169]), | |
5081 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, fal
se, false, false, true, "span", 2, &msgs[17], NULL, 7, 1, {0},&reftables[170], &
reftables[171]), | |
5082 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, fal
se, false, false, false, "start", 1, &msgs[1], NULL, 2, 0, {0},&reftables[172],
&reftables[173]), | |
5083 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BYTES, 0, false, false, false,
false, "string_value", 7, &msgs[18], NULL, 12, 5, {0},&reftables[174], &reftable
s[175]), | |
5084 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "trailing_comments", 4, &msgs[17], NULL, 11, 3, {0},&reftables[176], &re
ftables[177]), | |
5085 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, f
alse, "type", 5, &msgs[6], (const upb_def*)(&enums[1]), 12, 5, {0},&reftables[17
8], &reftables[179]), | |
5086 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false,
false, "type_name", 6, &msgs[6], NULL, 13, 6, {0},&reftables[180], &reftables[1
81]), | |
5087 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "uninterpreted_option", 999, &msgs[5], (const upb_def*)(&msgs[18]), 5,
0, {0},&reftables[182], &reftables[183]), | |
5088 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "uninterpreted_option", 999, &msgs[15], (const upb_def*)(&msgs[18]), 5,
0, {0},&reftables[184], &reftables[185]), | |
5089 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "uninterpreted_option", 999, &msgs[3], (const upb_def*)(&msgs[18]), 5,
0, {0},&reftables[186], &reftables[187]), | |
5090 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "uninterpreted_option", 999, &msgs[13], (const upb_def*)(&msgs[18]), 5,
0, {0},&reftables[188], &reftables[189]), | |
5091 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "uninterpreted_option", 999, &msgs[10], (const upb_def*)(&msgs[18]), 5,
0, {0},&reftables[190], &reftables[191]), | |
5092 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "uninterpreted_option", 999, &msgs[11], (const upb_def*)(&msgs[18]), 5,
0, {0},&reftables[192], &reftables[193]), | |
5093 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "uninterpreted_option", 999, &msgs[7], (const upb_def*)(&msgs[18]), 5,
0, {0},&reftables[194], &reftables[195]), | |
5094 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false
, false, "value", 2, &msgs[2], (const upb_def*)(&msgs[4]), 6, 0, {0},&reftables[
196], &reftables[197]), | |
5095 UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, f
alse, "weak", 10, &msgs[7], NULL, 13, 6, {0},&reftables[198], &reftables[199]), | |
5096 UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, fal
se, false, false, false, "weak_dependency", 11, &msgs[8], NULL, 38, 10, {0},&ref
tables[200], &reftables[201]), | |
5097 }; | |
5098 | |
5099 static const upb_enumdef enums[4] = { | |
5100 UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Label", UPB_STRTABLE_IN
IT(3, 3, UPB_CTYPE_INT32, 2, &strentries[160]), UPB_INTTABLE_INIT(0, 0, UPB_CTYP
E_CSTR, 0, NULL, &arrays[202], 4, 3), 0, &reftables[202], &reftables[203]), | |
5101 UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Type", UPB_STRTABLE_INI
T(18, 31, UPB_CTYPE_INT32, 5, &strentries[164]), UPB_INTTABLE_INIT(0, 0, UPB_CTY
PE_CSTR, 0, NULL, &arrays[206], 19, 18), 0, &reftables[204], &reftables[205]), | |
5102 UPB_ENUMDEF_INIT("google.protobuf.FieldOptions.CType", UPB_STRTABLE_INIT(3, 3,
UPB_CTYPE_INT32, 2, &strentries[196]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR,
0, NULL, &arrays[225], 3, 3), 0, &reftables[206], &reftables[207]), | |
5103 UPB_ENUMDEF_INIT("google.protobuf.FileOptions.OptimizeMode", UPB_STRTABLE_INIT
(3, 3, UPB_CTYPE_INT32, 2, &strentries[200]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_
CSTR, 0, NULL, &arrays[228], 4, 3), 0, &reftables[208], &reftables[209]), | |
5104 }; | |
5105 | |
5106 static const upb_tabent strentries[236] = { | |
5107 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "extension"), UPB_TABVALUE_PTR
_INIT(&fields[14]), NULL}, | |
5108 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5109 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5110 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT
(&fields[38]), NULL}, | |
5111 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5112 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5113 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5114 {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "field"), UPB_TABVALUE_PTR_INI
T(&fields[16]), NULL}, | |
5115 {UPB_TABKEY_STR("\017", "\000", "\000", "\000", "extension_range"), UPB_TABVAL
UE_PTR_INIT(&fields[15]), NULL}, | |
5116 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5117 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "nested_type"), UPB_TABVALUE_P
TR_INIT(&fields[44]), NULL}, | |
5118 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5119 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5120 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5121 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_I
NIT(&fields[49]), NULL}, | |
5122 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "enum_type"), UPB_TABVALUE_PTR
_INIT(&fields[9]), &strentries[14]}, | |
5123 {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "start"), UPB_TABVALUE_PTR_INI
T(&fields[66]), NULL}, | |
5124 {UPB_TABKEY_STR("\003", "\000", "\000", "\000", "end"), UPB_TABVALUE_PTR_INIT(
&fields[8]), NULL}, | |
5125 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5126 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5127 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5128 {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "value"), UPB_TABVALUE_PTR_INI
T(&fields[78]), NULL}, | |
5129 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_I
NIT(&fields[50]), NULL}, | |
5130 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT
(&fields[40]), &strentries[22]}, | |
5131 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_T
ABVALUE_PTR_INIT(&fields[73]), NULL}, | |
5132 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5133 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "allow_alias"), UPB_TABVALUE_P
TR_INIT(&fields[1]), NULL}, | |
5134 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5135 {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "number"), UPB_TABVALUE_PTR_IN
IT(&fields[47]), NULL}, | |
5136 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5137 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_I
NIT(&fields[52]), NULL}, | |
5138 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT
(&fields[37]), &strentries[30]}, | |
5139 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_T
ABVALUE_PTR_INIT(&fields[71]), NULL}, | |
5140 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5141 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5142 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5143 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5144 {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "label"), UPB_TABVALUE_PTR_INI
T(&fields[27]), NULL}, | |
5145 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5146 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT
(&fields[41]), NULL}, | |
5147 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5148 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5149 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5150 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5151 {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "number"), UPB_TABVALUE_PTR_IN
IT(&fields[46]), &strentries[49]}, | |
5152 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5153 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5154 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "type_name"), UPB_TABVALUE_PTR
_INIT(&fields[70]), NULL}, | |
5155 {UPB_TABKEY_STR("\010", "\000", "\000", "\000", "extendee"), UPB_TABVALUE_PTR_
INIT(&fields[12]), NULL}, | |
5156 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "type"), UPB_TABVALUE_PTR_INIT
(&fields[69]), &strentries[48]}, | |
5157 {UPB_TABKEY_STR("\015", "\000", "\000", "\000", "default_value"), UPB_TABVALUE
_PTR_INIT(&fields[4]), NULL}, | |
5158 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_I
NIT(&fields[51]), NULL}, | |
5159 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "experimental_map_key"), UPB_T
ABVALUE_PTR_INIT(&fields[11]), &strentries[67]}, | |
5160 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5161 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "weak"), UPB_TABVALUE_PTR_INIT
(&fields[79]), NULL}, | |
5162 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5163 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5164 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5165 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5166 {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "packed"), UPB_TABVALUE_PTR_IN
IT(&fields[58]), NULL}, | |
5167 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "lazy"), UPB_TABVALUE_PTR_INIT
(&fields[28]), NULL}, | |
5168 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5169 {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "ctype"), UPB_TABVALUE_PTR_INI
T(&fields[3]), NULL}, | |
5170 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5171 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5172 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PT
R_INIT(&fields[6]), NULL}, | |
5173 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5174 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_T
ABVALUE_PTR_INIT(&fields[77]), NULL}, | |
5175 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "extension"), UPB_TABVALUE_PTR
_INIT(&fields[13]), NULL}, | |
5176 {UPB_TABKEY_STR("\017", "\000", "\000", "\000", "weak_dependency"), UPB_TABVAL
UE_PTR_INIT(&fields[80]), NULL}, | |
5177 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5178 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT
(&fields[34]), NULL}, | |
5179 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "service"), UPB_TABVALUE_PTR_I
NIT(&fields[63]), NULL}, | |
5180 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5181 {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "source_code_info"), UPB_TABVA
LUE_PTR_INIT(&fields[64]), NULL}, | |
5182 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5183 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5184 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5185 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "dependency"), UPB_TABVALUE_PT
R_INIT(&fields[5]), NULL}, | |
5186 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "message_type"), UPB_TABVALUE_
PTR_INIT(&fields[32]), NULL}, | |
5187 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "package"), UPB_TABVALUE_PTR_I
NIT(&fields[57]), NULL}, | |
5188 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_I
NIT(&fields[53]), &strentries[82]}, | |
5189 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "enum_type"), UPB_TABVALUE_PTR
_INIT(&fields[10]), NULL}, | |
5190 {UPB_TABKEY_STR("\021", "\000", "\000", "\000", "public_dependency"), UPB_TABV
ALUE_PTR_INIT(&fields[61]), &strentries[81]}, | |
5191 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5192 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "file"), UPB_TABVALUE_PTR_INIT
(&fields[17]), NULL}, | |
5193 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5194 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5195 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_T
ABVALUE_PTR_INIT(&fields[75]), NULL}, | |
5196 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5197 {UPB_TABKEY_STR("\023", "\000", "\000", "\000", "cc_generic_services"), UPB_TA
BVALUE_PTR_INIT(&fields[2]), NULL}, | |
5198 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5199 {UPB_TABKEY_STR("\023", "\000", "\000", "\000", "java_multiple_files"), UPB_TA
BVALUE_PTR_INIT(&fields[24]), NULL}, | |
5200 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5201 {UPB_TABKEY_STR("\025", "\000", "\000", "\000", "java_generic_services"), UPB_
TABVALUE_PTR_INIT(&fields[23]), &strentries[102]}, | |
5202 {UPB_TABKEY_STR("\035", "\000", "\000", "\000", "java_generate_equals_and_hash
"), UPB_TABVALUE_PTR_INIT(&fields[22]), NULL}, | |
5203 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5204 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5205 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5206 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "go_package"), UPB_TABVALUE_PT
R_INIT(&fields[18]), NULL}, | |
5207 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "java_package"), UPB_TABVALUE_
PTR_INIT(&fields[26]), NULL}, | |
5208 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "optimize_for"), UPB_TABVALUE_
PTR_INIT(&fields[48]), NULL}, | |
5209 {UPB_TABKEY_STR("\023", "\000", "\000", "\000", "py_generic_services"), UPB_TA
BVALUE_PTR_INIT(&fields[62]), NULL}, | |
5210 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "java_outer_classname"), UPB_T
ABVALUE_PTR_INIT(&fields[25]), NULL}, | |
5211 {UPB_TABKEY_STR("\027", "\000", "\000", "\000", "message_set_wire_format"), UP
B_TABVALUE_PTR_INIT(&fields[31]), &strentries[106]}, | |
5212 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5213 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_T
ABVALUE_PTR_INIT(&fields[76]), NULL}, | |
5214 {UPB_TABKEY_STR("\037", "\000", "\000", "\000", "no_standard_descriptor_access
or"), UPB_TABVALUE_PTR_INIT(&fields[45]), NULL}, | |
5215 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5216 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5217 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5218 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT
(&fields[39]), NULL}, | |
5219 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "input_type"), UPB_TABVALUE_PT
R_INIT(&fields[20]), NULL}, | |
5220 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5221 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "output_type"), UPB_TABVALUE_P
TR_INIT(&fields[56]), NULL}, | |
5222 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_I
NIT(&fields[55]), NULL}, | |
5223 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_T
ABVALUE_PTR_INIT(&fields[74]), NULL}, | |
5224 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5225 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5226 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5227 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5228 {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_I
NIT(&fields[54]), &strentries[122]}, | |
5229 {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "method"), UPB_TABVALUE_PTR_IN
IT(&fields[33]), NULL}, | |
5230 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT
(&fields[35]), &strentries[121]}, | |
5231 {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_T
ABVALUE_PTR_INIT(&fields[72]), NULL}, | |
5232 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5233 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5234 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5235 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5236 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5237 {UPB_TABKEY_STR("\010", "\000", "\000", "\000", "location"), UPB_TABVALUE_PTR_
INIT(&fields[30]), NULL}, | |
5238 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5239 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5240 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5241 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5242 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "span"), UPB_TABVALUE_PTR_INIT
(&fields[65]), &strentries[139]}, | |
5243 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5244 {UPB_TABKEY_STR("\021", "\000", "\000", "\000", "trailing_comments"), UPB_TABV
ALUE_PTR_INIT(&fields[68]), NULL}, | |
5245 {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "leading_comments"), UPB_TABVA
LUE_PTR_INIT(&fields[29]), &strentries[137]}, | |
5246 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "path"), UPB_TABVALUE_PTR_INIT
(&fields[59]), NULL}, | |
5247 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "double_value"), UPB_TABVALUE_
PTR_INIT(&fields[7]), NULL}, | |
5248 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5249 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5250 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT
(&fields[36]), NULL}, | |
5251 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5252 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5253 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5254 {UPB_TABKEY_STR("\022", "\000", "\000", "\000", "negative_int_value"), UPB_TAB
VALUE_PTR_INIT(&fields[43]), NULL}, | |
5255 {UPB_TABKEY_STR("\017", "\000", "\000", "\000", "aggregate_value"), UPB_TABVAL
UE_PTR_INIT(&fields[0]), NULL}, | |
5256 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5257 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5258 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5259 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5260 {UPB_TABKEY_STR("\022", "\000", "\000", "\000", "positive_int_value"), UPB_TAB
VALUE_PTR_INIT(&fields[60]), NULL}, | |
5261 {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "identifier_value"), UPB_TABVA
LUE_PTR_INIT(&fields[19]), NULL}, | |
5262 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "string_value"), UPB_TABVALUE_
PTR_INIT(&fields[67]), &strentries[154]}, | |
5263 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5264 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5265 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "is_extension"), UPB_TABVALUE_
PTR_INIT(&fields[21]), NULL}, | |
5266 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "name_part"), UPB_TABVALUE_PTR
_INIT(&fields[42]), NULL}, | |
5267 {UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_REQUIRED"), UPB_TABVALU
E_INT_INIT(2), &strentries[162]}, | |
5268 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5269 {UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_REPEATED"), UPB_TABVALU
E_INT_INIT(3), NULL}, | |
5270 {UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_OPTIONAL"), UPB_TABVALU
E_INT_INIT(1), NULL}, | |
5271 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_FIXED64"), UPB_TABVALUE_
INT_INIT(6), NULL}, | |
5272 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5273 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5274 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5275 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5276 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_STRING"), UPB_TABVALUE_I
NT_INIT(9), NULL}, | |
5277 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_FLOAT"), UPB_TABVALUE_IN
T_INIT(2), &strentries[193]}, | |
5278 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_DOUBLE"), UPB_TABVALUE_I
NT_INIT(1), NULL}, | |
5279 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5280 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_INT32"), UPB_TABVALUE_IN
T_INIT(5), NULL}, | |
5281 {UPB_TABKEY_STR("\015", "\000", "\000", "\000", "TYPE_SFIXED32"), UPB_TABVALUE
_INT_INIT(15), NULL}, | |
5282 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_FIXED32"), UPB_TABVALUE_
INT_INIT(7), NULL}, | |
5283 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5284 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_MESSAGE"), UPB_TABVALUE_
INT_INIT(11), &strentries[194]}, | |
5285 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5286 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5287 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_INT64"), UPB_TABVALUE_IN
T_INIT(3), &strentries[191]}, | |
5288 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5289 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5290 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5291 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5292 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "TYPE_ENUM"), UPB_TABVALUE_INT
_INIT(14), NULL}, | |
5293 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_UINT32"), UPB_TABVALUE_I
NT_INIT(13), NULL}, | |
5294 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5295 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_UINT64"), UPB_TABVALUE_I
NT_INIT(4), &strentries[190]}, | |
5296 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5297 {UPB_TABKEY_STR("\015", "\000", "\000", "\000", "TYPE_SFIXED64"), UPB_TABVALUE
_INT_INIT(16), NULL}, | |
5298 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_BYTES"), UPB_TABVALUE_IN
T_INIT(12), NULL}, | |
5299 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_SINT64"), UPB_TABVALUE_I
NT_INIT(18), NULL}, | |
5300 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "TYPE_BOOL"), UPB_TABVALUE_INT
_INIT(8), NULL}, | |
5301 {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_GROUP"), UPB_TABVALUE_IN
T_INIT(10), NULL}, | |
5302 {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_SINT32"), UPB_TABVALUE_I
NT_INIT(17), NULL}, | |
5303 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5304 {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "CORD"), UPB_TABVALUE_INT_INIT
(1), NULL}, | |
5305 {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "STRING"), UPB_TABVALUE_INT_IN
IT(0), &strentries[197]}, | |
5306 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "STRING_PIECE"), UPB_TABVALUE_
INT_INIT(2), NULL}, | |
5307 {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "CODE_SIZE"), UPB_TABVALUE_INT
_INIT(2), NULL}, | |
5308 {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "SPEED"), UPB_TABVALUE_INT_INI
T(1), &strentries[203]}, | |
5309 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5310 {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "LITE_RUNTIME"), UPB_TABVALUE_
INT_INIT(3), NULL}, | |
5311 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5312 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5313 {UPB_TABKEY_STR("\047", "\000", "\000", "\000", "google.protobuf.SourceCodeInf
o.Location"), UPB_TABVALUE_PTR_INIT(&msgs[17]), NULL}, | |
5314 {UPB_TABKEY_STR("\043", "\000", "\000", "\000", "google.protobuf.Uninterpreted
Option"), UPB_TABVALUE_PTR_INIT(&msgs[18]), NULL}, | |
5315 {UPB_TABKEY_STR("\043", "\000", "\000", "\000", "google.protobuf.FileDescripto
rProto"), UPB_TABVALUE_PTR_INIT(&msgs[8]), NULL}, | |
5316 {UPB_TABKEY_STR("\045", "\000", "\000", "\000", "google.protobuf.MethodDescrip
torProto"), UPB_TABVALUE_PTR_INIT(&msgs[12]), NULL}, | |
5317 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5318 {UPB_TABKEY_STR("\040", "\000", "\000", "\000", "google.protobuf.EnumValueOpti
ons"), UPB_TABVALUE_PTR_INIT(&msgs[5]), NULL}, | |
5319 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5320 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5321 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5322 {UPB_TABKEY_STR("\037", "\000", "\000", "\000", "google.protobuf.DescriptorPro
to"), UPB_TABVALUE_PTR_INIT(&msgs[0]), &strentries[228]}, | |
5323 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5324 {UPB_TABKEY_STR("\036", "\000", "\000", "\000", "google.protobuf.SourceCodeInf
o"), UPB_TABVALUE_PTR_INIT(&msgs[16]), NULL}, | |
5325 {UPB_TABKEY_STR("\051", "\000", "\000", "\000", "google.protobuf.FieldDescript
orProto.Type"), UPB_TABVALUE_PTR_INIT(&enums[1]), NULL}, | |
5326 {UPB_TABKEY_STR("\056", "\000", "\000", "\000", "google.protobuf.DescriptorPro
to.ExtensionRange"), UPB_TABVALUE_PTR_INIT(&msgs[1]), NULL}, | |
5327 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5328 {UPB_TABKEY_STR("\050", "\000", "\000", "\000", "google.protobuf.EnumValueDesc
riptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[4]), NULL}, | |
5329 {UPB_TABKEY_STR("\034", "\000", "\000", "\000", "google.protobuf.FieldOptions"
), UPB_TABVALUE_PTR_INIT(&msgs[7]), NULL}, | |
5330 {UPB_TABKEY_STR("\033", "\000", "\000", "\000", "google.protobuf.FileOptions")
, UPB_TABVALUE_PTR_INIT(&msgs[10]), NULL}, | |
5331 {UPB_TABKEY_STR("\043", "\000", "\000", "\000", "google.protobuf.EnumDescripto
rProto"), UPB_TABVALUE_PTR_INIT(&msgs[2]), &strentries[233]}, | |
5332 {UPB_TABKEY_STR("\052", "\000", "\000", "\000", "google.protobuf.FieldDescript
orProto.Label"), UPB_TABVALUE_PTR_INIT(&enums[0]), NULL}, | |
5333 {UPB_TABKEY_STR("\046", "\000", "\000", "\000", "google.protobuf.ServiceDescri
ptorProto"), UPB_TABVALUE_PTR_INIT(&msgs[14]), NULL}, | |
5334 {UPB_TABKEY_STR("\042", "\000", "\000", "\000", "google.protobuf.FieldOptions.
CType"), UPB_TABVALUE_PTR_INIT(&enums[2]), &strentries[229]}, | |
5335 {UPB_TABKEY_STR("\041", "\000", "\000", "\000", "google.protobuf.FileDescripto
rSet"), UPB_TABVALUE_PTR_INIT(&msgs[9]), &strentries[235]}, | |
5336 {UPB_TABKEY_STR("\033", "\000", "\000", "\000", "google.protobuf.EnumOptions")
, UPB_TABVALUE_PTR_INIT(&msgs[3]), NULL}, | |
5337 {UPB_TABKEY_STR("\044", "\000", "\000", "\000", "google.protobuf.FieldDescript
orProto"), UPB_TABVALUE_PTR_INIT(&msgs[6]), NULL}, | |
5338 {UPB_TABKEY_STR("\050", "\000", "\000", "\000", "google.protobuf.FileOptions.O
ptimizeMode"), UPB_TABVALUE_PTR_INIT(&enums[3]), &strentries[221]}, | |
5339 {UPB_TABKEY_STR("\036", "\000", "\000", "\000", "google.protobuf.ServiceOption
s"), UPB_TABVALUE_PTR_INIT(&msgs[15]), NULL}, | |
5340 {UPB_TABKEY_STR("\036", "\000", "\000", "\000", "google.protobuf.MessageOption
s"), UPB_TABVALUE_PTR_INIT(&msgs[11]), NULL}, | |
5341 {UPB_TABKEY_STR("\035", "\000", "\000", "\000", "google.protobuf.MethodOptions
"), UPB_TABVALUE_PTR_INIT(&msgs[13]), &strentries[226]}, | |
5342 {UPB_TABKEY_STR("\054", "\000", "\000", "\000", "google.protobuf.Uninterpreted
Option.NamePart"), UPB_TABVALUE_PTR_INIT(&msgs[19]), NULL}, | |
5343 }; | |
5344 | |
5345 static const upb_tabent intentries[14] = { | |
5346 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5347 {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[73]), NULL}, | |
5348 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5349 {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[71]), NULL}, | |
5350 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5351 {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[77]), NULL}, | |
5352 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5353 {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[75]), NULL}, | |
5354 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5355 {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[76]), NULL}, | |
5356 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5357 {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[74]), NULL}, | |
5358 {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, | |
5359 {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[72]), NULL}, | |
5360 }; | |
5361 | |
5362 static const upb_tabval arrays[232] = { | |
5363 UPB_TABVALUE_EMPTY_INIT, | |
5364 UPB_TABVALUE_PTR_INIT(&fields[38]), | |
5365 UPB_TABVALUE_PTR_INIT(&fields[16]), | |
5366 UPB_TABVALUE_PTR_INIT(&fields[44]), | |
5367 UPB_TABVALUE_PTR_INIT(&fields[9]), | |
5368 UPB_TABVALUE_PTR_INIT(&fields[15]), | |
5369 UPB_TABVALUE_PTR_INIT(&fields[14]), | |
5370 UPB_TABVALUE_PTR_INIT(&fields[49]), | |
5371 UPB_TABVALUE_EMPTY_INIT, | |
5372 UPB_TABVALUE_PTR_INIT(&fields[66]), | |
5373 UPB_TABVALUE_PTR_INIT(&fields[8]), | |
5374 UPB_TABVALUE_EMPTY_INIT, | |
5375 UPB_TABVALUE_PTR_INIT(&fields[40]), | |
5376 UPB_TABVALUE_PTR_INIT(&fields[78]), | |
5377 UPB_TABVALUE_PTR_INIT(&fields[50]), | |
5378 UPB_TABVALUE_EMPTY_INIT, | |
5379 UPB_TABVALUE_EMPTY_INIT, | |
5380 UPB_TABVALUE_PTR_INIT(&fields[1]), | |
5381 UPB_TABVALUE_EMPTY_INIT, | |
5382 UPB_TABVALUE_EMPTY_INIT, | |
5383 UPB_TABVALUE_EMPTY_INIT, | |
5384 UPB_TABVALUE_EMPTY_INIT, | |
5385 UPB_TABVALUE_EMPTY_INIT, | |
5386 UPB_TABVALUE_EMPTY_INIT, | |
5387 UPB_TABVALUE_PTR_INIT(&fields[37]), | |
5388 UPB_TABVALUE_PTR_INIT(&fields[47]), | |
5389 UPB_TABVALUE_PTR_INIT(&fields[52]), | |
5390 UPB_TABVALUE_EMPTY_INIT, | |
5391 UPB_TABVALUE_EMPTY_INIT, | |
5392 UPB_TABVALUE_EMPTY_INIT, | |
5393 UPB_TABVALUE_EMPTY_INIT, | |
5394 UPB_TABVALUE_EMPTY_INIT, | |
5395 UPB_TABVALUE_PTR_INIT(&fields[41]), | |
5396 UPB_TABVALUE_PTR_INIT(&fields[12]), | |
5397 UPB_TABVALUE_PTR_INIT(&fields[46]), | |
5398 UPB_TABVALUE_PTR_INIT(&fields[27]), | |
5399 UPB_TABVALUE_PTR_INIT(&fields[69]), | |
5400 UPB_TABVALUE_PTR_INIT(&fields[70]), | |
5401 UPB_TABVALUE_PTR_INIT(&fields[4]), | |
5402 UPB_TABVALUE_PTR_INIT(&fields[51]), | |
5403 UPB_TABVALUE_EMPTY_INIT, | |
5404 UPB_TABVALUE_PTR_INIT(&fields[3]), | |
5405 UPB_TABVALUE_PTR_INIT(&fields[58]), | |
5406 UPB_TABVALUE_PTR_INIT(&fields[6]), | |
5407 UPB_TABVALUE_EMPTY_INIT, | |
5408 UPB_TABVALUE_PTR_INIT(&fields[28]), | |
5409 UPB_TABVALUE_EMPTY_INIT, | |
5410 UPB_TABVALUE_EMPTY_INIT, | |
5411 UPB_TABVALUE_EMPTY_INIT, | |
5412 UPB_TABVALUE_PTR_INIT(&fields[11]), | |
5413 UPB_TABVALUE_PTR_INIT(&fields[79]), | |
5414 UPB_TABVALUE_EMPTY_INIT, | |
5415 UPB_TABVALUE_EMPTY_INIT, | |
5416 UPB_TABVALUE_EMPTY_INIT, | |
5417 UPB_TABVALUE_EMPTY_INIT, | |
5418 UPB_TABVALUE_EMPTY_INIT, | |
5419 UPB_TABVALUE_EMPTY_INIT, | |
5420 UPB_TABVALUE_EMPTY_INIT, | |
5421 UPB_TABVALUE_EMPTY_INIT, | |
5422 UPB_TABVALUE_EMPTY_INIT, | |
5423 UPB_TABVALUE_EMPTY_INIT, | |
5424 UPB_TABVALUE_EMPTY_INIT, | |
5425 UPB_TABVALUE_EMPTY_INIT, | |
5426 UPB_TABVALUE_EMPTY_INIT, | |
5427 UPB_TABVALUE_EMPTY_INIT, | |
5428 UPB_TABVALUE_EMPTY_INIT, | |
5429 UPB_TABVALUE_EMPTY_INIT, | |
5430 UPB_TABVALUE_EMPTY_INIT, | |
5431 UPB_TABVALUE_EMPTY_INIT, | |
5432 UPB_TABVALUE_EMPTY_INIT, | |
5433 UPB_TABVALUE_EMPTY_INIT, | |
5434 UPB_TABVALUE_EMPTY_INIT, | |
5435 UPB_TABVALUE_EMPTY_INIT, | |
5436 UPB_TABVALUE_PTR_INIT(&fields[34]), | |
5437 UPB_TABVALUE_PTR_INIT(&fields[57]), | |
5438 UPB_TABVALUE_PTR_INIT(&fields[5]), | |
5439 UPB_TABVALUE_PTR_INIT(&fields[32]), | |
5440 UPB_TABVALUE_PTR_INIT(&fields[10]), | |
5441 UPB_TABVALUE_PTR_INIT(&fields[63]), | |
5442 UPB_TABVALUE_PTR_INIT(&fields[13]), | |
5443 UPB_TABVALUE_PTR_INIT(&fields[53]), | |
5444 UPB_TABVALUE_PTR_INIT(&fields[64]), | |
5445 UPB_TABVALUE_PTR_INIT(&fields[61]), | |
5446 UPB_TABVALUE_PTR_INIT(&fields[80]), | |
5447 UPB_TABVALUE_EMPTY_INIT, | |
5448 UPB_TABVALUE_PTR_INIT(&fields[17]), | |
5449 UPB_TABVALUE_EMPTY_INIT, | |
5450 UPB_TABVALUE_PTR_INIT(&fields[26]), | |
5451 UPB_TABVALUE_EMPTY_INIT, | |
5452 UPB_TABVALUE_EMPTY_INIT, | |
5453 UPB_TABVALUE_EMPTY_INIT, | |
5454 UPB_TABVALUE_EMPTY_INIT, | |
5455 UPB_TABVALUE_EMPTY_INIT, | |
5456 UPB_TABVALUE_EMPTY_INIT, | |
5457 UPB_TABVALUE_PTR_INIT(&fields[25]), | |
5458 UPB_TABVALUE_PTR_INIT(&fields[48]), | |
5459 UPB_TABVALUE_PTR_INIT(&fields[24]), | |
5460 UPB_TABVALUE_PTR_INIT(&fields[18]), | |
5461 UPB_TABVALUE_EMPTY_INIT, | |
5462 UPB_TABVALUE_EMPTY_INIT, | |
5463 UPB_TABVALUE_EMPTY_INIT, | |
5464 UPB_TABVALUE_EMPTY_INIT, | |
5465 UPB_TABVALUE_PTR_INIT(&fields[2]), | |
5466 UPB_TABVALUE_PTR_INIT(&fields[23]), | |
5467 UPB_TABVALUE_PTR_INIT(&fields[62]), | |
5468 UPB_TABVALUE_EMPTY_INIT, | |
5469 UPB_TABVALUE_PTR_INIT(&fields[22]), | |
5470 UPB_TABVALUE_EMPTY_INIT, | |
5471 UPB_TABVALUE_EMPTY_INIT, | |
5472 UPB_TABVALUE_EMPTY_INIT, | |
5473 UPB_TABVALUE_EMPTY_INIT, | |
5474 UPB_TABVALUE_EMPTY_INIT, | |
5475 UPB_TABVALUE_EMPTY_INIT, | |
5476 UPB_TABVALUE_EMPTY_INIT, | |
5477 UPB_TABVALUE_EMPTY_INIT, | |
5478 UPB_TABVALUE_EMPTY_INIT, | |
5479 UPB_TABVALUE_EMPTY_INIT, | |
5480 UPB_TABVALUE_EMPTY_INIT, | |
5481 UPB_TABVALUE_EMPTY_INIT, | |
5482 UPB_TABVALUE_EMPTY_INIT, | |
5483 UPB_TABVALUE_EMPTY_INIT, | |
5484 UPB_TABVALUE_EMPTY_INIT, | |
5485 UPB_TABVALUE_EMPTY_INIT, | |
5486 UPB_TABVALUE_EMPTY_INIT, | |
5487 UPB_TABVALUE_EMPTY_INIT, | |
5488 UPB_TABVALUE_EMPTY_INIT, | |
5489 UPB_TABVALUE_EMPTY_INIT, | |
5490 UPB_TABVALUE_EMPTY_INIT, | |
5491 UPB_TABVALUE_EMPTY_INIT, | |
5492 UPB_TABVALUE_EMPTY_INIT, | |
5493 UPB_TABVALUE_EMPTY_INIT, | |
5494 UPB_TABVALUE_EMPTY_INIT, | |
5495 UPB_TABVALUE_EMPTY_INIT, | |
5496 UPB_TABVALUE_EMPTY_INIT, | |
5497 UPB_TABVALUE_EMPTY_INIT, | |
5498 UPB_TABVALUE_EMPTY_INIT, | |
5499 UPB_TABVALUE_EMPTY_INIT, | |
5500 UPB_TABVALUE_EMPTY_INIT, | |
5501 UPB_TABVALUE_EMPTY_INIT, | |
5502 UPB_TABVALUE_EMPTY_INIT, | |
5503 UPB_TABVALUE_EMPTY_INIT, | |
5504 UPB_TABVALUE_EMPTY_INIT, | |
5505 UPB_TABVALUE_EMPTY_INIT, | |
5506 UPB_TABVALUE_EMPTY_INIT, | |
5507 UPB_TABVALUE_EMPTY_INIT, | |
5508 UPB_TABVALUE_EMPTY_INIT, | |
5509 UPB_TABVALUE_EMPTY_INIT, | |
5510 UPB_TABVALUE_EMPTY_INIT, | |
5511 UPB_TABVALUE_EMPTY_INIT, | |
5512 UPB_TABVALUE_EMPTY_INIT, | |
5513 UPB_TABVALUE_EMPTY_INIT, | |
5514 UPB_TABVALUE_PTR_INIT(&fields[31]), | |
5515 UPB_TABVALUE_PTR_INIT(&fields[45]), | |
5516 UPB_TABVALUE_EMPTY_INIT, | |
5517 UPB_TABVALUE_EMPTY_INIT, | |
5518 UPB_TABVALUE_EMPTY_INIT, | |
5519 UPB_TABVALUE_EMPTY_INIT, | |
5520 UPB_TABVALUE_EMPTY_INIT, | |
5521 UPB_TABVALUE_EMPTY_INIT, | |
5522 UPB_TABVALUE_EMPTY_INIT, | |
5523 UPB_TABVALUE_EMPTY_INIT, | |
5524 UPB_TABVALUE_EMPTY_INIT, | |
5525 UPB_TABVALUE_EMPTY_INIT, | |
5526 UPB_TABVALUE_EMPTY_INIT, | |
5527 UPB_TABVALUE_EMPTY_INIT, | |
5528 UPB_TABVALUE_EMPTY_INIT, | |
5529 UPB_TABVALUE_EMPTY_INIT, | |
5530 UPB_TABVALUE_PTR_INIT(&fields[39]), | |
5531 UPB_TABVALUE_PTR_INIT(&fields[20]), | |
5532 UPB_TABVALUE_PTR_INIT(&fields[56]), | |
5533 UPB_TABVALUE_PTR_INIT(&fields[55]), | |
5534 UPB_TABVALUE_EMPTY_INIT, | |
5535 UPB_TABVALUE_EMPTY_INIT, | |
5536 UPB_TABVALUE_EMPTY_INIT, | |
5537 UPB_TABVALUE_EMPTY_INIT, | |
5538 UPB_TABVALUE_EMPTY_INIT, | |
5539 UPB_TABVALUE_PTR_INIT(&fields[35]), | |
5540 UPB_TABVALUE_PTR_INIT(&fields[33]), | |
5541 UPB_TABVALUE_PTR_INIT(&fields[54]), | |
5542 UPB_TABVALUE_EMPTY_INIT, | |
5543 UPB_TABVALUE_EMPTY_INIT, | |
5544 UPB_TABVALUE_EMPTY_INIT, | |
5545 UPB_TABVALUE_EMPTY_INIT, | |
5546 UPB_TABVALUE_EMPTY_INIT, | |
5547 UPB_TABVALUE_PTR_INIT(&fields[30]), | |
5548 UPB_TABVALUE_EMPTY_INIT, | |
5549 UPB_TABVALUE_PTR_INIT(&fields[59]), | |
5550 UPB_TABVALUE_PTR_INIT(&fields[65]), | |
5551 UPB_TABVALUE_PTR_INIT(&fields[29]), | |
5552 UPB_TABVALUE_PTR_INIT(&fields[68]), | |
5553 UPB_TABVALUE_EMPTY_INIT, | |
5554 UPB_TABVALUE_EMPTY_INIT, | |
5555 UPB_TABVALUE_PTR_INIT(&fields[36]), | |
5556 UPB_TABVALUE_PTR_INIT(&fields[19]), | |
5557 UPB_TABVALUE_PTR_INIT(&fields[60]), | |
5558 UPB_TABVALUE_PTR_INIT(&fields[43]), | |
5559 UPB_TABVALUE_PTR_INIT(&fields[7]), | |
5560 UPB_TABVALUE_PTR_INIT(&fields[67]), | |
5561 UPB_TABVALUE_PTR_INIT(&fields[0]), | |
5562 UPB_TABVALUE_EMPTY_INIT, | |
5563 UPB_TABVALUE_PTR_INIT(&fields[42]), | |
5564 UPB_TABVALUE_PTR_INIT(&fields[21]), | |
5565 UPB_TABVALUE_EMPTY_INIT, | |
5566 UPB_TABVALUE_PTR_INIT("LABEL_OPTIONAL"), | |
5567 UPB_TABVALUE_PTR_INIT("LABEL_REQUIRED"), | |
5568 UPB_TABVALUE_PTR_INIT("LABEL_REPEATED"), | |
5569 UPB_TABVALUE_EMPTY_INIT, | |
5570 UPB_TABVALUE_PTR_INIT("TYPE_DOUBLE"), | |
5571 UPB_TABVALUE_PTR_INIT("TYPE_FLOAT"), | |
5572 UPB_TABVALUE_PTR_INIT("TYPE_INT64"), | |
5573 UPB_TABVALUE_PTR_INIT("TYPE_UINT64"), | |
5574 UPB_TABVALUE_PTR_INIT("TYPE_INT32"), | |
5575 UPB_TABVALUE_PTR_INIT("TYPE_FIXED64"), | |
5576 UPB_TABVALUE_PTR_INIT("TYPE_FIXED32"), | |
5577 UPB_TABVALUE_PTR_INIT("TYPE_BOOL"), | |
5578 UPB_TABVALUE_PTR_INIT("TYPE_STRING"), | |
5579 UPB_TABVALUE_PTR_INIT("TYPE_GROUP"), | |
5580 UPB_TABVALUE_PTR_INIT("TYPE_MESSAGE"), | |
5581 UPB_TABVALUE_PTR_INIT("TYPE_BYTES"), | |
5582 UPB_TABVALUE_PTR_INIT("TYPE_UINT32"), | |
5583 UPB_TABVALUE_PTR_INIT("TYPE_ENUM"), | |
5584 UPB_TABVALUE_PTR_INIT("TYPE_SFIXED32"), | |
5585 UPB_TABVALUE_PTR_INIT("TYPE_SFIXED64"), | |
5586 UPB_TABVALUE_PTR_INIT("TYPE_SINT32"), | |
5587 UPB_TABVALUE_PTR_INIT("TYPE_SINT64"), | |
5588 UPB_TABVALUE_PTR_INIT("STRING"), | |
5589 UPB_TABVALUE_PTR_INIT("CORD"), | |
5590 UPB_TABVALUE_PTR_INIT("STRING_PIECE"), | |
5591 UPB_TABVALUE_EMPTY_INIT, | |
5592 UPB_TABVALUE_PTR_INIT("SPEED"), | |
5593 UPB_TABVALUE_PTR_INIT("CODE_SIZE"), | |
5594 UPB_TABVALUE_PTR_INIT("LITE_RUNTIME"), | |
5595 }; | |
5596 | |
5597 static const upb_symtab symtab = UPB_SYMTAB_INIT(UPB_STRTABLE_INIT(24, 31, UPB_C
TYPE_PTR, 5, &strentries[204]), &reftables[210], &reftables[211]); | |
5598 | |
5599 const upb_symtab *upbdefs_google_protobuf_descriptor(const void *owner) { | |
5600 upb_symtab_ref(&symtab, owner); | |
5601 return &symtab; | |
5602 } | |
5603 | |
5604 #ifdef UPB_DEBUG_REFS | |
5605 static upb_inttable reftables[212] = { | |
5606 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5607 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5608 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5609 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5610 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5611 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5612 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5613 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5614 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5615 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5616 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5617 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5618 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5619 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5620 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5621 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5622 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5623 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5624 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5625 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5626 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5627 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5628 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5629 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5630 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5631 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5632 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5633 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5634 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5635 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5636 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5637 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5638 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5639 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5640 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5641 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5642 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5643 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5644 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5645 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5646 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5647 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5648 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5649 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5650 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5651 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5652 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5653 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5654 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5655 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5656 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5657 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5658 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5659 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5660 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5661 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5662 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5663 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5664 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5665 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5666 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5667 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5668 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5669 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5670 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5671 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5672 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5673 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5674 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5675 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5676 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5677 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5678 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5679 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5680 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5681 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5682 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5683 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5684 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5685 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5686 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5687 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5688 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5689 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5690 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5691 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5692 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5693 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5694 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5695 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5696 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5697 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5698 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5699 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5700 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5701 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5702 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5703 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5704 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5705 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5706 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5707 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5708 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5709 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5710 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5711 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5712 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5713 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5714 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5715 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5716 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5717 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5718 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5719 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5720 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5721 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5722 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5723 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5724 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5725 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5726 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5727 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5728 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5729 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5730 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5731 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5732 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5733 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5734 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5735 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5736 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5737 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5738 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5739 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5740 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5741 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5742 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5743 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5744 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5745 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5746 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5747 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5748 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5749 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5750 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5751 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5752 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5753 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5754 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5755 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5756 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5757 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5758 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5759 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5760 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5761 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5762 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5763 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5764 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5765 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5766 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5767 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5768 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5769 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5770 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5771 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5772 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5773 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5774 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5775 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5776 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5777 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5778 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5779 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5780 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5781 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5782 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5783 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5784 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5785 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5786 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5787 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5788 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5789 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5790 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5791 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5792 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5793 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5794 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5795 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5796 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5797 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5798 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5799 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5800 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5801 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5802 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5803 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5804 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5805 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5806 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5807 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5808 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5809 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5810 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5811 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5812 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5813 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5814 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5815 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5816 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5817 UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), | |
5818 }; | |
5819 #endif | |
5820 | |
5821 /* | |
5822 ** XXX: The routines in this file that consume a string do not currently | |
5823 ** support having the string span buffers. In the future, as upb_sink and | |
5824 ** its buffering/sharing functionality evolve there should be an easy and | |
5825 ** idiomatic way of correctly handling this case. For now, we accept this | |
5826 ** limitation since we currently only parse descriptors from single strings. | |
5827 */ | |
5828 | |
5829 | |
5830 #include <errno.h> | |
5831 #include <stdlib.h> | |
5832 #include <string.h> | |
5833 | |
5834 /* upb_deflist is an internal-only dynamic array for storing a growing list of | |
5835 * upb_defs. */ | |
5836 typedef struct { | |
5837 upb_def **defs; | |
5838 size_t len; | |
5839 size_t size; | |
5840 bool owned; | |
5841 } upb_deflist; | |
5842 | |
5843 /* We keep a stack of all the messages scopes we are currently in, as well as | |
5844 * the top-level file scope. This is necessary to correctly qualify the | |
5845 * definitions that are contained inside. "name" tracks the name of the | |
5846 * message or package (a bare name -- not qualified by any enclosing scopes). */ | |
5847 typedef struct { | |
5848 char *name; | |
5849 /* Index of the first def that is under this scope. For msgdefs, the | |
5850 * msgdef itself is at start-1. */ | |
5851 int start; | |
5852 } upb_descreader_frame; | |
5853 | |
5854 /* The maximum number of nested declarations that are allowed, ie. | |
5855 * message Foo { | |
5856 * message Bar { | |
5857 * message Baz { | |
5858 * } | |
5859 * } | |
5860 * } | |
5861 * | |
5862 * This is a resource limit that affects how big our runtime stack can grow. | |
5863 * TODO: make this a runtime-settable property of the Reader instance. */ | |
5864 #define UPB_MAX_MESSAGE_NESTING 64 | |
5865 | |
5866 struct upb_descreader { | |
5867 upb_sink sink; | |
5868 upb_deflist defs; | |
5869 upb_descreader_frame stack[UPB_MAX_MESSAGE_NESTING]; | |
5870 int stack_len; | |
5871 | |
5872 uint32_t number; | |
5873 char *name; | |
5874 bool saw_number; | |
5875 bool saw_name; | |
5876 | |
5877 char *default_string; | |
5878 | |
5879 upb_fielddef *f; | |
5880 }; | |
5881 | |
5882 static char *upb_strndup(const char *buf, size_t n) { | |
5883 char *ret = malloc(n + 1); | |
5884 if (!ret) return NULL; | |
5885 memcpy(ret, buf, n); | |
5886 ret[n] = '\0'; | |
5887 return ret; | |
5888 } | |
5889 | |
5890 /* Returns a newly allocated string that joins input strings together, for | |
5891 * example: | |
5892 * join("Foo.Bar", "Baz") -> "Foo.Bar.Baz" | |
5893 * join("", "Baz") -> "Baz" | |
5894 * Caller owns a ref on the returned string. */ | |
5895 static char *upb_join(const char *base, const char *name) { | |
5896 if (!base || strlen(base) == 0) { | |
5897 return upb_strdup(name); | |
5898 } else { | |
5899 char *ret = malloc(strlen(base) + strlen(name) + 2); | |
5900 ret[0] = '\0'; | |
5901 strcat(ret, base); | |
5902 strcat(ret, "."); | |
5903 strcat(ret, name); | |
5904 return ret; | |
5905 } | |
5906 } | |
5907 | |
5908 | |
5909 /* upb_deflist ****************************************************************/ | |
5910 | |
5911 void upb_deflist_init(upb_deflist *l) { | |
5912 l->size = 0; | |
5913 l->defs = NULL; | |
5914 l->len = 0; | |
5915 l->owned = true; | |
5916 } | |
5917 | |
5918 void upb_deflist_uninit(upb_deflist *l) { | |
5919 size_t i; | |
5920 if (l->owned) | |
5921 for(i = 0; i < l->len; i++) | |
5922 upb_def_unref(l->defs[i], l); | |
5923 free(l->defs); | |
5924 } | |
5925 | |
5926 bool upb_deflist_push(upb_deflist *l, upb_def *d) { | |
5927 if(++l->len >= l->size) { | |
5928 size_t new_size = UPB_MAX(l->size, 4); | |
5929 new_size *= 2; | |
5930 l->defs = realloc(l->defs, new_size * sizeof(void *)); | |
5931 if (!l->defs) return false; | |
5932 l->size = new_size; | |
5933 } | |
5934 l->defs[l->len - 1] = d; | |
5935 return true; | |
5936 } | |
5937 | |
5938 void upb_deflist_donaterefs(upb_deflist *l, void *owner) { | |
5939 size_t i; | |
5940 assert(l->owned); | |
5941 for (i = 0; i < l->len; i++) | |
5942 upb_def_donateref(l->defs[i], l, owner); | |
5943 l->owned = false; | |
5944 } | |
5945 | |
5946 static upb_def *upb_deflist_last(upb_deflist *l) { | |
5947 return l->defs[l->len-1]; | |
5948 } | |
5949 | |
5950 /* Qualify the defname for all defs starting with offset "start" with "str". */ | |
5951 static void upb_deflist_qualify(upb_deflist *l, char *str, int32_t start) { | |
5952 uint32_t i; | |
5953 for (i = start; i < l->len; i++) { | |
5954 upb_def *def = l->defs[i]; | |
5955 char *name = upb_join(str, upb_def_fullname(def)); | |
5956 upb_def_setfullname(def, name, NULL); | |
5957 free(name); | |
5958 } | |
5959 } | |
5960 | |
5961 | |
5962 /* upb_descreader ************************************************************/ | |
5963 | |
5964 static upb_msgdef *upb_descreader_top(upb_descreader *r) { | |
5965 int index; | |
5966 assert(r->stack_len > 1); | |
5967 index = r->stack[r->stack_len-1].start - 1; | |
5968 assert(index >= 0); | |
5969 return upb_downcast_msgdef_mutable(r->defs.defs[index]); | |
5970 } | |
5971 | |
5972 static upb_def *upb_descreader_last(upb_descreader *r) { | |
5973 return upb_deflist_last(&r->defs); | |
5974 } | |
5975 | |
5976 /* Start/end handlers for FileDescriptorProto and DescriptorProto (the two | |
5977 * entities that have names and can contain sub-definitions. */ | |
5978 void upb_descreader_startcontainer(upb_descreader *r) { | |
5979 upb_descreader_frame *f = &r->stack[r->stack_len++]; | |
5980 f->start = r->defs.len; | |
5981 f->name = NULL; | |
5982 } | |
5983 | |
5984 void upb_descreader_endcontainer(upb_descreader *r) { | |
5985 upb_descreader_frame *f = &r->stack[--r->stack_len]; | |
5986 upb_deflist_qualify(&r->defs, f->name, f->start); | |
5987 free(f->name); | |
5988 f->name = NULL; | |
5989 } | |
5990 | |
5991 void upb_descreader_setscopename(upb_descreader *r, char *str) { | |
5992 upb_descreader_frame *f = &r->stack[r->stack_len-1]; | |
5993 free(f->name); | |
5994 f->name = str; | |
5995 } | |
5996 | |
5997 /* Handlers for google.protobuf.FileDescriptorProto. */ | |
5998 static bool file_startmsg(void *r, const void *hd) { | |
5999 UPB_UNUSED(hd); | |
6000 upb_descreader_startcontainer(r); | |
6001 return true; | |
6002 } | |
6003 | |
6004 static bool file_endmsg(void *closure, const void *hd, upb_status *status) { | |
6005 upb_descreader *r = closure; | |
6006 UPB_UNUSED(hd); | |
6007 UPB_UNUSED(status); | |
6008 upb_descreader_endcontainer(r); | |
6009 return true; | |
6010 } | |
6011 | |
6012 static size_t file_onpackage(void *closure, const void *hd, const char *buf, | |
6013 size_t n, const upb_bufhandle *handle) { | |
6014 upb_descreader *r = closure; | |
6015 UPB_UNUSED(hd); | |
6016 UPB_UNUSED(handle); | |
6017 /* XXX: see comment at the top of the file. */ | |
6018 upb_descreader_setscopename(r, upb_strndup(buf, n)); | |
6019 return n; | |
6020 } | |
6021 | |
6022 /* Handlers for google.protobuf.EnumValueDescriptorProto. */ | |
6023 static bool enumval_startmsg(void *closure, const void *hd) { | |
6024 upb_descreader *r = closure; | |
6025 UPB_UNUSED(hd); | |
6026 r->saw_number = false; | |
6027 r->saw_name = false; | |
6028 return true; | |
6029 } | |
6030 | |
6031 static size_t enumval_onname(void *closure, const void *hd, const char *buf, | |
6032 size_t n, const upb_bufhandle *handle) { | |
6033 upb_descreader *r = closure; | |
6034 UPB_UNUSED(hd); | |
6035 UPB_UNUSED(handle); | |
6036 /* XXX: see comment at the top of the file. */ | |
6037 free(r->name); | |
6038 r->name = upb_strndup(buf, n); | |
6039 r->saw_name = true; | |
6040 return n; | |
6041 } | |
6042 | |
6043 static bool enumval_onnumber(void *closure, const void *hd, int32_t val) { | |
6044 upb_descreader *r = closure; | |
6045 UPB_UNUSED(hd); | |
6046 r->number = val; | |
6047 r->saw_number = true; | |
6048 return true; | |
6049 } | |
6050 | |
6051 static bool enumval_endmsg(void *closure, const void *hd, upb_status *status) { | |
6052 upb_descreader *r = closure; | |
6053 upb_enumdef *e; | |
6054 UPB_UNUSED(hd); | |
6055 | |
6056 if(!r->saw_number || !r->saw_name) { | |
6057 upb_status_seterrmsg(status, "Enum value missing name or number."); | |
6058 return false; | |
6059 } | |
6060 e = upb_downcast_enumdef_mutable(upb_descreader_last(r)); | |
6061 upb_enumdef_addval(e, r->name, r->number, status); | |
6062 free(r->name); | |
6063 r->name = NULL; | |
6064 return true; | |
6065 } | |
6066 | |
6067 | |
6068 /* Handlers for google.protobuf.EnumDescriptorProto. */ | |
6069 static bool enum_startmsg(void *closure, const void *hd) { | |
6070 upb_descreader *r = closure; | |
6071 UPB_UNUSED(hd); | |
6072 upb_deflist_push(&r->defs, | |
6073 upb_enumdef_upcast_mutable(upb_enumdef_new(&r->defs))); | |
6074 return true; | |
6075 } | |
6076 | |
6077 static bool enum_endmsg(void *closure, const void *hd, upb_status *status) { | |
6078 upb_descreader *r = closure; | |
6079 upb_enumdef *e; | |
6080 UPB_UNUSED(hd); | |
6081 | |
6082 e = upb_downcast_enumdef_mutable(upb_descreader_last(r)); | |
6083 if (upb_def_fullname(upb_descreader_last(r)) == NULL) { | |
6084 upb_status_seterrmsg(status, "Enum had no name."); | |
6085 return false; | |
6086 } | |
6087 if (upb_enumdef_numvals(e) == 0) { | |
6088 upb_status_seterrmsg(status, "Enum had no values."); | |
6089 return false; | |
6090 } | |
6091 return true; | |
6092 } | |
6093 | |
6094 static size_t enum_onname(void *closure, const void *hd, const char *buf, | |
6095 size_t n, const upb_bufhandle *handle) { | |
6096 upb_descreader *r = closure; | |
6097 char *fullname = upb_strndup(buf, n); | |
6098 UPB_UNUSED(hd); | |
6099 UPB_UNUSED(handle); | |
6100 /* XXX: see comment at the top of the file. */ | |
6101 upb_def_setfullname(upb_descreader_last(r), fullname, NULL); | |
6102 free(fullname); | |
6103 return n; | |
6104 } | |
6105 | |
6106 /* Handlers for google.protobuf.FieldDescriptorProto */ | |
6107 static bool field_startmsg(void *closure, const void *hd) { | |
6108 upb_descreader *r = closure; | |
6109 UPB_UNUSED(hd); | |
6110 r->f = upb_fielddef_new(&r->defs); | |
6111 free(r->default_string); | |
6112 r->default_string = NULL; | |
6113 | |
6114 /* fielddefs default to packed, but descriptors default to non-packed. */ | |
6115 upb_fielddef_setpacked(r->f, false); | |
6116 return true; | |
6117 } | |
6118 | |
6119 /* Converts the default value in string "str" into "d". Passes a ref on str. | |
6120 * Returns true on success. */ | |
6121 static bool parse_default(char *str, upb_fielddef *f) { | |
6122 bool success = true; | |
6123 char *end; | |
6124 switch (upb_fielddef_type(f)) { | |
6125 case UPB_TYPE_INT32: { | |
6126 long val = strtol(str, &end, 0); | |
6127 if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || *end) | |
6128 success = false; | |
6129 else | |
6130 upb_fielddef_setdefaultint32(f, val); | |
6131 break; | |
6132 } | |
6133 case UPB_TYPE_INT64: { | |
6134 /* XXX: Need to write our own strtoll, since it's not available in c89. */ | |
6135 long long val = strtol(str, &end, 0); | |
6136 if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || *end) | |
6137 success = false; | |
6138 else | |
6139 upb_fielddef_setdefaultint64(f, val); | |
6140 break; | |
6141 } | |
6142 case UPB_TYPE_UINT32: { | |
6143 unsigned long val = strtoul(str, &end, 0); | |
6144 if (val > UINT32_MAX || errno == ERANGE || *end) | |
6145 success = false; | |
6146 else | |
6147 upb_fielddef_setdefaultuint32(f, val); | |
6148 break; | |
6149 } | |
6150 case UPB_TYPE_UINT64: { | |
6151 /* XXX: Need to write our own strtoull, since it's not available in c89. *
/ | |
6152 unsigned long long val = strtoul(str, &end, 0); | |
6153 if (val > UINT64_MAX || errno == ERANGE || *end) | |
6154 success = false; | |
6155 else | |
6156 upb_fielddef_setdefaultuint64(f, val); | |
6157 break; | |
6158 } | |
6159 case UPB_TYPE_DOUBLE: { | |
6160 double val = strtod(str, &end); | |
6161 if (errno == ERANGE || *end) | |
6162 success = false; | |
6163 else | |
6164 upb_fielddef_setdefaultdouble(f, val); | |
6165 break; | |
6166 } | |
6167 case UPB_TYPE_FLOAT: { | |
6168 /* XXX: Need to write our own strtof, since it's not available in c89. */ | |
6169 float val = strtod(str, &end); | |
6170 if (errno == ERANGE || *end) | |
6171 success = false; | |
6172 else | |
6173 upb_fielddef_setdefaultfloat(f, val); | |
6174 break; | |
6175 } | |
6176 case UPB_TYPE_BOOL: { | |
6177 if (strcmp(str, "false") == 0) | |
6178 upb_fielddef_setdefaultbool(f, false); | |
6179 else if (strcmp(str, "true") == 0) | |
6180 upb_fielddef_setdefaultbool(f, true); | |
6181 else | |
6182 success = false; | |
6183 break; | |
6184 } | |
6185 default: abort(); | |
6186 } | |
6187 return success; | |
6188 } | |
6189 | |
6190 static bool field_endmsg(void *closure, const void *hd, upb_status *status) { | |
6191 upb_descreader *r = closure; | |
6192 upb_fielddef *f = r->f; | |
6193 UPB_UNUSED(hd); | |
6194 | |
6195 /* TODO: verify that all required fields were present. */ | |
6196 assert(upb_fielddef_number(f) != 0); | |
6197 assert(upb_fielddef_name(f) != NULL); | |
6198 assert((upb_fielddef_subdefname(f) != NULL) == upb_fielddef_hassubdef(f)); | |
6199 | |
6200 if (r->default_string) { | |
6201 if (upb_fielddef_issubmsg(f)) { | |
6202 upb_status_seterrmsg(status, "Submessages cannot have defaults."); | |
6203 return false; | |
6204 } | |
6205 if (upb_fielddef_isstring(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM) { | |
6206 upb_fielddef_setdefaultcstr(f, r->default_string, NULL); | |
6207 } else { | |
6208 if (r->default_string && !parse_default(r->default_string, f)) { | |
6209 /* We don't worry too much about giving a great error message since the | |
6210 * compiler should have ensured this was correct. */ | |
6211 upb_status_seterrmsg(status, "Error converting default value."); | |
6212 return false; | |
6213 } | |
6214 } | |
6215 } | |
6216 return true; | |
6217 } | |
6218 | |
6219 static bool field_onlazy(void *closure, const void *hd, bool val) { | |
6220 upb_descreader *r = closure; | |
6221 UPB_UNUSED(hd); | |
6222 | |
6223 upb_fielddef_setlazy(r->f, val); | |
6224 return true; | |
6225 } | |
6226 | |
6227 static bool field_onpacked(void *closure, const void *hd, bool val) { | |
6228 upb_descreader *r = closure; | |
6229 UPB_UNUSED(hd); | |
6230 | |
6231 upb_fielddef_setpacked(r->f, val); | |
6232 return true; | |
6233 } | |
6234 | |
6235 static bool field_ontype(void *closure, const void *hd, int32_t val) { | |
6236 upb_descreader *r = closure; | |
6237 UPB_UNUSED(hd); | |
6238 | |
6239 upb_fielddef_setdescriptortype(r->f, val); | |
6240 return true; | |
6241 } | |
6242 | |
6243 static bool field_onlabel(void *closure, const void *hd, int32_t val) { | |
6244 upb_descreader *r = closure; | |
6245 UPB_UNUSED(hd); | |
6246 | |
6247 upb_fielddef_setlabel(r->f, val); | |
6248 return true; | |
6249 } | |
6250 | |
6251 static bool field_onnumber(void *closure, const void *hd, int32_t val) { | |
6252 upb_descreader *r = closure; | |
6253 bool ok = upb_fielddef_setnumber(r->f, val, NULL); | |
6254 UPB_UNUSED(hd); | |
6255 | |
6256 UPB_ASSERT_VAR(ok, ok); | |
6257 return true; | |
6258 } | |
6259 | |
6260 static size_t field_onname(void *closure, const void *hd, const char *buf, | |
6261 size_t n, const upb_bufhandle *handle) { | |
6262 upb_descreader *r = closure; | |
6263 char *name = upb_strndup(buf, n); | |
6264 UPB_UNUSED(hd); | |
6265 UPB_UNUSED(handle); | |
6266 | |
6267 /* XXX: see comment at the top of the file. */ | |
6268 upb_fielddef_setname(r->f, name, NULL); | |
6269 free(name); | |
6270 return n; | |
6271 } | |
6272 | |
6273 static size_t field_ontypename(void *closure, const void *hd, const char *buf, | |
6274 size_t n, const upb_bufhandle *handle) { | |
6275 upb_descreader *r = closure; | |
6276 char *name = upb_strndup(buf, n); | |
6277 UPB_UNUSED(hd); | |
6278 UPB_UNUSED(handle); | |
6279 | |
6280 /* XXX: see comment at the top of the file. */ | |
6281 upb_fielddef_setsubdefname(r->f, name, NULL); | |
6282 free(name); | |
6283 return n; | |
6284 } | |
6285 | |
6286 static size_t field_onextendee(void *closure, const void *hd, const char *buf, | |
6287 size_t n, const upb_bufhandle *handle) { | |
6288 upb_descreader *r = closure; | |
6289 char *name = upb_strndup(buf, n); | |
6290 UPB_UNUSED(hd); | |
6291 UPB_UNUSED(handle); | |
6292 | |
6293 /* XXX: see comment at the top of the file. */ | |
6294 upb_fielddef_setcontainingtypename(r->f, name, NULL); | |
6295 free(name); | |
6296 return n; | |
6297 } | |
6298 | |
6299 static size_t field_ondefaultval(void *closure, const void *hd, const char *buf, | |
6300 size_t n, const upb_bufhandle *handle) { | |
6301 upb_descreader *r = closure; | |
6302 UPB_UNUSED(hd); | |
6303 UPB_UNUSED(handle); | |
6304 | |
6305 /* Have to convert from string to the correct type, but we might not know the | |
6306 * type yet, so we save it as a string until the end of the field. | |
6307 * XXX: see comment at the top of the file. */ | |
6308 free(r->default_string); | |
6309 r->default_string = upb_strndup(buf, n); | |
6310 return n; | |
6311 } | |
6312 | |
6313 /* Handlers for google.protobuf.DescriptorProto (representing a message). */ | |
6314 static bool msg_startmsg(void *closure, const void *hd) { | |
6315 upb_descreader *r = closure; | |
6316 UPB_UNUSED(hd); | |
6317 | |
6318 upb_deflist_push(&r->defs, | |
6319 upb_msgdef_upcast_mutable(upb_msgdef_new(&r->defs))); | |
6320 upb_descreader_startcontainer(r); | |
6321 return true; | |
6322 } | |
6323 | |
6324 static bool msg_endmsg(void *closure, const void *hd, upb_status *status) { | |
6325 upb_descreader *r = closure; | |
6326 upb_msgdef *m = upb_descreader_top(r); | |
6327 UPB_UNUSED(hd); | |
6328 | |
6329 if(!upb_def_fullname(upb_msgdef_upcast_mutable(m))) { | |
6330 upb_status_seterrmsg(status, "Encountered message with no name."); | |
6331 return false; | |
6332 } | |
6333 upb_descreader_endcontainer(r); | |
6334 return true; | |
6335 } | |
6336 | |
6337 static size_t msg_onname(void *closure, const void *hd, const char *buf, | |
6338 size_t n, const upb_bufhandle *handle) { | |
6339 upb_descreader *r = closure; | |
6340 upb_msgdef *m = upb_descreader_top(r); | |
6341 /* XXX: see comment at the top of the file. */ | |
6342 char *name = upb_strndup(buf, n); | |
6343 UPB_UNUSED(hd); | |
6344 UPB_UNUSED(handle); | |
6345 | |
6346 upb_def_setfullname(upb_msgdef_upcast_mutable(m), name, NULL); | |
6347 upb_descreader_setscopename(r, name); /* Passes ownership of name. */ | |
6348 return n; | |
6349 } | |
6350 | |
6351 static bool msg_onendfield(void *closure, const void *hd) { | |
6352 upb_descreader *r = closure; | |
6353 upb_msgdef *m = upb_descreader_top(r); | |
6354 UPB_UNUSED(hd); | |
6355 | |
6356 upb_msgdef_addfield(m, r->f, &r->defs, NULL); | |
6357 r->f = NULL; | |
6358 return true; | |
6359 } | |
6360 | |
6361 static bool pushextension(void *closure, const void *hd) { | |
6362 upb_descreader *r = closure; | |
6363 UPB_UNUSED(hd); | |
6364 | |
6365 assert(upb_fielddef_containingtypename(r->f)); | |
6366 upb_fielddef_setisextension(r->f, true); | |
6367 upb_deflist_push(&r->defs, upb_fielddef_upcast_mutable(r->f)); | |
6368 r->f = NULL; | |
6369 return true; | |
6370 } | |
6371 | |
6372 #define D(name) upbdefs_google_protobuf_ ## name(s) | |
6373 | |
6374 static void reghandlers(const void *closure, upb_handlers *h) { | |
6375 const upb_symtab *s = closure; | |
6376 const upb_msgdef *m = upb_handlers_msgdef(h); | |
6377 | |
6378 if (m == D(DescriptorProto)) { | |
6379 upb_handlers_setstartmsg(h, &msg_startmsg, NULL); | |
6380 upb_handlers_setendmsg(h, &msg_endmsg, NULL); | |
6381 upb_handlers_setstring(h, D(DescriptorProto_name), &msg_onname, NULL); | |
6382 upb_handlers_setendsubmsg(h, D(DescriptorProto_field), &msg_onendfield, | |
6383 NULL); | |
6384 upb_handlers_setendsubmsg(h, D(DescriptorProto_extension), &pushextension, | |
6385 NULL); | |
6386 } else if (m == D(FileDescriptorProto)) { | |
6387 upb_handlers_setstartmsg(h, &file_startmsg, NULL); | |
6388 upb_handlers_setendmsg(h, &file_endmsg, NULL); | |
6389 upb_handlers_setstring(h, D(FileDescriptorProto_package), &file_onpackage, | |
6390 NULL); | |
6391 upb_handlers_setendsubmsg(h, D(FileDescriptorProto_extension), &pushextensio
n, | |
6392 NULL); | |
6393 } else if (m == D(EnumValueDescriptorProto)) { | |
6394 upb_handlers_setstartmsg(h, &enumval_startmsg, NULL); | |
6395 upb_handlers_setendmsg(h, &enumval_endmsg, NULL); | |
6396 upb_handlers_setstring(h, D(EnumValueDescriptorProto_name), &enumval_onname,
NULL); | |
6397 upb_handlers_setint32(h, D(EnumValueDescriptorProto_number), &enumval_onnumb
er, | |
6398 NULL); | |
6399 } else if (m == D(EnumDescriptorProto)) { | |
6400 upb_handlers_setstartmsg(h, &enum_startmsg, NULL); | |
6401 upb_handlers_setendmsg(h, &enum_endmsg, NULL); | |
6402 upb_handlers_setstring(h, D(EnumDescriptorProto_name), &enum_onname, NULL); | |
6403 } else if (m == D(FieldDescriptorProto)) { | |
6404 upb_handlers_setstartmsg(h, &field_startmsg, NULL); | |
6405 upb_handlers_setendmsg(h, &field_endmsg, NULL); | |
6406 upb_handlers_setint32(h, D(FieldDescriptorProto_type), &field_ontype, | |
6407 NULL); | |
6408 upb_handlers_setint32(h, D(FieldDescriptorProto_label), &field_onlabel, | |
6409 NULL); | |
6410 upb_handlers_setint32(h, D(FieldDescriptorProto_number), &field_onnumber, | |
6411 NULL); | |
6412 upb_handlers_setstring(h, D(FieldDescriptorProto_name), &field_onname, | |
6413 NULL); | |
6414 upb_handlers_setstring(h, D(FieldDescriptorProto_type_name), | |
6415 &field_ontypename, NULL); | |
6416 upb_handlers_setstring(h, D(FieldDescriptorProto_extendee), | |
6417 &field_onextendee, NULL); | |
6418 upb_handlers_setstring(h, D(FieldDescriptorProto_default_value), | |
6419 &field_ondefaultval, NULL); | |
6420 } else if (m == D(FieldOptions)) { | |
6421 upb_handlers_setbool(h, D(FieldOptions_lazy), &field_onlazy, NULL); | |
6422 upb_handlers_setbool(h, D(FieldOptions_packed), &field_onpacked, NULL); | |
6423 } | |
6424 } | |
6425 | |
6426 #undef D | |
6427 | |
6428 void descreader_cleanup(void *_r) { | |
6429 upb_descreader *r = _r; | |
6430 free(r->name); | |
6431 upb_deflist_uninit(&r->defs); | |
6432 free(r->default_string); | |
6433 while (r->stack_len > 0) { | |
6434 upb_descreader_frame *f = &r->stack[--r->stack_len]; | |
6435 free(f->name); | |
6436 } | |
6437 } | |
6438 | |
6439 | |
6440 /* Public API ****************************************************************/ | |
6441 | |
6442 upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h) { | |
6443 upb_descreader *r = upb_env_malloc(e, sizeof(upb_descreader)); | |
6444 if (!r || !upb_env_addcleanup(e, descreader_cleanup, r)) { | |
6445 return NULL; | |
6446 } | |
6447 | |
6448 upb_deflist_init(&r->defs); | |
6449 upb_sink_reset(upb_descreader_input(r), h, r); | |
6450 r->stack_len = 0; | |
6451 r->name = NULL; | |
6452 r->default_string = NULL; | |
6453 | |
6454 return r; | |
6455 } | |
6456 | |
6457 upb_def **upb_descreader_getdefs(upb_descreader *r, void *owner, int *n) { | |
6458 *n = r->defs.len; | |
6459 upb_deflist_donaterefs(&r->defs, owner); | |
6460 return r->defs.defs; | |
6461 } | |
6462 | |
6463 upb_sink *upb_descreader_input(upb_descreader *r) { | |
6464 return &r->sink; | |
6465 } | |
6466 | |
6467 const upb_handlers *upb_descreader_newhandlers(const void *owner) { | |
6468 const upb_symtab *s = upbdefs_google_protobuf_descriptor(&s); | |
6469 const upb_handlers *h = upb_handlers_newfrozen( | |
6470 upbdefs_google_protobuf_FileDescriptorSet(s), owner, reghandlers, s); | |
6471 upb_symtab_unref(s, &s); | |
6472 return h; | |
6473 } | |
6474 /* | |
6475 ** protobuf decoder bytecode compiler | |
6476 ** | |
6477 ** Code to compile a upb::Handlers into bytecode for decoding a protobuf | |
6478 ** according to that specific schema and destination handlers. | |
6479 ** | |
6480 ** Compiling to bytecode is always the first step. If we are using the | |
6481 ** interpreted decoder we leave it as bytecode and interpret that. If we are | |
6482 ** using a JIT decoder we use a code generator to turn the bytecode into native | |
6483 ** code, LLVM IR, etc. | |
6484 ** | |
6485 ** Bytecode definition is in decoder.int.h. | |
6486 */ | |
6487 | |
6488 #include <stdarg.h> | |
6489 | |
6490 #ifdef UPB_DUMP_BYTECODE | |
6491 #include <stdio.h> | |
6492 #endif | |
6493 | |
6494 #define MAXLABEL 5 | |
6495 #define EMPTYLABEL -1 | |
6496 | |
6497 /* mgroup *********************************************************************/ | |
6498 | |
6499 static void freegroup(upb_refcounted *r) { | |
6500 mgroup *g = (mgroup*)r; | |
6501 upb_inttable_uninit(&g->methods); | |
6502 #ifdef UPB_USE_JIT_X64 | |
6503 upb_pbdecoder_freejit(g); | |
6504 #endif | |
6505 free(g->bytecode); | |
6506 free(g); | |
6507 } | |
6508 | |
6509 static void visitgroup(const upb_refcounted *r, upb_refcounted_visit *visit, | |
6510 void *closure) { | |
6511 const mgroup *g = (const mgroup*)r; | |
6512 upb_inttable_iter i; | |
6513 upb_inttable_begin(&i, &g->methods); | |
6514 for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
6515 upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); | |
6516 visit(r, upb_pbdecodermethod_upcast(method), closure); | |
6517 } | |
6518 } | |
6519 | |
6520 mgroup *newgroup(const void *owner) { | |
6521 mgroup *g = malloc(sizeof(*g)); | |
6522 static const struct upb_refcounted_vtbl vtbl = {visitgroup, freegroup}; | |
6523 upb_refcounted_init(mgroup_upcast_mutable(g), &vtbl, owner); | |
6524 upb_inttable_init(&g->methods, UPB_CTYPE_PTR); | |
6525 g->bytecode = NULL; | |
6526 g->bytecode_end = NULL; | |
6527 return g; | |
6528 } | |
6529 | |
6530 | |
6531 /* upb_pbdecodermethod ********************************************************/ | |
6532 | |
6533 static void freemethod(upb_refcounted *r) { | |
6534 upb_pbdecodermethod *method = (upb_pbdecodermethod*)r; | |
6535 | |
6536 if (method->dest_handlers_) { | |
6537 upb_handlers_unref(method->dest_handlers_, method); | |
6538 } | |
6539 | |
6540 upb_inttable_uninit(&method->dispatch); | |
6541 free(method); | |
6542 } | |
6543 | |
6544 static void visitmethod(const upb_refcounted *r, upb_refcounted_visit *visit, | |
6545 void *closure) { | |
6546 const upb_pbdecodermethod *m = (const upb_pbdecodermethod*)r; | |
6547 visit(r, m->group, closure); | |
6548 } | |
6549 | |
6550 static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers, | |
6551 mgroup *group) { | |
6552 static const struct upb_refcounted_vtbl vtbl = {visitmethod, freemethod}; | |
6553 upb_pbdecodermethod *ret = malloc(sizeof(*ret)); | |
6554 upb_refcounted_init(upb_pbdecodermethod_upcast_mutable(ret), &vtbl, &ret); | |
6555 upb_byteshandler_init(&ret->input_handler_); | |
6556 | |
6557 /* The method references the group and vice-versa, in a circular reference. */ | |
6558 upb_ref2(ret, group); | |
6559 upb_ref2(group, ret); | |
6560 upb_inttable_insertptr(&group->methods, dest_handlers, upb_value_ptr(ret)); | |
6561 upb_pbdecodermethod_unref(ret, &ret); | |
6562 | |
6563 ret->group = mgroup_upcast_mutable(group); | |
6564 ret->dest_handlers_ = dest_handlers; | |
6565 ret->is_native_ = false; /* If we JIT, it will update this later. */ | |
6566 upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64); | |
6567 | |
6568 if (ret->dest_handlers_) { | |
6569 upb_handlers_ref(ret->dest_handlers_, ret); | |
6570 } | |
6571 return ret; | |
6572 } | |
6573 | |
6574 const upb_handlers *upb_pbdecodermethod_desthandlers( | |
6575 const upb_pbdecodermethod *m) { | |
6576 return m->dest_handlers_; | |
6577 } | |
6578 | |
6579 const upb_byteshandler *upb_pbdecodermethod_inputhandler( | |
6580 const upb_pbdecodermethod *m) { | |
6581 return &m->input_handler_; | |
6582 } | |
6583 | |
6584 bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) { | |
6585 return m->is_native_; | |
6586 } | |
6587 | |
6588 const upb_pbdecodermethod *upb_pbdecodermethod_new( | |
6589 const upb_pbdecodermethodopts *opts, const void *owner) { | |
6590 const upb_pbdecodermethod *ret; | |
6591 upb_pbcodecache cache; | |
6592 | |
6593 upb_pbcodecache_init(&cache); | |
6594 ret = upb_pbcodecache_getdecodermethod(&cache, opts); | |
6595 upb_pbdecodermethod_ref(ret, owner); | |
6596 upb_pbcodecache_uninit(&cache); | |
6597 return ret; | |
6598 } | |
6599 | |
6600 | |
6601 /* bytecode compiler **********************************************************/ | |
6602 | |
6603 /* Data used only at compilation time. */ | |
6604 typedef struct { | |
6605 mgroup *group; | |
6606 | |
6607 uint32_t *pc; | |
6608 int fwd_labels[MAXLABEL]; | |
6609 int back_labels[MAXLABEL]; | |
6610 | |
6611 /* For fields marked "lazy", parse them lazily or eagerly? */ | |
6612 bool lazy; | |
6613 } compiler; | |
6614 | |
6615 static compiler *newcompiler(mgroup *group, bool lazy) { | |
6616 compiler *ret = malloc(sizeof(*ret)); | |
6617 int i; | |
6618 | |
6619 ret->group = group; | |
6620 ret->lazy = lazy; | |
6621 for (i = 0; i < MAXLABEL; i++) { | |
6622 ret->fwd_labels[i] = EMPTYLABEL; | |
6623 ret->back_labels[i] = EMPTYLABEL; | |
6624 } | |
6625 return ret; | |
6626 } | |
6627 | |
6628 static void freecompiler(compiler *c) { | |
6629 free(c); | |
6630 } | |
6631 | |
6632 const size_t ptr_words = sizeof(void*) / sizeof(uint32_t); | |
6633 | |
6634 /* How many words an instruction is. */ | |
6635 static int instruction_len(uint32_t instr) { | |
6636 switch (getop(instr)) { | |
6637 case OP_SETDISPATCH: return 1 + ptr_words; | |
6638 case OP_TAGN: return 3; | |
6639 case OP_SETBIGGROUPNUM: return 2; | |
6640 default: return 1; | |
6641 } | |
6642 } | |
6643 | |
6644 bool op_has_longofs(int32_t instruction) { | |
6645 switch (getop(instruction)) { | |
6646 case OP_CALL: | |
6647 case OP_BRANCH: | |
6648 case OP_CHECKDELIM: | |
6649 return true; | |
6650 /* The "tag" instructions only have 8 bytes available for the jump target, | |
6651 * but that is ok because these opcodes only require short jumps. */ | |
6652 case OP_TAG1: | |
6653 case OP_TAG2: | |
6654 case OP_TAGN: | |
6655 return false; | |
6656 default: | |
6657 assert(false); | |
6658 return false; | |
6659 } | |
6660 } | |
6661 | |
6662 static int32_t getofs(uint32_t instruction) { | |
6663 if (op_has_longofs(instruction)) { | |
6664 return (int32_t)instruction >> 8; | |
6665 } else { | |
6666 return (int8_t)(instruction >> 8); | |
6667 } | |
6668 } | |
6669 | |
6670 static void setofs(uint32_t *instruction, int32_t ofs) { | |
6671 if (op_has_longofs(*instruction)) { | |
6672 *instruction = getop(*instruction) | ofs << 8; | |
6673 } else { | |
6674 *instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8); | |
6675 } | |
6676 assert(getofs(*instruction) == ofs); /* Would fail in cases of overflow. */ | |
6677 } | |
6678 | |
6679 static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; } | |
6680 | |
6681 /* Defines a local label at the current PC location. All previous forward | |
6682 * references are updated to point to this location. The location is noted | |
6683 * for any future backward references. */ | |
6684 static void label(compiler *c, unsigned int label) { | |
6685 int val; | |
6686 uint32_t *codep; | |
6687 | |
6688 assert(label < MAXLABEL); | |
6689 val = c->fwd_labels[label]; | |
6690 codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val; | |
6691 while (codep) { | |
6692 int ofs = getofs(*codep); | |
6693 setofs(codep, c->pc - codep - instruction_len(*codep)); | |
6694 codep = ofs ? codep + ofs : NULL; | |
6695 } | |
6696 c->fwd_labels[label] = EMPTYLABEL; | |
6697 c->back_labels[label] = pcofs(c); | |
6698 } | |
6699 | |
6700 /* Creates a reference to a numbered label; either a forward reference | |
6701 * (positive arg) or backward reference (negative arg). For forward references | |
6702 * the value returned now is actually a "next" pointer into a linked list of all | |
6703 * instructions that use this label and will be patched later when the label is | |
6704 * defined with label(). | |
6705 * | |
6706 * The returned value is the offset that should be written into the instruction. | |
6707 */ | |
6708 static int32_t labelref(compiler *c, int label) { | |
6709 assert(label < MAXLABEL); | |
6710 if (label == LABEL_DISPATCH) { | |
6711 /* No resolving required. */ | |
6712 return 0; | |
6713 } else if (label < 0) { | |
6714 /* Backward local label. Relative to the next instruction. */ | |
6715 uint32_t from = (c->pc + 1) - c->group->bytecode; | |
6716 return c->back_labels[-label] - from; | |
6717 } else { | |
6718 /* Forward local label: prepend to (possibly-empty) linked list. */ | |
6719 int *lptr = &c->fwd_labels[label]; | |
6720 int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c); | |
6721 *lptr = pcofs(c); | |
6722 return ret; | |
6723 } | |
6724 } | |
6725 | |
6726 static void put32(compiler *c, uint32_t v) { | |
6727 mgroup *g = c->group; | |
6728 if (c->pc == g->bytecode_end) { | |
6729 int ofs = pcofs(c); | |
6730 size_t oldsize = g->bytecode_end - g->bytecode; | |
6731 size_t newsize = UPB_MAX(oldsize * 2, 64); | |
6732 /* TODO(haberman): handle OOM. */ | |
6733 g->bytecode = realloc(g->bytecode, newsize * sizeof(uint32_t)); | |
6734 g->bytecode_end = g->bytecode + newsize; | |
6735 c->pc = g->bytecode + ofs; | |
6736 } | |
6737 *c->pc++ = v; | |
6738 } | |
6739 | |
6740 static void putop(compiler *c, opcode op, ...) { | |
6741 va_list ap; | |
6742 va_start(ap, op); | |
6743 | |
6744 switch (op) { | |
6745 case OP_SETDISPATCH: { | |
6746 uintptr_t ptr = (uintptr_t)va_arg(ap, void*); | |
6747 put32(c, OP_SETDISPATCH); | |
6748 put32(c, ptr); | |
6749 if (sizeof(uintptr_t) > sizeof(uint32_t)) | |
6750 put32(c, (uint64_t)ptr >> 32); | |
6751 break; | |
6752 } | |
6753 case OP_STARTMSG: | |
6754 case OP_ENDMSG: | |
6755 case OP_PUSHLENDELIM: | |
6756 case OP_POP: | |
6757 case OP_SETDELIM: | |
6758 case OP_HALT: | |
6759 case OP_RET: | |
6760 case OP_DISPATCH: | |
6761 put32(c, op); | |
6762 break; | |
6763 case OP_PARSE_DOUBLE: | |
6764 case OP_PARSE_FLOAT: | |
6765 case OP_PARSE_INT64: | |
6766 case OP_PARSE_UINT64: | |
6767 case OP_PARSE_INT32: | |
6768 case OP_PARSE_FIXED64: | |
6769 case OP_PARSE_FIXED32: | |
6770 case OP_PARSE_BOOL: | |
6771 case OP_PARSE_UINT32: | |
6772 case OP_PARSE_SFIXED32: | |
6773 case OP_PARSE_SFIXED64: | |
6774 case OP_PARSE_SINT32: | |
6775 case OP_PARSE_SINT64: | |
6776 case OP_STARTSEQ: | |
6777 case OP_ENDSEQ: | |
6778 case OP_STARTSUBMSG: | |
6779 case OP_ENDSUBMSG: | |
6780 case OP_STARTSTR: | |
6781 case OP_STRING: | |
6782 case OP_ENDSTR: | |
6783 case OP_PUSHTAGDELIM: | |
6784 put32(c, op | va_arg(ap, upb_selector_t) << 8); | |
6785 break; | |
6786 case OP_SETBIGGROUPNUM: | |
6787 put32(c, op); | |
6788 put32(c, va_arg(ap, int)); | |
6789 break; | |
6790 case OP_CALL: { | |
6791 const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *); | |
6792 put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8); | |
6793 break; | |
6794 } | |
6795 case OP_CHECKDELIM: | |
6796 case OP_BRANCH: { | |
6797 uint32_t instruction = op; | |
6798 int label = va_arg(ap, int); | |
6799 setofs(&instruction, labelref(c, label)); | |
6800 put32(c, instruction); | |
6801 break; | |
6802 } | |
6803 case OP_TAG1: | |
6804 case OP_TAG2: { | |
6805 int label = va_arg(ap, int); | |
6806 uint64_t tag = va_arg(ap, uint64_t); | |
6807 uint32_t instruction = op | (tag << 16); | |
6808 assert(tag <= 0xffff); | |
6809 setofs(&instruction, labelref(c, label)); | |
6810 put32(c, instruction); | |
6811 break; | |
6812 } | |
6813 case OP_TAGN: { | |
6814 int label = va_arg(ap, int); | |
6815 uint64_t tag = va_arg(ap, uint64_t); | |
6816 uint32_t instruction = op | (upb_value_size(tag) << 16); | |
6817 setofs(&instruction, labelref(c, label)); | |
6818 put32(c, instruction); | |
6819 put32(c, tag); | |
6820 put32(c, tag >> 32); | |
6821 break; | |
6822 } | |
6823 } | |
6824 | |
6825 va_end(ap); | |
6826 } | |
6827 | |
6828 #if defined(UPB_USE_JIT_X64) || defined(UPB_DUMP_BYTECODE) | |
6829 | |
6830 const char *upb_pbdecoder_getopname(unsigned int op) { | |
6831 #define QUOTE(x) #x | |
6832 #define EXPAND_AND_QUOTE(x) QUOTE(x) | |
6833 #define OPNAME(x) OP_##x | |
6834 #define OP(x) case OPNAME(x): return EXPAND_AND_QUOTE(OPNAME(x)); | |
6835 #define T(x) OP(PARSE_##x) | |
6836 /* Keep in sync with list in decoder.int.h. */ | |
6837 switch ((opcode)op) { | |
6838 T(DOUBLE) T(FLOAT) T(INT64) T(UINT64) T(INT32) T(FIXED64) T(FIXED32) | |
6839 T(BOOL) T(UINT32) T(SFIXED32) T(SFIXED64) T(SINT32) T(SINT64) | |
6840 OP(STARTMSG) OP(ENDMSG) OP(STARTSEQ) OP(ENDSEQ) OP(STARTSUBMSG) | |
6841 OP(ENDSUBMSG) OP(STARTSTR) OP(STRING) OP(ENDSTR) OP(CALL) OP(RET) | |
6842 OP(PUSHLENDELIM) OP(PUSHTAGDELIM) OP(SETDELIM) OP(CHECKDELIM) | |
6843 OP(BRANCH) OP(TAG1) OP(TAG2) OP(TAGN) OP(SETDISPATCH) OP(POP) | |
6844 OP(SETBIGGROUPNUM) OP(DISPATCH) OP(HALT) | |
6845 } | |
6846 return "<unknown op>"; | |
6847 #undef OP | |
6848 #undef T | |
6849 } | |
6850 | |
6851 #endif | |
6852 | |
6853 #ifdef UPB_DUMP_BYTECODE | |
6854 | |
6855 static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) { | |
6856 | |
6857 uint32_t *begin = p; | |
6858 | |
6859 while (p < end) { | |
6860 fprintf(f, "%p %8tx", p, p - begin); | |
6861 uint32_t instr = *p++; | |
6862 uint8_t op = getop(instr); | |
6863 fprintf(f, " %s", upb_pbdecoder_getopname(op)); | |
6864 switch ((opcode)op) { | |
6865 case OP_SETDISPATCH: { | |
6866 const upb_inttable *dispatch; | |
6867 memcpy(&dispatch, p, sizeof(void*)); | |
6868 p += ptr_words; | |
6869 const upb_pbdecodermethod *method = | |
6870 (void *)((char *)dispatch - | |
6871 offsetof(upb_pbdecodermethod, dispatch)); | |
6872 fprintf(f, " %s", upb_msgdef_fullname( | |
6873 upb_handlers_msgdef(method->dest_handlers_))); | |
6874 break; | |
6875 } | |
6876 case OP_DISPATCH: | |
6877 case OP_STARTMSG: | |
6878 case OP_ENDMSG: | |
6879 case OP_PUSHLENDELIM: | |
6880 case OP_POP: | |
6881 case OP_SETDELIM: | |
6882 case OP_HALT: | |
6883 case OP_RET: | |
6884 break; | |
6885 case OP_PARSE_DOUBLE: | |
6886 case OP_PARSE_FLOAT: | |
6887 case OP_PARSE_INT64: | |
6888 case OP_PARSE_UINT64: | |
6889 case OP_PARSE_INT32: | |
6890 case OP_PARSE_FIXED64: | |
6891 case OP_PARSE_FIXED32: | |
6892 case OP_PARSE_BOOL: | |
6893 case OP_PARSE_UINT32: | |
6894 case OP_PARSE_SFIXED32: | |
6895 case OP_PARSE_SFIXED64: | |
6896 case OP_PARSE_SINT32: | |
6897 case OP_PARSE_SINT64: | |
6898 case OP_STARTSEQ: | |
6899 case OP_ENDSEQ: | |
6900 case OP_STARTSUBMSG: | |
6901 case OP_ENDSUBMSG: | |
6902 case OP_STARTSTR: | |
6903 case OP_STRING: | |
6904 case OP_ENDSTR: | |
6905 case OP_PUSHTAGDELIM: | |
6906 fprintf(f, " %d", instr >> 8); | |
6907 break; | |
6908 case OP_SETBIGGROUPNUM: | |
6909 fprintf(f, " %d", *p++); | |
6910 break; | |
6911 case OP_CHECKDELIM: | |
6912 case OP_CALL: | |
6913 case OP_BRANCH: | |
6914 fprintf(f, " =>0x%tx", p + getofs(instr) - begin); | |
6915 break; | |
6916 case OP_TAG1: | |
6917 case OP_TAG2: { | |
6918 fprintf(f, " tag:0x%x", instr >> 16); | |
6919 if (getofs(instr)) { | |
6920 fprintf(f, " =>0x%tx", p + getofs(instr) - begin); | |
6921 } | |
6922 break; | |
6923 } | |
6924 case OP_TAGN: { | |
6925 uint64_t tag = *p++; | |
6926 tag |= (uint64_t)*p++ << 32; | |
6927 fprintf(f, " tag:0x%llx", (long long)tag); | |
6928 fprintf(f, " n:%d", instr >> 16); | |
6929 if (getofs(instr)) { | |
6930 fprintf(f, " =>0x%tx", p + getofs(instr) - begin); | |
6931 } | |
6932 break; | |
6933 } | |
6934 } | |
6935 fputs("\n", f); | |
6936 } | |
6937 } | |
6938 | |
6939 #endif | |
6940 | |
6941 static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) { | |
6942 uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type; | |
6943 uint64_t encoded_tag = upb_vencode32(tag); | |
6944 /* No tag should be greater than 5 bytes. */ | |
6945 assert(encoded_tag <= 0xffffffffff); | |
6946 return encoded_tag; | |
6947 } | |
6948 | |
6949 static void putchecktag(compiler *c, const upb_fielddef *f, | |
6950 int wire_type, int dest) { | |
6951 uint64_t tag = get_encoded_tag(f, wire_type); | |
6952 switch (upb_value_size(tag)) { | |
6953 case 1: | |
6954 putop(c, OP_TAG1, dest, tag); | |
6955 break; | |
6956 case 2: | |
6957 putop(c, OP_TAG2, dest, tag); | |
6958 break; | |
6959 default: | |
6960 putop(c, OP_TAGN, dest, tag); | |
6961 break; | |
6962 } | |
6963 } | |
6964 | |
6965 static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { | |
6966 upb_selector_t selector; | |
6967 bool ok = upb_handlers_getselector(f, type, &selector); | |
6968 UPB_ASSERT_VAR(ok, ok); | |
6969 return selector; | |
6970 } | |
6971 | |
6972 /* Takes an existing, primary dispatch table entry and repacks it with a | |
6973 * different alternate wire type. Called when we are inserting a secondary | |
6974 * dispatch table entry for an alternate wire type. */ | |
6975 static uint64_t repack(uint64_t dispatch, int new_wt2) { | |
6976 uint64_t ofs; | |
6977 uint8_t wt1; | |
6978 uint8_t old_wt2; | |
6979 upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2); | |
6980 assert(old_wt2 == NO_WIRE_TYPE); /* wt2 should not be set yet. */ | |
6981 return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2); | |
6982 } | |
6983 | |
6984 /* Marks the current bytecode position as the dispatch target for this message, | |
6985 * field, and wire type. */ | |
6986 static void dispatchtarget(compiler *c, upb_pbdecodermethod *method, | |
6987 const upb_fielddef *f, int wire_type) { | |
6988 /* Offset is relative to msg base. */ | |
6989 uint64_t ofs = pcofs(c) - method->code_base.ofs; | |
6990 uint32_t fn = upb_fielddef_number(f); | |
6991 upb_inttable *d = &method->dispatch; | |
6992 upb_value v; | |
6993 if (upb_inttable_remove(d, fn, &v)) { | |
6994 /* TODO: prioritize based on packed setting in .proto file. */ | |
6995 uint64_t repacked = repack(upb_value_getuint64(v), wire_type); | |
6996 upb_inttable_insert(d, fn, upb_value_uint64(repacked)); | |
6997 upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs)); | |
6998 } else { | |
6999 uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE); | |
7000 upb_inttable_insert(d, fn, upb_value_uint64(val)); | |
7001 } | |
7002 } | |
7003 | |
7004 static void putpush(compiler *c, const upb_fielddef *f) { | |
7005 if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) { | |
7006 putop(c, OP_PUSHLENDELIM); | |
7007 } else { | |
7008 uint32_t fn = upb_fielddef_number(f); | |
7009 if (fn >= 1 << 24) { | |
7010 putop(c, OP_PUSHTAGDELIM, 0); | |
7011 putop(c, OP_SETBIGGROUPNUM, fn); | |
7012 } else { | |
7013 putop(c, OP_PUSHTAGDELIM, fn); | |
7014 } | |
7015 } | |
7016 } | |
7017 | |
7018 static upb_pbdecodermethod *find_submethod(const compiler *c, | |
7019 const upb_pbdecodermethod *method, | |
7020 const upb_fielddef *f) { | |
7021 const upb_handlers *sub = | |
7022 upb_handlers_getsubhandlers(method->dest_handlers_, f); | |
7023 upb_value v; | |
7024 return upb_inttable_lookupptr(&c->group->methods, sub, &v) | |
7025 ? upb_value_getptr(v) | |
7026 : NULL; | |
7027 } | |
7028 | |
7029 static void putsel(compiler *c, opcode op, upb_selector_t sel, | |
7030 const upb_handlers *h) { | |
7031 if (upb_handlers_gethandler(h, sel)) { | |
7032 putop(c, op, sel); | |
7033 } | |
7034 } | |
7035 | |
7036 /* Puts an opcode to call a callback, but only if a callback actually exists for | |
7037 * this field and handler type. */ | |
7038 static void maybeput(compiler *c, opcode op, const upb_handlers *h, | |
7039 const upb_fielddef *f, upb_handlertype_t type) { | |
7040 putsel(c, op, getsel(f, type), h); | |
7041 } | |
7042 | |
7043 static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) { | |
7044 if (!upb_fielddef_lazy(f)) | |
7045 return false; | |
7046 | |
7047 return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR)) || | |
7048 upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING)) || | |
7049 upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR)); | |
7050 } | |
7051 | |
7052 | |
7053 /* bytecode compiler code generation ******************************************/ | |
7054 | |
7055 /* Symbolic names for our local labels. */ | |
7056 #define LABEL_LOOPSTART 1 /* Top of a repeated field loop. */ | |
7057 #define LABEL_LOOPBREAK 2 /* To jump out of a repeated loop */ | |
7058 #define LABEL_FIELD 3 /* Jump backward to find the most recent field. */ | |
7059 #define LABEL_ENDMSG 4 /* To reach the OP_ENDMSG instr for this msg. */ | |
7060 | |
7061 /* Generates bytecode to parse a single non-lazy message field. */ | |
7062 static void generate_msgfield(compiler *c, const upb_fielddef *f, | |
7063 upb_pbdecodermethod *method) { | |
7064 const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); | |
7065 const upb_pbdecodermethod *sub_m = find_submethod(c, method, f); | |
7066 int wire_type; | |
7067 | |
7068 if (!sub_m) { | |
7069 /* Don't emit any code for this field at all; it will be parsed as an | |
7070 * unknown field. */ | |
7071 return; | |
7072 } | |
7073 | |
7074 label(c, LABEL_FIELD); | |
7075 | |
7076 wire_type = | |
7077 (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) | |
7078 ? UPB_WIRE_TYPE_DELIMITED | |
7079 : UPB_WIRE_TYPE_START_GROUP; | |
7080 | |
7081 if (upb_fielddef_isseq(f)) { | |
7082 putop(c, OP_CHECKDELIM, LABEL_ENDMSG); | |
7083 putchecktag(c, f, wire_type, LABEL_DISPATCH); | |
7084 dispatchtarget(c, method, f, wire_type); | |
7085 putop(c, OP_PUSHTAGDELIM, 0); | |
7086 putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); | |
7087 label(c, LABEL_LOOPSTART); | |
7088 putpush(c, f); | |
7089 putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); | |
7090 putop(c, OP_CALL, sub_m); | |
7091 putop(c, OP_POP); | |
7092 maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); | |
7093 if (wire_type == UPB_WIRE_TYPE_DELIMITED) { | |
7094 putop(c, OP_SETDELIM); | |
7095 } | |
7096 putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); | |
7097 putchecktag(c, f, wire_type, LABEL_LOOPBREAK); | |
7098 putop(c, OP_BRANCH, -LABEL_LOOPSTART); | |
7099 label(c, LABEL_LOOPBREAK); | |
7100 putop(c, OP_POP); | |
7101 maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); | |
7102 } else { | |
7103 putop(c, OP_CHECKDELIM, LABEL_ENDMSG); | |
7104 putchecktag(c, f, wire_type, LABEL_DISPATCH); | |
7105 dispatchtarget(c, method, f, wire_type); | |
7106 putpush(c, f); | |
7107 putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); | |
7108 putop(c, OP_CALL, sub_m); | |
7109 putop(c, OP_POP); | |
7110 maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); | |
7111 if (wire_type == UPB_WIRE_TYPE_DELIMITED) { | |
7112 putop(c, OP_SETDELIM); | |
7113 } | |
7114 } | |
7115 } | |
7116 | |
7117 /* Generates bytecode to parse a single string or lazy submessage field. */ | |
7118 static void generate_delimfield(compiler *c, const upb_fielddef *f, | |
7119 upb_pbdecodermethod *method) { | |
7120 const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); | |
7121 | |
7122 label(c, LABEL_FIELD); | |
7123 if (upb_fielddef_isseq(f)) { | |
7124 putop(c, OP_CHECKDELIM, LABEL_ENDMSG); | |
7125 putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); | |
7126 dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); | |
7127 putop(c, OP_PUSHTAGDELIM, 0); | |
7128 putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); | |
7129 label(c, LABEL_LOOPSTART); | |
7130 putop(c, OP_PUSHLENDELIM); | |
7131 putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); | |
7132 /* Need to emit even if no handler to skip past the string. */ | |
7133 putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); | |
7134 putop(c, OP_POP); | |
7135 maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); | |
7136 putop(c, OP_SETDELIM); | |
7137 putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); | |
7138 putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK); | |
7139 putop(c, OP_BRANCH, -LABEL_LOOPSTART); | |
7140 label(c, LABEL_LOOPBREAK); | |
7141 putop(c, OP_POP); | |
7142 maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); | |
7143 } else { | |
7144 putop(c, OP_CHECKDELIM, LABEL_ENDMSG); | |
7145 putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); | |
7146 dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); | |
7147 putop(c, OP_PUSHLENDELIM); | |
7148 putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); | |
7149 putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); | |
7150 putop(c, OP_POP); | |
7151 maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); | |
7152 putop(c, OP_SETDELIM); | |
7153 } | |
7154 } | |
7155 | |
7156 /* Generates bytecode to parse a single primitive field. */ | |
7157 static void generate_primitivefield(compiler *c, const upb_fielddef *f, | |
7158 upb_pbdecodermethod *method) { | |
7159 const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); | |
7160 upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f); | |
7161 opcode parse_type; | |
7162 upb_selector_t sel; | |
7163 int wire_type; | |
7164 | |
7165 label(c, LABEL_FIELD); | |
7166 | |
7167 /* From a decoding perspective, ENUM is the same as INT32. */ | |
7168 if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM) | |
7169 descriptor_type = UPB_DESCRIPTOR_TYPE_INT32; | |
7170 | |
7171 parse_type = (opcode)descriptor_type; | |
7172 | |
7173 /* TODO(haberman): generate packed or non-packed first depending on "packed" | |
7174 * setting in the fielddef. This will favor (in speed) whichever was | |
7175 * specified. */ | |
7176 | |
7177 assert((int)parse_type >= 0 && parse_type <= OP_MAX); | |
7178 sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); | |
7179 wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; | |
7180 if (upb_fielddef_isseq(f)) { | |
7181 putop(c, OP_CHECKDELIM, LABEL_ENDMSG); | |
7182 putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); | |
7183 dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); | |
7184 putop(c, OP_PUSHLENDELIM); | |
7185 putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Packed */ | |
7186 label(c, LABEL_LOOPSTART); | |
7187 putop(c, parse_type, sel); | |
7188 putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); | |
7189 putop(c, OP_BRANCH, -LABEL_LOOPSTART); | |
7190 dispatchtarget(c, method, f, wire_type); | |
7191 putop(c, OP_PUSHTAGDELIM, 0); | |
7192 putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Non-packed */ | |
7193 label(c, LABEL_LOOPSTART); | |
7194 putop(c, parse_type, sel); | |
7195 putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); | |
7196 putchecktag(c, f, wire_type, LABEL_LOOPBREAK); | |
7197 putop(c, OP_BRANCH, -LABEL_LOOPSTART); | |
7198 label(c, LABEL_LOOPBREAK); | |
7199 putop(c, OP_POP); /* Packed and non-packed join. */ | |
7200 maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); | |
7201 putop(c, OP_SETDELIM); /* Could remove for non-packed by dup ENDSEQ. */ | |
7202 } else { | |
7203 putop(c, OP_CHECKDELIM, LABEL_ENDMSG); | |
7204 putchecktag(c, f, wire_type, LABEL_DISPATCH); | |
7205 dispatchtarget(c, method, f, wire_type); | |
7206 putop(c, parse_type, sel); | |
7207 } | |
7208 } | |
7209 | |
7210 /* Adds bytecode for parsing the given message to the given decoderplan, | |
7211 * while adding all dispatch targets to this message's dispatch table. */ | |
7212 static void compile_method(compiler *c, upb_pbdecodermethod *method) { | |
7213 const upb_handlers *h; | |
7214 const upb_msgdef *md; | |
7215 uint32_t* start_pc; | |
7216 upb_msg_field_iter i; | |
7217 upb_value val; | |
7218 | |
7219 assert(method); | |
7220 | |
7221 /* Clear all entries in the dispatch table. */ | |
7222 upb_inttable_uninit(&method->dispatch); | |
7223 upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64); | |
7224 | |
7225 h = upb_pbdecodermethod_desthandlers(method); | |
7226 md = upb_handlers_msgdef(h); | |
7227 | |
7228 method->code_base.ofs = pcofs(c); | |
7229 putop(c, OP_SETDISPATCH, &method->dispatch); | |
7230 putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h); | |
7231 label(c, LABEL_FIELD); | |
7232 start_pc = c->pc; | |
7233 for(upb_msg_field_begin(&i, md); | |
7234 !upb_msg_field_done(&i); | |
7235 upb_msg_field_next(&i)) { | |
7236 const upb_fielddef *f = upb_msg_iter_field(&i); | |
7237 upb_fieldtype_t type = upb_fielddef_type(f); | |
7238 | |
7239 if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) { | |
7240 generate_msgfield(c, f, method); | |
7241 } else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES || | |
7242 type == UPB_TYPE_MESSAGE) { | |
7243 generate_delimfield(c, f, method); | |
7244 } else { | |
7245 generate_primitivefield(c, f, method); | |
7246 } | |
7247 } | |
7248 | |
7249 /* If there were no fields, or if no handlers were defined, we need to | |
7250 * generate a non-empty loop body so that we can at least dispatch for unknown | |
7251 * fields and check for the end of the message. */ | |
7252 if (c->pc == start_pc) { | |
7253 /* Check for end-of-message. */ | |
7254 putop(c, OP_CHECKDELIM, LABEL_ENDMSG); | |
7255 /* Unconditionally dispatch. */ | |
7256 putop(c, OP_DISPATCH, 0); | |
7257 } | |
7258 | |
7259 /* For now we just loop back to the last field of the message (or if none, | |
7260 * the DISPATCH opcode for the message). */ | |
7261 putop(c, OP_BRANCH, -LABEL_FIELD); | |
7262 | |
7263 /* Insert both a label and a dispatch table entry for this end-of-msg. */ | |
7264 label(c, LABEL_ENDMSG); | |
7265 val = upb_value_uint64(pcofs(c) - method->code_base.ofs); | |
7266 upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val); | |
7267 | |
7268 putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h); | |
7269 putop(c, OP_RET); | |
7270 | |
7271 upb_inttable_compact(&method->dispatch); | |
7272 } | |
7273 | |
7274 /* Populate "methods" with new upb_pbdecodermethod objects reachable from "h". | |
7275 * Returns the method for these handlers. | |
7276 * | |
7277 * Generates a new method for every destination handlers reachable from "h". */ | |
7278 static void find_methods(compiler *c, const upb_handlers *h) { | |
7279 upb_value v; | |
7280 upb_msg_field_iter i; | |
7281 const upb_msgdef *md; | |
7282 | |
7283 if (upb_inttable_lookupptr(&c->group->methods, h, &v)) | |
7284 return; | |
7285 newmethod(h, c->group); | |
7286 | |
7287 /* Find submethods. */ | |
7288 md = upb_handlers_msgdef(h); | |
7289 for(upb_msg_field_begin(&i, md); | |
7290 !upb_msg_field_done(&i); | |
7291 upb_msg_field_next(&i)) { | |
7292 const upb_fielddef *f = upb_msg_iter_field(&i); | |
7293 const upb_handlers *sub_h; | |
7294 if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE && | |
7295 (sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) { | |
7296 /* We only generate a decoder method for submessages with handlers. | |
7297 * Others will be parsed as unknown fields. */ | |
7298 find_methods(c, sub_h); | |
7299 } | |
7300 } | |
7301 } | |
7302 | |
7303 /* (Re-)compile bytecode for all messages in "msgs." | |
7304 * Overwrites any existing bytecode in "c". */ | |
7305 static void compile_methods(compiler *c) { | |
7306 upb_inttable_iter i; | |
7307 | |
7308 /* Start over at the beginning of the bytecode. */ | |
7309 c->pc = c->group->bytecode; | |
7310 | |
7311 upb_inttable_begin(&i, &c->group->methods); | |
7312 for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
7313 upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); | |
7314 compile_method(c, method); | |
7315 } | |
7316 } | |
7317 | |
7318 static void set_bytecode_handlers(mgroup *g) { | |
7319 upb_inttable_iter i; | |
7320 upb_inttable_begin(&i, &g->methods); | |
7321 for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
7322 upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i)); | |
7323 upb_byteshandler *h = &m->input_handler_; | |
7324 | |
7325 m->code_base.ptr = g->bytecode + m->code_base.ofs; | |
7326 | |
7327 upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr); | |
7328 upb_byteshandler_setstring(h, upb_pbdecoder_decode, g); | |
7329 upb_byteshandler_setendstr(h, upb_pbdecoder_end, m); | |
7330 } | |
7331 } | |
7332 | |
7333 | |
7334 /* JIT setup. *****************************************************************/ | |
7335 | |
7336 #ifdef UPB_USE_JIT_X64 | |
7337 | |
7338 static void sethandlers(mgroup *g, bool allowjit) { | |
7339 g->jit_code = NULL; | |
7340 if (allowjit) { | |
7341 /* Compile byte-code into machine code, create handlers. */ | |
7342 upb_pbdecoder_jit(g); | |
7343 } else { | |
7344 set_bytecode_handlers(g); | |
7345 } | |
7346 } | |
7347 | |
7348 #else /* UPB_USE_JIT_X64 */ | |
7349 | |
7350 static void sethandlers(mgroup *g, bool allowjit) { | |
7351 /* No JIT compiled in; use bytecode handlers unconditionally. */ | |
7352 UPB_UNUSED(allowjit); | |
7353 set_bytecode_handlers(g); | |
7354 } | |
7355 | |
7356 #endif /* UPB_USE_JIT_X64 */ | |
7357 | |
7358 | |
7359 /* TODO(haberman): allow this to be constructed for an arbitrary set of dest | |
7360 * handlers and other mgroups (but verify we have a transitive closure). */ | |
7361 const mgroup *mgroup_new(const upb_handlers *dest, bool allowjit, bool lazy, | |
7362 const void *owner) { | |
7363 mgroup *g; | |
7364 compiler *c; | |
7365 | |
7366 UPB_UNUSED(allowjit); | |
7367 assert(upb_handlers_isfrozen(dest)); | |
7368 | |
7369 g = newgroup(owner); | |
7370 c = newcompiler(g, lazy); | |
7371 find_methods(c, dest); | |
7372 | |
7373 /* We compile in two passes: | |
7374 * 1. all messages are assigned relative offsets from the beginning of the | |
7375 * bytecode (saved in method->code_base). | |
7376 * 2. forwards OP_CALL instructions can be correctly linked since message | |
7377 * offsets have been previously assigned. | |
7378 * | |
7379 * Could avoid the second pass by linking OP_CALL instructions somehow. */ | |
7380 compile_methods(c); | |
7381 compile_methods(c); | |
7382 g->bytecode_end = c->pc; | |
7383 freecompiler(c); | |
7384 | |
7385 #ifdef UPB_DUMP_BYTECODE | |
7386 { | |
7387 FILE *f = fopen("/tmp/upb-bytecode", "wb"); | |
7388 assert(f); | |
7389 dumpbc(g->bytecode, g->bytecode_end, stderr); | |
7390 dumpbc(g->bytecode, g->bytecode_end, f); | |
7391 fclose(f); | |
7392 } | |
7393 #endif | |
7394 | |
7395 sethandlers(g, allowjit); | |
7396 return g; | |
7397 } | |
7398 | |
7399 | |
7400 /* upb_pbcodecache ************************************************************/ | |
7401 | |
7402 void upb_pbcodecache_init(upb_pbcodecache *c) { | |
7403 upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR); | |
7404 c->allow_jit_ = true; | |
7405 } | |
7406 | |
7407 void upb_pbcodecache_uninit(upb_pbcodecache *c) { | |
7408 upb_inttable_iter i; | |
7409 upb_inttable_begin(&i, &c->groups); | |
7410 for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { | |
7411 const mgroup *group = upb_value_getconstptr(upb_inttable_iter_value(&i)); | |
7412 mgroup_unref(group, c); | |
7413 } | |
7414 upb_inttable_uninit(&c->groups); | |
7415 } | |
7416 | |
7417 bool upb_pbcodecache_allowjit(const upb_pbcodecache *c) { | |
7418 return c->allow_jit_; | |
7419 } | |
7420 | |
7421 bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow) { | |
7422 if (upb_inttable_count(&c->groups) > 0) | |
7423 return false; | |
7424 c->allow_jit_ = allow; | |
7425 return true; | |
7426 } | |
7427 | |
7428 const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod( | |
7429 upb_pbcodecache *c, const upb_pbdecodermethodopts *opts) { | |
7430 upb_value v; | |
7431 bool ok; | |
7432 | |
7433 /* Right now we build a new DecoderMethod every time. | |
7434 * TODO(haberman): properly cache methods by their true key. */ | |
7435 const mgroup *g = mgroup_new(opts->handlers, c->allow_jit_, opts->lazy, c); | |
7436 upb_inttable_push(&c->groups, upb_value_constptr(g)); | |
7437 | |
7438 ok = upb_inttable_lookupptr(&g->methods, opts->handlers, &v); | |
7439 UPB_ASSERT_VAR(ok, ok); | |
7440 return upb_value_getptr(v); | |
7441 } | |
7442 | |
7443 | |
7444 /* upb_pbdecodermethodopts ****************************************************/ | |
7445 | |
7446 void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts, | |
7447 const upb_handlers *h) { | |
7448 opts->handlers = h; | |
7449 opts->lazy = false; | |
7450 } | |
7451 | |
7452 void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy) { | |
7453 opts->lazy = lazy; | |
7454 } | |
7455 /* | |
7456 ** upb::Decoder (Bytecode Decoder VM) | |
7457 ** | |
7458 ** Bytecode must previously have been generated using the bytecode compiler in | |
7459 ** compile_decoder.c. This decoder then walks through the bytecode op-by-op to | |
7460 ** parse the input. | |
7461 ** | |
7462 ** Decoding is fully resumable; we just keep a pointer to the current bytecode | |
7463 ** instruction and resume from there. A fair amount of the logic here is to | |
7464 ** handle the fact that values can span buffer seams and we have to be able to | |
7465 ** be capable of suspending/resuming from any byte in the stream. This | |
7466 ** sometimes requires keeping a few trailing bytes from the last buffer around | |
7467 ** in the "residual" buffer. | |
7468 */ | |
7469 | |
7470 #include <inttypes.h> | |
7471 #include <stddef.h> | |
7472 | |
7473 #ifdef UPB_DUMP_BYTECODE | |
7474 #include <stdio.h> | |
7475 #endif | |
7476 | |
7477 #define CHECK_SUSPEND(x) if (!(x)) return upb_pbdecoder_suspend(d); | |
7478 | |
7479 /* Error messages that are shared between the bytecode and JIT decoders. */ | |
7480 const char *kPbDecoderStackOverflow = "Nesting too deep."; | |
7481 | |
7482 /* Error messages shared within this file. */ | |
7483 static const char *kUnterminatedVarint = "Unterminated varint."; | |
7484 | |
7485 /* upb_pbdecoder **************************************************************/ | |
7486 | |
7487 static opcode halt = OP_HALT; | |
7488 | |
7489 /* Whether an op consumes any of the input buffer. */ | |
7490 static bool consumes_input(opcode op) { | |
7491 switch (op) { | |
7492 case OP_SETDISPATCH: | |
7493 case OP_STARTMSG: | |
7494 case OP_ENDMSG: | |
7495 case OP_STARTSEQ: | |
7496 case OP_ENDSEQ: | |
7497 case OP_STARTSUBMSG: | |
7498 case OP_ENDSUBMSG: | |
7499 case OP_STARTSTR: | |
7500 case OP_ENDSTR: | |
7501 case OP_PUSHTAGDELIM: | |
7502 case OP_POP: | |
7503 case OP_SETDELIM: | |
7504 case OP_SETBIGGROUPNUM: | |
7505 case OP_CHECKDELIM: | |
7506 case OP_CALL: | |
7507 case OP_RET: | |
7508 case OP_BRANCH: | |
7509 return false; | |
7510 default: | |
7511 return true; | |
7512 } | |
7513 } | |
7514 | |
7515 static bool in_residual_buf(const upb_pbdecoder *d, const char *p); | |
7516 | |
7517 /* It's unfortunate that we have to micro-manage the compiler with | |
7518 * UPB_FORCEINLINE and UPB_NOINLINE, especially since this tuning is necessarily | |
7519 * specific to one hardware configuration. But empirically on a Core i7, | |
7520 * performance increases 30-50% with these annotations. Every instance where | |
7521 * these appear, gcc 4.2.1 made the wrong decision and degraded performance in | |
7522 * benchmarks. */ | |
7523 | |
7524 static void seterr(upb_pbdecoder *d, const char *msg) { | |
7525 upb_status status = UPB_STATUS_INIT; | |
7526 upb_status_seterrmsg(&status, msg); | |
7527 upb_env_reporterror(d->env, &status); | |
7528 } | |
7529 | |
7530 void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg) { | |
7531 seterr(d, msg); | |
7532 } | |
7533 | |
7534 | |
7535 /* Buffering ******************************************************************/ | |
7536 | |
7537 /* We operate on one buffer at a time, which is either the user's buffer passed | |
7538 * to our "decode" callback or some residual bytes from the previous buffer. */ | |
7539 | |
7540 /* How many bytes can be safely read from d->ptr without reading past end-of-buf | |
7541 * or past the current delimited end. */ | |
7542 static size_t curbufleft(const upb_pbdecoder *d) { | |
7543 assert(d->data_end >= d->ptr); | |
7544 return d->data_end - d->ptr; | |
7545 } | |
7546 | |
7547 /* Overall stream offset of d->ptr. */ | |
7548 uint64_t offset(const upb_pbdecoder *d) { | |
7549 return d->bufstart_ofs + (d->ptr - d->buf); | |
7550 } | |
7551 | |
7552 /* Advances d->ptr. */ | |
7553 static void advance(upb_pbdecoder *d, size_t len) { | |
7554 assert(curbufleft(d) >= len); | |
7555 d->ptr += len; | |
7556 } | |
7557 | |
7558 static bool in_buf(const char *p, const char *buf, const char *end) { | |
7559 return p >= buf && p <= end; | |
7560 } | |
7561 | |
7562 static bool in_residual_buf(const upb_pbdecoder *d, const char *p) { | |
7563 return in_buf(p, d->residual, d->residual_end); | |
7564 } | |
7565 | |
7566 /* Calculates the delim_end value, which is affected by both the current buffer | |
7567 * and the parsing stack, so must be called whenever either is updated. */ | |
7568 static void set_delim_end(upb_pbdecoder *d) { | |
7569 size_t delim_ofs = d->top->end_ofs - d->bufstart_ofs; | |
7570 if (delim_ofs <= (size_t)(d->end - d->buf)) { | |
7571 d->delim_end = d->buf + delim_ofs; | |
7572 d->data_end = d->delim_end; | |
7573 } else { | |
7574 d->data_end = d->end; | |
7575 d->delim_end = NULL; | |
7576 } | |
7577 } | |
7578 | |
7579 static void switchtobuf(upb_pbdecoder *d, const char *buf, const char *end) { | |
7580 d->ptr = buf; | |
7581 d->buf = buf; | |
7582 d->end = end; | |
7583 set_delim_end(d); | |
7584 } | |
7585 | |
7586 static void advancetobuf(upb_pbdecoder *d, const char *buf, size_t len) { | |
7587 assert(curbufleft(d) == 0); | |
7588 d->bufstart_ofs += (d->end - d->buf); | |
7589 switchtobuf(d, buf, buf + len); | |
7590 } | |
7591 | |
7592 static void checkpoint(upb_pbdecoder *d) { | |
7593 /* The assertion here is in the interests of efficiency, not correctness. | |
7594 * We are trying to ensure that we don't checkpoint() more often than | |
7595 * necessary. */ | |
7596 assert(d->checkpoint != d->ptr); | |
7597 d->checkpoint = d->ptr; | |
7598 } | |
7599 | |
7600 /* Resumes the decoder from an initial state or from a previous suspend. */ | |
7601 int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf, | |
7602 size_t size, const upb_bufhandle *handle) { | |
7603 UPB_UNUSED(p); /* Useless; just for the benefit of the JIT. */ | |
7604 d->buf_param = buf; | |
7605 d->size_param = size; | |
7606 d->handle = handle; | |
7607 if (d->residual_end > d->residual) { | |
7608 /* We have residual bytes from the last buffer. */ | |
7609 assert(d->ptr == d->residual); | |
7610 } else { | |
7611 switchtobuf(d, buf, buf + size); | |
7612 } | |
7613 d->checkpoint = d->ptr; | |
7614 if (d->top->groupnum < 0) { | |
7615 CHECK_RETURN(upb_pbdecoder_skipunknown(d, -1, 0)); | |
7616 d->checkpoint = d->ptr; | |
7617 } | |
7618 return DECODE_OK; | |
7619 } | |
7620 | |
7621 /* Suspends the decoder at the last checkpoint, without saving any residual | |
7622 * bytes. If there are any unconsumed bytes, returns a short byte count. */ | |
7623 size_t upb_pbdecoder_suspend(upb_pbdecoder *d) { | |
7624 d->pc = d->last; | |
7625 if (d->checkpoint == d->residual) { | |
7626 /* Checkpoint was in residual buf; no user bytes were consumed. */ | |
7627 d->ptr = d->residual; | |
7628 return 0; | |
7629 } else { | |
7630 size_t consumed; | |
7631 assert(!in_residual_buf(d, d->checkpoint)); | |
7632 assert(d->buf == d->buf_param); | |
7633 | |
7634 consumed = d->checkpoint - d->buf; | |
7635 d->bufstart_ofs += consumed; | |
7636 d->residual_end = d->residual; | |
7637 switchtobuf(d, d->residual, d->residual_end); | |
7638 return consumed; | |
7639 } | |
7640 } | |
7641 | |
7642 /* Suspends the decoder at the last checkpoint, and saves any unconsumed | |
7643 * bytes in our residual buffer. This is necessary if we need more user | |
7644 * bytes to form a complete value, which might not be contiguous in the | |
7645 * user's buffers. Always consumes all user bytes. */ | |
7646 static size_t suspend_save(upb_pbdecoder *d) { | |
7647 /* We hit end-of-buffer before we could parse a full value. | |
7648 * Save any unconsumed bytes (if any) to the residual buffer. */ | |
7649 d->pc = d->last; | |
7650 | |
7651 if (d->checkpoint == d->residual) { | |
7652 /* Checkpoint was in residual buf; append user byte(s) to residual buf. */ | |
7653 assert((d->residual_end - d->residual) + d->size_param <= | |
7654 sizeof(d->residual)); | |
7655 if (!in_residual_buf(d, d->ptr)) { | |
7656 d->bufstart_ofs -= (d->residual_end - d->residual); | |
7657 } | |
7658 memcpy(d->residual_end, d->buf_param, d->size_param); | |
7659 d->residual_end += d->size_param; | |
7660 } else { | |
7661 /* Checkpoint was in user buf; old residual bytes not needed. */ | |
7662 size_t save; | |
7663 assert(!in_residual_buf(d, d->checkpoint)); | |
7664 | |
7665 d->ptr = d->checkpoint; | |
7666 save = curbufleft(d); | |
7667 assert(save <= sizeof(d->residual)); | |
7668 memcpy(d->residual, d->ptr, save); | |
7669 d->residual_end = d->residual + save; | |
7670 d->bufstart_ofs = offset(d); | |
7671 } | |
7672 | |
7673 switchtobuf(d, d->residual, d->residual_end); | |
7674 return d->size_param; | |
7675 } | |
7676 | |
7677 /* Skips "bytes" bytes in the stream, which may be more than available. If we | |
7678 * skip more bytes than are available, we return a long read count to the caller | |
7679 * indicating how many bytes the caller should skip before passing a new buffer. | |
7680 */ | |
7681 static int32_t skip(upb_pbdecoder *d, size_t bytes) { | |
7682 assert(!in_residual_buf(d, d->ptr) || d->size_param == 0); | |
7683 if (curbufleft(d) >= bytes) { | |
7684 /* Skipped data is all in current buffer. */ | |
7685 advance(d, bytes); | |
7686 return DECODE_OK; | |
7687 } else { | |
7688 /* Skipped data extends beyond currently available buffers. */ | |
7689 size_t skip; | |
7690 d->pc = d->last; | |
7691 skip = bytes - curbufleft(d); | |
7692 d->bufstart_ofs += (d->end - d->buf) + skip; | |
7693 d->residual_end = d->residual; | |
7694 switchtobuf(d, d->residual, d->residual_end); | |
7695 return d->size_param + skip; | |
7696 } | |
7697 } | |
7698 | |
7699 /* Copies the next "bytes" bytes into "buf" and advances the stream. | |
7700 * Requires that this many bytes are available in the current buffer. */ | |
7701 UPB_FORCEINLINE static void consumebytes(upb_pbdecoder *d, void *buf, | |
7702 size_t bytes) { | |
7703 assert(bytes <= curbufleft(d)); | |
7704 memcpy(buf, d->ptr, bytes); | |
7705 advance(d, bytes); | |
7706 } | |
7707 | |
7708 /* Slow path for getting the next "bytes" bytes, regardless of whether they are | |
7709 * available in the current buffer or not. Returns a status code as described | |
7710 * in decoder.int.h. */ | |
7711 UPB_NOINLINE static int32_t getbytes_slow(upb_pbdecoder *d, void *buf, | |
7712 size_t bytes) { | |
7713 const size_t avail = curbufleft(d); | |
7714 consumebytes(d, buf, avail); | |
7715 bytes -= avail; | |
7716 assert(bytes > 0); | |
7717 if (in_residual_buf(d, d->ptr)) { | |
7718 advancetobuf(d, d->buf_param, d->size_param); | |
7719 } | |
7720 if (curbufleft(d) >= bytes) { | |
7721 consumebytes(d, (char *)buf + avail, bytes); | |
7722 return DECODE_OK; | |
7723 } else if (d->data_end == d->delim_end) { | |
7724 seterr(d, "Submessage ended in the middle of a value or group"); | |
7725 return upb_pbdecoder_suspend(d); | |
7726 } else { | |
7727 return suspend_save(d); | |
7728 } | |
7729 } | |
7730 | |
7731 /* Gets the next "bytes" bytes, regardless of whether they are available in the | |
7732 * current buffer or not. Returns a status code as described in decoder.int.h. | |
7733 */ | |
7734 UPB_FORCEINLINE static int32_t getbytes(upb_pbdecoder *d, void *buf, | |
7735 size_t bytes) { | |
7736 if (curbufleft(d) >= bytes) { | |
7737 /* Buffer has enough data to satisfy. */ | |
7738 consumebytes(d, buf, bytes); | |
7739 return DECODE_OK; | |
7740 } else { | |
7741 return getbytes_slow(d, buf, bytes); | |
7742 } | |
7743 } | |
7744 | |
7745 UPB_NOINLINE static size_t peekbytes_slow(upb_pbdecoder *d, void *buf, | |
7746 size_t bytes) { | |
7747 size_t ret = curbufleft(d); | |
7748 memcpy(buf, d->ptr, ret); | |
7749 if (in_residual_buf(d, d->ptr)) { | |
7750 size_t copy = UPB_MIN(bytes - ret, d->size_param); | |
7751 memcpy((char *)buf + ret, d->buf_param, copy); | |
7752 ret += copy; | |
7753 } | |
7754 return ret; | |
7755 } | |
7756 | |
7757 UPB_FORCEINLINE static size_t peekbytes(upb_pbdecoder *d, void *buf, | |
7758 size_t bytes) { | |
7759 if (curbufleft(d) >= bytes) { | |
7760 memcpy(buf, d->ptr, bytes); | |
7761 return bytes; | |
7762 } else { | |
7763 return peekbytes_slow(d, buf, bytes); | |
7764 } | |
7765 } | |
7766 | |
7767 | |
7768 /* Decoding of wire types *****************************************************/ | |
7769 | |
7770 /* Slow path for decoding a varint from the current buffer position. | |
7771 * Returns a status code as described in decoder.int.h. */ | |
7772 UPB_NOINLINE int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, | |
7773 uint64_t *u64) { | |
7774 uint8_t byte = 0x80; | |
7775 int bitpos; | |
7776 *u64 = 0; | |
7777 for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) { | |
7778 int32_t ret = getbytes(d, &byte, 1); | |
7779 if (ret >= 0) return ret; | |
7780 *u64 |= (uint64_t)(byte & 0x7F) << bitpos; | |
7781 } | |
7782 if(bitpos == 70 && (byte & 0x80)) { | |
7783 seterr(d, kUnterminatedVarint); | |
7784 return upb_pbdecoder_suspend(d); | |
7785 } | |
7786 return DECODE_OK; | |
7787 } | |
7788 | |
7789 /* Decodes a varint from the current buffer position. | |
7790 * Returns a status code as described in decoder.int.h. */ | |
7791 UPB_FORCEINLINE static int32_t decode_varint(upb_pbdecoder *d, uint64_t *u64) { | |
7792 if (curbufleft(d) > 0 && !(*d->ptr & 0x80)) { | |
7793 *u64 = *d->ptr; | |
7794 advance(d, 1); | |
7795 return DECODE_OK; | |
7796 } else if (curbufleft(d) >= 10) { | |
7797 /* Fast case. */ | |
7798 upb_decoderet r = upb_vdecode_fast(d->ptr); | |
7799 if (r.p == NULL) { | |
7800 seterr(d, kUnterminatedVarint); | |
7801 return upb_pbdecoder_suspend(d); | |
7802 } | |
7803 advance(d, r.p - d->ptr); | |
7804 *u64 = r.val; | |
7805 return DECODE_OK; | |
7806 } else { | |
7807 /* Slow case -- varint spans buffer seam. */ | |
7808 return upb_pbdecoder_decode_varint_slow(d, u64); | |
7809 } | |
7810 } | |
7811 | |
7812 /* Decodes a 32-bit varint from the current buffer position. | |
7813 * Returns a status code as described in decoder.int.h. */ | |
7814 UPB_FORCEINLINE static int32_t decode_v32(upb_pbdecoder *d, uint32_t *u32) { | |
7815 uint64_t u64; | |
7816 int32_t ret = decode_varint(d, &u64); | |
7817 if (ret >= 0) return ret; | |
7818 if (u64 > UINT32_MAX) { | |
7819 seterr(d, "Unterminated 32-bit varint"); | |
7820 /* TODO(haberman) guarantee that this function return is >= 0 somehow, | |
7821 * so we know this path will always be treated as error by our caller. | |
7822 * Right now the size_t -> int32_t can overflow and produce negative values. | |
7823 */ | |
7824 *u32 = 0; | |
7825 return upb_pbdecoder_suspend(d); | |
7826 } | |
7827 *u32 = u64; | |
7828 return DECODE_OK; | |
7829 } | |
7830 | |
7831 /* Decodes a fixed32 from the current buffer position. | |
7832 * Returns a status code as described in decoder.int.h. | |
7833 * TODO: proper byte swapping for big-endian machines. */ | |
7834 UPB_FORCEINLINE static int32_t decode_fixed32(upb_pbdecoder *d, uint32_t *u32) { | |
7835 return getbytes(d, u32, 4); | |
7836 } | |
7837 | |
7838 /* Decodes a fixed64 from the current buffer position. | |
7839 * Returns a status code as described in decoder.int.h. | |
7840 * TODO: proper byte swapping for big-endian machines. */ | |
7841 UPB_FORCEINLINE static int32_t decode_fixed64(upb_pbdecoder *d, uint64_t *u64) { | |
7842 return getbytes(d, u64, 8); | |
7843 } | |
7844 | |
7845 /* Non-static versions of the above functions. | |
7846 * These are called by the JIT for fallback paths. */ | |
7847 int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32) { | |
7848 return decode_fixed32(d, u32); | |
7849 } | |
7850 | |
7851 int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64) { | |
7852 return decode_fixed64(d, u64); | |
7853 } | |
7854 | |
7855 static double as_double(uint64_t n) { double d; memcpy(&d, &n, 8); return d; } | |
7856 static float as_float(uint32_t n) { float f; memcpy(&f, &n, 4); return f; } | |
7857 | |
7858 /* Pushes a frame onto the decoder stack. */ | |
7859 static bool decoder_push(upb_pbdecoder *d, uint64_t end) { | |
7860 upb_pbdecoder_frame *fr = d->top; | |
7861 | |
7862 if (end > fr->end_ofs) { | |
7863 seterr(d, "Submessage end extends past enclosing submessage."); | |
7864 return false; | |
7865 } else if (fr == d->limit) { | |
7866 seterr(d, kPbDecoderStackOverflow); | |
7867 return false; | |
7868 } | |
7869 | |
7870 fr++; | |
7871 fr->end_ofs = end; | |
7872 fr->dispatch = NULL; | |
7873 fr->groupnum = 0; | |
7874 d->top = fr; | |
7875 return true; | |
7876 } | |
7877 | |
7878 static bool pushtagdelim(upb_pbdecoder *d, uint32_t arg) { | |
7879 /* While we expect to see an "end" tag (either ENDGROUP or a non-sequence | |
7880 * field number) prior to hitting any enclosing submessage end, pushing our | |
7881 * existing delim end prevents us from continuing to parse values from a | |
7882 * corrupt proto that doesn't give us an END tag in time. */ | |
7883 if (!decoder_push(d, d->top->end_ofs)) | |
7884 return false; | |
7885 d->top->groupnum = arg; | |
7886 return true; | |
7887 } | |
7888 | |
7889 /* Pops a frame from the decoder stack. */ | |
7890 static void decoder_pop(upb_pbdecoder *d) { d->top--; } | |
7891 | |
7892 UPB_NOINLINE int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, | |
7893 uint64_t expected) { | |
7894 uint64_t data = 0; | |
7895 size_t bytes = upb_value_size(expected); | |
7896 size_t read = peekbytes(d, &data, bytes); | |
7897 if (read == bytes && data == expected) { | |
7898 /* Advance past matched bytes. */ | |
7899 int32_t ok = getbytes(d, &data, read); | |
7900 UPB_ASSERT_VAR(ok, ok < 0); | |
7901 return DECODE_OK; | |
7902 } else if (read < bytes && memcmp(&data, &expected, read) == 0) { | |
7903 return suspend_save(d); | |
7904 } else { | |
7905 return DECODE_MISMATCH; | |
7906 } | |
7907 } | |
7908 | |
7909 int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum, | |
7910 uint8_t wire_type) { | |
7911 if (fieldnum >= 0) | |
7912 goto have_tag; | |
7913 | |
7914 while (true) { | |
7915 uint32_t tag; | |
7916 CHECK_RETURN(decode_v32(d, &tag)); | |
7917 wire_type = tag & 0x7; | |
7918 fieldnum = tag >> 3; | |
7919 | |
7920 have_tag: | |
7921 if (fieldnum == 0) { | |
7922 seterr(d, "Saw invalid field number (0)"); | |
7923 return upb_pbdecoder_suspend(d); | |
7924 } | |
7925 | |
7926 /* TODO: deliver to unknown field callback. */ | |
7927 switch (wire_type) { | |
7928 case UPB_WIRE_TYPE_32BIT: | |
7929 CHECK_RETURN(skip(d, 4)); | |
7930 break; | |
7931 case UPB_WIRE_TYPE_64BIT: | |
7932 CHECK_RETURN(skip(d, 8)); | |
7933 break; | |
7934 case UPB_WIRE_TYPE_VARINT: { | |
7935 uint64_t u64; | |
7936 CHECK_RETURN(decode_varint(d, &u64)); | |
7937 break; | |
7938 } | |
7939 case UPB_WIRE_TYPE_DELIMITED: { | |
7940 uint32_t len; | |
7941 CHECK_RETURN(decode_v32(d, &len)); | |
7942 CHECK_RETURN(skip(d, len)); | |
7943 break; | |
7944 } | |
7945 case UPB_WIRE_TYPE_START_GROUP: | |
7946 CHECK_SUSPEND(pushtagdelim(d, -fieldnum)); | |
7947 break; | |
7948 case UPB_WIRE_TYPE_END_GROUP: | |
7949 if (fieldnum == -d->top->groupnum) { | |
7950 decoder_pop(d); | |
7951 } else if (fieldnum == d->top->groupnum) { | |
7952 return DECODE_ENDGROUP; | |
7953 } else { | |
7954 seterr(d, "Unmatched ENDGROUP tag."); | |
7955 return upb_pbdecoder_suspend(d); | |
7956 } | |
7957 break; | |
7958 default: | |
7959 seterr(d, "Invalid wire type"); | |
7960 return upb_pbdecoder_suspend(d); | |
7961 } | |
7962 | |
7963 if (d->top->groupnum >= 0) { | |
7964 return DECODE_OK; | |
7965 } | |
7966 | |
7967 if (d->ptr == d->delim_end) { | |
7968 seterr(d, "Enclosing submessage ended in the middle of value or group"); | |
7969 /* Unlike most errors we notice during parsing, right now we have consumed | |
7970 * all of the user's input. | |
7971 * | |
7972 * There are three different options for how to handle this case: | |
7973 * | |
7974 * 1. decode() = short count, error = set | |
7975 * 2. decode() = full count, error = set | |
7976 * 3. decode() = full count, error NOT set, short count and error will | |
7977 * be reported on next call to decode() (or end()) | |
7978 * | |
7979 * (1) and (3) have the advantage that they preserve the invariant that an | |
7980 * error occurs iff decode() returns a short count. | |
7981 * | |
7982 * (2) and (3) have the advantage of reflecting the fact that all of the | |
7983 * bytes were in fact parsed (and possibly delivered to the unknown field | |
7984 * handler, in the future when that is supported). | |
7985 * | |
7986 * (3) requires extra state in the decode (a place to store the "permanent | |
7987 * error" that we should return for all subsequent attempts to decode). | |
7988 * But we likely want this anyway. | |
7989 * | |
7990 * Right now we do (1), thanks to the fact that we checkpoint *after* this | |
7991 * check. (3) may be a better choice long term; unclear at the moment. */ | |
7992 return upb_pbdecoder_suspend(d); | |
7993 } | |
7994 | |
7995 checkpoint(d); | |
7996 } | |
7997 } | |
7998 | |
7999 static void goto_endmsg(upb_pbdecoder *d) { | |
8000 upb_value v; | |
8001 bool found = upb_inttable_lookup32(d->top->dispatch, DISPATCH_ENDMSG, &v); | |
8002 UPB_ASSERT_VAR(found, found); | |
8003 d->pc = d->top->base + upb_value_getuint64(v); | |
8004 } | |
8005 | |
8006 /* Parses a tag and jumps to the corresponding bytecode instruction for this | |
8007 * field. | |
8008 * | |
8009 * If the tag is unknown (or the wire type doesn't match), parses the field as | |
8010 * unknown. If the tag is a valid ENDGROUP tag, jumps to the bytecode | |
8011 * instruction for the end of message. */ | |
8012 static int32_t dispatch(upb_pbdecoder *d) { | |
8013 upb_inttable *dispatch = d->top->dispatch; | |
8014 uint32_t tag; | |
8015 uint8_t wire_type; | |
8016 uint32_t fieldnum; | |
8017 upb_value val; | |
8018 int32_t ret; | |
8019 | |
8020 /* Decode tag. */ | |
8021 CHECK_RETURN(decode_v32(d, &tag)); | |
8022 wire_type = tag & 0x7; | |
8023 fieldnum = tag >> 3; | |
8024 | |
8025 /* Lookup tag. Because of packed/non-packed compatibility, we have to | |
8026 * check the wire type against two possibilities. */ | |
8027 if (fieldnum != DISPATCH_ENDMSG && | |
8028 upb_inttable_lookup32(dispatch, fieldnum, &val)) { | |
8029 uint64_t v = upb_value_getuint64(val); | |
8030 if (wire_type == (v & 0xff)) { | |
8031 d->pc = d->top->base + (v >> 16); | |
8032 return DECODE_OK; | |
8033 } else if (wire_type == ((v >> 8) & 0xff)) { | |
8034 bool found = | |
8035 upb_inttable_lookup(dispatch, fieldnum + UPB_MAX_FIELDNUMBER, &val); | |
8036 UPB_ASSERT_VAR(found, found); | |
8037 d->pc = d->top->base + upb_value_getuint64(val); | |
8038 return DECODE_OK; | |
8039 } | |
8040 } | |
8041 | |
8042 /* Unknown field or ENDGROUP. */ | |
8043 ret = upb_pbdecoder_skipunknown(d, fieldnum, wire_type); | |
8044 | |
8045 if (ret == DECODE_ENDGROUP) { | |
8046 goto_endmsg(d); | |
8047 return DECODE_OK; | |
8048 } else if (ret == DECODE_OK) { | |
8049 /* We just consumed some input, so we might now have consumed all the data | |
8050 * in the delmited region. Since every opcode that can trigger dispatch is | |
8051 * directly preceded by OP_CHECKDELIM, rewind to it now to re-check the | |
8052 * delimited end. */ | |
8053 d->pc = d->last - 1; | |
8054 assert(getop(*d->pc) == OP_CHECKDELIM); | |
8055 return DECODE_OK; | |
8056 } | |
8057 | |
8058 return ret; | |
8059 } | |
8060 | |
8061 /* Callers know that the stack is more than one deep because the opcodes that | |
8062 * call this only occur after PUSH operations. */ | |
8063 upb_pbdecoder_frame *outer_frame(upb_pbdecoder *d) { | |
8064 assert(d->top != d->stack); | |
8065 return d->top - 1; | |
8066 } | |
8067 | |
8068 | |
8069 /* The main decoding loop *****************************************************/ | |
8070 | |
8071 /* The main decoder VM function. Uses traditional bytecode dispatch loop with a | |
8072 * switch() statement. */ | |
8073 size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf, | |
8074 size_t size, const upb_bufhandle *handle) { | |
8075 upb_pbdecoder *d = closure; | |
8076 const mgroup *group = hd; | |
8077 int32_t result; | |
8078 assert(buf); | |
8079 result = upb_pbdecoder_resume(d, NULL, buf, size, handle); | |
8080 if (result == DECODE_ENDGROUP) { | |
8081 goto_endmsg(d); | |
8082 } | |
8083 CHECK_RETURN(result); | |
8084 UPB_UNUSED(group); | |
8085 | |
8086 #define VMCASE(op, code) \ | |
8087 case op: { code; if (consumes_input(op)) checkpoint(d); break; } | |
8088 #define PRIMITIVE_OP(type, wt, name, convfunc, ctype) \ | |
8089 VMCASE(OP_PARSE_ ## type, { \ | |
8090 ctype val; \ | |
8091 CHECK_RETURN(decode_ ## wt(d, &val)); \ | |
8092 upb_sink_put ## name(&d->top->sink, arg, (convfunc)(val)); \ | |
8093 }) | |
8094 | |
8095 while(1) { | |
8096 int32_t instruction; | |
8097 opcode op; | |
8098 uint32_t arg; | |
8099 int32_t longofs; | |
8100 | |
8101 d->last = d->pc; | |
8102 instruction = *d->pc++; | |
8103 op = getop(instruction); | |
8104 arg = instruction >> 8; | |
8105 longofs = arg; | |
8106 assert(d->ptr != d->residual_end); | |
8107 #ifdef UPB_DUMP_BYTECODE | |
8108 fprintf(stderr, "s_ofs=%d buf_ofs=%d data_rem=%d buf_rem=%d delim_rem=%d " | |
8109 "%x %s (%d)\n", | |
8110 (int)offset(d), | |
8111 (int)(d->ptr - d->buf), | |
8112 (int)(d->data_end - d->ptr), | |
8113 (int)(d->end - d->ptr), | |
8114 (int)((d->top->end_ofs - d->bufstart_ofs) - (d->ptr - d->buf)), | |
8115 (int)(d->pc - 1 - group->bytecode), | |
8116 upb_pbdecoder_getopname(op), | |
8117 arg); | |
8118 #endif | |
8119 switch (op) { | |
8120 /* Technically, we are losing data if we see a 32-bit varint that is not | |
8121 * properly sign-extended. We could detect this and error about the data | |
8122 * loss, but proto2 does not do this, so we pass. */ | |
8123 PRIMITIVE_OP(INT32, varint, int32, int32_t, uint64_t) | |
8124 PRIMITIVE_OP(INT64, varint, int64, int64_t, uint64_t) | |
8125 PRIMITIVE_OP(UINT32, varint, uint32, uint32_t, uint64_t) | |
8126 PRIMITIVE_OP(UINT64, varint, uint64, uint64_t, uint64_t) | |
8127 PRIMITIVE_OP(FIXED32, fixed32, uint32, uint32_t, uint32_t) | |
8128 PRIMITIVE_OP(FIXED64, fixed64, uint64, uint64_t, uint64_t) | |
8129 PRIMITIVE_OP(SFIXED32, fixed32, int32, int32_t, uint32_t) | |
8130 PRIMITIVE_OP(SFIXED64, fixed64, int64, int64_t, uint64_t) | |
8131 PRIMITIVE_OP(BOOL, varint, bool, bool, uint64_t) | |
8132 PRIMITIVE_OP(DOUBLE, fixed64, double, as_double, uint64_t) | |
8133 PRIMITIVE_OP(FLOAT, fixed32, float, as_float, uint32_t) | |
8134 PRIMITIVE_OP(SINT32, varint, int32, upb_zzdec_32, uint64_t) | |
8135 PRIMITIVE_OP(SINT64, varint, int64, upb_zzdec_64, uint64_t) | |
8136 | |
8137 VMCASE(OP_SETDISPATCH, | |
8138 d->top->base = d->pc - 1; | |
8139 memcpy(&d->top->dispatch, d->pc, sizeof(void*)); | |
8140 d->pc += sizeof(void*) / sizeof(uint32_t); | |
8141 ) | |
8142 VMCASE(OP_STARTMSG, | |
8143 CHECK_SUSPEND(upb_sink_startmsg(&d->top->sink)); | |
8144 ) | |
8145 VMCASE(OP_ENDMSG, | |
8146 CHECK_SUSPEND(upb_sink_endmsg(&d->top->sink, d->status)); | |
8147 ) | |
8148 VMCASE(OP_STARTSEQ, | |
8149 upb_pbdecoder_frame *outer = outer_frame(d); | |
8150 CHECK_SUSPEND(upb_sink_startseq(&outer->sink, arg, &d->top->sink)); | |
8151 ) | |
8152 VMCASE(OP_ENDSEQ, | |
8153 CHECK_SUSPEND(upb_sink_endseq(&d->top->sink, arg)); | |
8154 ) | |
8155 VMCASE(OP_STARTSUBMSG, | |
8156 upb_pbdecoder_frame *outer = outer_frame(d); | |
8157 CHECK_SUSPEND(upb_sink_startsubmsg(&outer->sink, arg, &d->top->sink)); | |
8158 ) | |
8159 VMCASE(OP_ENDSUBMSG, | |
8160 CHECK_SUSPEND(upb_sink_endsubmsg(&d->top->sink, arg)); | |
8161 ) | |
8162 VMCASE(OP_STARTSTR, | |
8163 uint32_t len = d->top->end_ofs - offset(d); | |
8164 upb_pbdecoder_frame *outer = outer_frame(d); | |
8165 CHECK_SUSPEND(upb_sink_startstr(&outer->sink, arg, len, &d->top->sink)); | |
8166 if (len == 0) { | |
8167 d->pc++; /* Skip OP_STRING. */ | |
8168 } | |
8169 ) | |
8170 VMCASE(OP_STRING, | |
8171 uint32_t len = curbufleft(d); | |
8172 size_t n = upb_sink_putstring(&d->top->sink, arg, d->ptr, len, handle); | |
8173 if (n > len) { | |
8174 if (n > d->top->end_ofs - offset(d)) { | |
8175 seterr(d, "Tried to skip past end of string."); | |
8176 return upb_pbdecoder_suspend(d); | |
8177 } else { | |
8178 int32_t ret = skip(d, n); | |
8179 /* This shouldn't return DECODE_OK, because n > len. */ | |
8180 assert(ret >= 0); | |
8181 return ret; | |
8182 } | |
8183 } | |
8184 advance(d, n); | |
8185 if (n < len || d->delim_end == NULL) { | |
8186 /* We aren't finished with this string yet. */ | |
8187 d->pc--; /* Repeat OP_STRING. */ | |
8188 if (n > 0) checkpoint(d); | |
8189 return upb_pbdecoder_suspend(d); | |
8190 } | |
8191 ) | |
8192 VMCASE(OP_ENDSTR, | |
8193 CHECK_SUSPEND(upb_sink_endstr(&d->top->sink, arg)); | |
8194 ) | |
8195 VMCASE(OP_PUSHTAGDELIM, | |
8196 CHECK_SUSPEND(pushtagdelim(d, arg)); | |
8197 ) | |
8198 VMCASE(OP_SETBIGGROUPNUM, | |
8199 d->top->groupnum = *d->pc++; | |
8200 ) | |
8201 VMCASE(OP_POP, | |
8202 assert(d->top > d->stack); | |
8203 decoder_pop(d); | |
8204 ) | |
8205 VMCASE(OP_PUSHLENDELIM, | |
8206 uint32_t len; | |
8207 CHECK_RETURN(decode_v32(d, &len)); | |
8208 CHECK_SUSPEND(decoder_push(d, offset(d) + len)); | |
8209 set_delim_end(d); | |
8210 ) | |
8211 VMCASE(OP_SETDELIM, | |
8212 set_delim_end(d); | |
8213 ) | |
8214 VMCASE(OP_CHECKDELIM, | |
8215 /* We are guaranteed of this assert because we never allow ourselves to | |
8216 * consume bytes beyond data_end, which covers delim_end when non-NULL. | |
8217 */ | |
8218 assert(!(d->delim_end && d->ptr > d->delim_end)); | |
8219 if (d->ptr == d->delim_end) | |
8220 d->pc += longofs; | |
8221 ) | |
8222 VMCASE(OP_CALL, | |
8223 d->callstack[d->call_len++] = d->pc; | |
8224 d->pc += longofs; | |
8225 ) | |
8226 VMCASE(OP_RET, | |
8227 assert(d->call_len > 0); | |
8228 d->pc = d->callstack[--d->call_len]; | |
8229 ) | |
8230 VMCASE(OP_BRANCH, | |
8231 d->pc += longofs; | |
8232 ) | |
8233 VMCASE(OP_TAG1, | |
8234 uint8_t expected; | |
8235 CHECK_SUSPEND(curbufleft(d) > 0); | |
8236 expected = (arg >> 8) & 0xff; | |
8237 if (*d->ptr == expected) { | |
8238 advance(d, 1); | |
8239 } else { | |
8240 int8_t shortofs; | |
8241 badtag: | |
8242 shortofs = arg; | |
8243 if (shortofs == LABEL_DISPATCH) { | |
8244 CHECK_RETURN(dispatch(d)); | |
8245 } else { | |
8246 d->pc += shortofs; | |
8247 break; /* Avoid checkpoint(). */ | |
8248 } | |
8249 } | |
8250 ) | |
8251 VMCASE(OP_TAG2, | |
8252 uint16_t expected; | |
8253 CHECK_SUSPEND(curbufleft(d) > 0); | |
8254 expected = (arg >> 8) & 0xffff; | |
8255 if (curbufleft(d) >= 2) { | |
8256 uint16_t actual; | |
8257 memcpy(&actual, d->ptr, 2); | |
8258 if (expected == actual) { | |
8259 advance(d, 2); | |
8260 } else { | |
8261 goto badtag; | |
8262 } | |
8263 } else { | |
8264 int32_t result = upb_pbdecoder_checktag_slow(d, expected); | |
8265 if (result == DECODE_MISMATCH) goto badtag; | |
8266 if (result >= 0) return result; | |
8267 } | |
8268 ) | |
8269 VMCASE(OP_TAGN, { | |
8270 uint64_t expected; | |
8271 int32_t result; | |
8272 memcpy(&expected, d->pc, 8); | |
8273 d->pc += 2; | |
8274 result = upb_pbdecoder_checktag_slow(d, expected); | |
8275 if (result == DECODE_MISMATCH) goto badtag; | |
8276 if (result >= 0) return result; | |
8277 }) | |
8278 VMCASE(OP_DISPATCH, { | |
8279 CHECK_RETURN(dispatch(d)); | |
8280 }) | |
8281 VMCASE(OP_HALT, { | |
8282 return size; | |
8283 }) | |
8284 } | |
8285 } | |
8286 } | |
8287 | |
8288 void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint) { | |
8289 upb_pbdecoder *d = closure; | |
8290 UPB_UNUSED(size_hint); | |
8291 d->top->end_ofs = UINT64_MAX; | |
8292 d->bufstart_ofs = 0; | |
8293 d->call_len = 1; | |
8294 d->callstack[0] = &halt; | |
8295 d->pc = pc; | |
8296 return d; | |
8297 } | |
8298 | |
8299 void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint) { | |
8300 upb_pbdecoder *d = closure; | |
8301 UPB_UNUSED(hd); | |
8302 UPB_UNUSED(size_hint); | |
8303 d->top->end_ofs = UINT64_MAX; | |
8304 d->bufstart_ofs = 0; | |
8305 d->call_len = 0; | |
8306 return d; | |
8307 } | |
8308 | |
8309 bool upb_pbdecoder_end(void *closure, const void *handler_data) { | |
8310 upb_pbdecoder *d = closure; | |
8311 const upb_pbdecodermethod *method = handler_data; | |
8312 uint64_t end; | |
8313 char dummy; | |
8314 #ifdef UPB_USE_JIT_X64 | |
8315 const mgroup *group = (const mgroup*)method->group; | |
8316 #endif | |
8317 | |
8318 if (d->residual_end > d->residual) { | |
8319 seterr(d, "Unexpected EOF"); | |
8320 return false; | |
8321 } | |
8322 | |
8323 if (d->top->end_ofs != UINT64_MAX) { | |
8324 seterr(d, "Unexpected EOF inside delimited string"); | |
8325 return false; | |
8326 } | |
8327 | |
8328 /* Message ends here. */ | |
8329 end = offset(d); | |
8330 d->top->end_ofs = end; | |
8331 | |
8332 #ifdef UPB_USE_JIT_X64 | |
8333 if (group->jit_code) { | |
8334 if (d->top != d->stack) | |
8335 d->stack->end_ofs = 0; | |
8336 group->jit_code(closure, method->code_base.ptr, &dummy, 0, NULL); | |
8337 } else | |
8338 #endif | |
8339 { | |
8340 const uint32_t *p = d->pc; | |
8341 d->stack->end_ofs = end; | |
8342 /* Check the previous bytecode, but guard against beginning. */ | |
8343 if (p != method->code_base.ptr) p--; | |
8344 if (getop(*p) == OP_CHECKDELIM) { | |
8345 /* Rewind from OP_TAG* to OP_CHECKDELIM. */ | |
8346 assert(getop(*d->pc) == OP_TAG1 || | |
8347 getop(*d->pc) == OP_TAG2 || | |
8348 getop(*d->pc) == OP_TAGN || | |
8349 getop(*d->pc) == OP_DISPATCH); | |
8350 d->pc = p; | |
8351 } | |
8352 upb_pbdecoder_decode(closure, handler_data, &dummy, 0, NULL); | |
8353 } | |
8354 | |
8355 if (d->call_len != 0) { | |
8356 seterr(d, "Unexpected EOF"); | |
8357 return false; | |
8358 } | |
8359 | |
8360 return true; | |
8361 } | |
8362 | |
8363 void upb_pbdecoder_reset(upb_pbdecoder *d) { | |
8364 d->top = d->stack; | |
8365 d->top->groupnum = 0; | |
8366 d->ptr = d->residual; | |
8367 d->buf = d->residual; | |
8368 d->end = d->residual; | |
8369 d->residual_end = d->residual; | |
8370 } | |
8371 | |
8372 static size_t stacksize(upb_pbdecoder *d, size_t entries) { | |
8373 UPB_UNUSED(d); | |
8374 return entries * sizeof(upb_pbdecoder_frame); | |
8375 } | |
8376 | |
8377 static size_t callstacksize(upb_pbdecoder *d, size_t entries) { | |
8378 UPB_UNUSED(d); | |
8379 | |
8380 #ifdef UPB_USE_JIT_X64 | |
8381 if (d->method_->is_native_) { | |
8382 /* Each native stack frame needs two pointers, plus we need a few frames for | |
8383 * the enter/exit trampolines. */ | |
8384 size_t ret = entries * sizeof(void*) * 2; | |
8385 ret += sizeof(void*) * 10; | |
8386 return ret; | |
8387 } | |
8388 #endif | |
8389 | |
8390 return entries * sizeof(uint32_t*); | |
8391 } | |
8392 | |
8393 upb_pbdecoder *upb_pbdecoder_create(upb_env *e, const upb_pbdecodermethod *m, | |
8394 upb_sink *sink) { | |
8395 const size_t default_max_nesting = 64; | |
8396 #ifndef NDEBUG | |
8397 size_t size_before = upb_env_bytesallocated(e); | |
8398 #endif | |
8399 | |
8400 upb_pbdecoder *d = upb_env_malloc(e, sizeof(upb_pbdecoder)); | |
8401 if (!d) return NULL; | |
8402 | |
8403 d->method_ = m; | |
8404 d->callstack = upb_env_malloc(e, callstacksize(d, default_max_nesting)); | |
8405 d->stack = upb_env_malloc(e, stacksize(d, default_max_nesting)); | |
8406 if (!d->stack || !d->callstack) { | |
8407 return NULL; | |
8408 } | |
8409 | |
8410 d->env = e; | |
8411 d->limit = d->stack + default_max_nesting - 1; | |
8412 d->stack_size = default_max_nesting; | |
8413 | |
8414 upb_pbdecoder_reset(d); | |
8415 upb_bytessink_reset(&d->input_, &m->input_handler_, d); | |
8416 | |
8417 assert(sink); | |
8418 if (d->method_->dest_handlers_) { | |
8419 if (sink->handlers != d->method_->dest_handlers_) | |
8420 return NULL; | |
8421 } | |
8422 upb_sink_reset(&d->top->sink, sink->handlers, sink->closure); | |
8423 | |
8424 /* If this fails, increase the value in decoder.h. */ | |
8425 assert(upb_env_bytesallocated(e) - size_before <= UPB_PB_DECODER_SIZE); | |
8426 return d; | |
8427 } | |
8428 | |
8429 uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d) { | |
8430 return offset(d); | |
8431 } | |
8432 | |
8433 const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d) { | |
8434 return d->method_; | |
8435 } | |
8436 | |
8437 upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d) { | |
8438 return &d->input_; | |
8439 } | |
8440 | |
8441 size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d) { | |
8442 return d->stack_size; | |
8443 } | |
8444 | |
8445 bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max) { | |
8446 assert(d->top >= d->stack); | |
8447 | |
8448 if (max < (size_t)(d->top - d->stack)) { | |
8449 /* Can't set a limit smaller than what we are currently at. */ | |
8450 return false; | |
8451 } | |
8452 | |
8453 if (max > d->stack_size) { | |
8454 /* Need to reallocate stack and callstack to accommodate. */ | |
8455 size_t old_size = stacksize(d, d->stack_size); | |
8456 size_t new_size = stacksize(d, max); | |
8457 void *p = upb_env_realloc(d->env, d->stack, old_size, new_size); | |
8458 if (!p) { | |
8459 return false; | |
8460 } | |
8461 d->stack = p; | |
8462 | |
8463 old_size = callstacksize(d, d->stack_size); | |
8464 new_size = callstacksize(d, max); | |
8465 p = upb_env_realloc(d->env, d->callstack, old_size, new_size); | |
8466 if (!p) { | |
8467 return false; | |
8468 } | |
8469 d->callstack = p; | |
8470 | |
8471 d->stack_size = max; | |
8472 } | |
8473 | |
8474 d->limit = d->stack + max - 1; | |
8475 return true; | |
8476 } | |
8477 /* | |
8478 ** upb::Encoder | |
8479 ** | |
8480 ** Since we are implementing pure handlers (ie. without any out-of-band access | |
8481 ** to pre-computed lengths), we have to buffer all submessages before we can | |
8482 ** emit even their first byte. | |
8483 ** | |
8484 ** Not knowing the size of submessages also means we can't write a perfect | |
8485 ** zero-copy implementation, even with buffering. Lengths are stored as | |
8486 ** varints, which means that we don't know how many bytes to reserve for the | |
8487 ** length until we know what the length is. | |
8488 ** | |
8489 ** This leaves us with three main choices: | |
8490 ** | |
8491 ** 1. buffer all submessage data in a temporary buffer, then copy it exactly | |
8492 ** once into the output buffer. | |
8493 ** | |
8494 ** 2. attempt to buffer data directly into the output buffer, estimating how | |
8495 ** many bytes each length will take. When our guesses are wrong, use | |
8496 ** memmove() to grow or shrink the allotted space. | |
8497 ** | |
8498 ** 3. buffer directly into the output buffer, allocating a max length | |
8499 ** ahead-of-time for each submessage length. If we overallocated, we waste | |
8500 ** space, but no memcpy() or memmove() is required. This approach requires | |
8501 ** defining a maximum size for submessages and rejecting submessages that | |
8502 ** exceed that size. | |
8503 ** | |
8504 ** (2) and (3) have the potential to have better performance, but they are more | |
8505 ** complicated and subtle to implement: | |
8506 ** | |
8507 ** (3) requires making an arbitrary choice of the maximum message size; it | |
8508 ** wastes space when submessages are shorter than this and fails | |
8509 ** completely when they are longer. This makes it more finicky and | |
8510 ** requires configuration based on the input. It also makes it impossible | |
8511 ** to perfectly match the output of reference encoders that always use the | |
8512 ** optimal amount of space for each length. | |
8513 ** | |
8514 ** (2) requires guessing the the size upfront, and if multiple lengths are | |
8515 ** guessed wrong the minimum required number of memmove() operations may | |
8516 ** be complicated to compute correctly. Implemented properly, it may have | |
8517 ** a useful amortized or average cost, but more investigation is required | |
8518 ** to determine this and what the optimal algorithm is to achieve it. | |
8519 ** | |
8520 ** (1) makes you always pay for exactly one copy, but its implementation is | |
8521 ** the simplest and its performance is predictable. | |
8522 ** | |
8523 ** So for now, we implement (1) only. If we wish to optimize later, we should | |
8524 ** be able to do it without affecting users. | |
8525 ** | |
8526 ** The strategy is to buffer the segments of data that do *not* depend on | |
8527 ** unknown lengths in one buffer, and keep a separate buffer of segment pointers | |
8528 ** and lengths. When the top-level submessage ends, we can go beginning to end, | |
8529 ** alternating the writing of lengths with memcpy() of the rest of the data. | |
8530 ** At the top level though, no buffering is required. | |
8531 */ | |
8532 | |
8533 | |
8534 #include <stdlib.h> | |
8535 | |
8536 /* The output buffer is divided into segments; a segment is a string of data | |
8537 * that is "ready to go" -- it does not need any varint lengths inserted into | |
8538 * the middle. The seams between segments are where varints will be inserted | |
8539 * once they are known. | |
8540 * | |
8541 * We also use the concept of a "run", which is a range of encoded bytes that | |
8542 * occur at a single submessage level. Every segment contains one or more runs. | |
8543 * | |
8544 * A segment can span messages. Consider: | |
8545 * | |
8546 * .--Submessage lengths---------. | |
8547 * | | | | |
8548 * | V V | |
8549 * V | |--------------- | |----------------- | |
8550 * Submessages: | |----------------------------------------------- | |
8551 * Top-level msg: ------------------------------------------------------------ | |
8552 * | |
8553 * Segments: ----- ------------------- ----------------- | |
8554 * Runs: *---- *--------------*--- *---------------- | |
8555 * (* marks the start) | |
8556 * | |
8557 * Note that the top-level menssage is not in any segment because it does not | |
8558 * have any length preceding it. | |
8559 * | |
8560 * A segment is only interrupted when another length needs to be inserted. So | |
8561 * observe how the second segment spans both the inner submessage and part of | |
8562 * the next enclosing message. */ | |
8563 typedef struct { | |
8564 uint32_t msglen; /* The length to varint-encode before this segment. */ | |
8565 uint32_t seglen; /* Length of the segment. */ | |
8566 } upb_pb_encoder_segment; | |
8567 | |
8568 struct upb_pb_encoder { | |
8569 upb_env *env; | |
8570 | |
8571 /* Our input and output. */ | |
8572 upb_sink input_; | |
8573 upb_bytessink *output_; | |
8574 | |
8575 /* The "subclosure" -- used as the inner closure as part of the bytessink | |
8576 * protocol. */ | |
8577 void *subc; | |
8578 | |
8579 /* The output buffer and limit, and our current write position. "buf" | |
8580 * initially points to "initbuf", but is dynamically allocated if we need to | |
8581 * grow beyond the initial size. */ | |
8582 char *buf, *ptr, *limit; | |
8583 | |
8584 /* The beginning of the current run, or undefined if we are at the top | |
8585 * level. */ | |
8586 char *runbegin; | |
8587 | |
8588 /* The list of segments we are accumulating. */ | |
8589 upb_pb_encoder_segment *segbuf, *segptr, *seglimit; | |
8590 | |
8591 /* The stack of enclosing submessages. Each entry in the stack points to the | |
8592 * segment where this submessage's length is being accumulated. */ | |
8593 int *stack, *top, *stacklimit; | |
8594 | |
8595 /* Depth of startmsg/endmsg calls. */ | |
8596 int depth; | |
8597 }; | |
8598 | |
8599 /* low-level buffering ********************************************************/ | |
8600 | |
8601 /* Low-level functions for interacting with the output buffer. */ | |
8602 | |
8603 /* TODO(haberman): handle pushback */ | |
8604 static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) { | |
8605 size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL); | |
8606 UPB_ASSERT_VAR(n, n == len); | |
8607 } | |
8608 | |
8609 static upb_pb_encoder_segment *top(upb_pb_encoder *e) { | |
8610 return &e->segbuf[*e->top]; | |
8611 } | |
8612 | |
8613 /* Call to ensure that at least "bytes" bytes are available for writing at | |
8614 * e->ptr. Returns false if the bytes could not be allocated. */ | |
8615 static bool reserve(upb_pb_encoder *e, size_t bytes) { | |
8616 if ((size_t)(e->limit - e->ptr) < bytes) { | |
8617 /* Grow buffer. */ | |
8618 char *new_buf; | |
8619 size_t needed = bytes + (e->ptr - e->buf); | |
8620 size_t old_size = e->limit - e->buf; | |
8621 | |
8622 size_t new_size = old_size; | |
8623 | |
8624 while (new_size < needed) { | |
8625 new_size *= 2; | |
8626 } | |
8627 | |
8628 new_buf = upb_env_realloc(e->env, e->buf, old_size, new_size); | |
8629 | |
8630 if (new_buf == NULL) { | |
8631 return false; | |
8632 } | |
8633 | |
8634 e->ptr = new_buf + (e->ptr - e->buf); | |
8635 e->runbegin = new_buf + (e->runbegin - e->buf); | |
8636 e->limit = new_buf + new_size; | |
8637 e->buf = new_buf; | |
8638 } | |
8639 | |
8640 return true; | |
8641 } | |
8642 | |
8643 /* Call when "bytes" bytes have been writte at e->ptr. The caller *must* have | |
8644 * previously called reserve() with at least this many bytes. */ | |
8645 static void encoder_advance(upb_pb_encoder *e, size_t bytes) { | |
8646 assert((size_t)(e->limit - e->ptr) >= bytes); | |
8647 e->ptr += bytes; | |
8648 } | |
8649 | |
8650 /* Call when all of the bytes for a handler have been written. Flushes the | |
8651 * bytes if possible and necessary, returning false if this failed. */ | |
8652 static bool commit(upb_pb_encoder *e) { | |
8653 if (!e->top) { | |
8654 /* We aren't inside a delimited region. Flush our accumulated bytes to | |
8655 * the output. | |
8656 * | |
8657 * TODO(haberman): in the future we may want to delay flushing for | |
8658 * efficiency reasons. */ | |
8659 putbuf(e, e->buf, e->ptr - e->buf); | |
8660 e->ptr = e->buf; | |
8661 } | |
8662 | |
8663 return true; | |
8664 } | |
8665 | |
8666 /* Writes the given bytes to the buffer, handling reserve/advance. */ | |
8667 static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) { | |
8668 if (!reserve(e, len)) { | |
8669 return false; | |
8670 } | |
8671 | |
8672 memcpy(e->ptr, data, len); | |
8673 encoder_advance(e, len); | |
8674 return true; | |
8675 } | |
8676 | |
8677 /* Finish the current run by adding the run totals to the segment and message | |
8678 * length. */ | |
8679 static void accumulate(upb_pb_encoder *e) { | |
8680 size_t run_len; | |
8681 assert(e->ptr >= e->runbegin); | |
8682 run_len = e->ptr - e->runbegin; | |
8683 e->segptr->seglen += run_len; | |
8684 top(e)->msglen += run_len; | |
8685 e->runbegin = e->ptr; | |
8686 } | |
8687 | |
8688 /* Call to indicate the start of delimited region for which the full length is | |
8689 * not yet known. All data will be buffered until the length is known. | |
8690 * Delimited regions may be nested; their lengths will all be tracked properly.
*/ | |
8691 static bool start_delim(upb_pb_encoder *e) { | |
8692 if (e->top) { | |
8693 /* We are already buffering, advance to the next segment and push it on the | |
8694 * stack. */ | |
8695 accumulate(e); | |
8696 | |
8697 if (++e->top == e->stacklimit) { | |
8698 /* TODO(haberman): grow stack? */ | |
8699 return false; | |
8700 } | |
8701 | |
8702 if (++e->segptr == e->seglimit) { | |
8703 /* Grow segment buffer. */ | |
8704 size_t old_size = | |
8705 (e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment); | |
8706 size_t new_size = old_size * 2; | |
8707 upb_pb_encoder_segment *new_buf = | |
8708 upb_env_realloc(e->env, e->segbuf, old_size, new_size); | |
8709 | |
8710 if (new_buf == NULL) { | |
8711 return false; | |
8712 } | |
8713 | |
8714 e->segptr = new_buf + (e->segptr - e->segbuf); | |
8715 e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment)); | |
8716 e->segbuf = new_buf; | |
8717 } | |
8718 } else { | |
8719 /* We were previously at the top level, start buffering. */ | |
8720 e->segptr = e->segbuf; | |
8721 e->top = e->stack; | |
8722 e->runbegin = e->ptr; | |
8723 } | |
8724 | |
8725 *e->top = e->segptr - e->segbuf; | |
8726 e->segptr->seglen = 0; | |
8727 e->segptr->msglen = 0; | |
8728 | |
8729 return true; | |
8730 } | |
8731 | |
8732 /* Call to indicate the end of a delimited region. We now know the length of | |
8733 * the delimited region. If we are not nested inside any other delimited | |
8734 * regions, we can now emit all of the buffered data we accumulated. */ | |
8735 static bool end_delim(upb_pb_encoder *e) { | |
8736 size_t msglen; | |
8737 accumulate(e); | |
8738 msglen = top(e)->msglen; | |
8739 | |
8740 if (e->top == e->stack) { | |
8741 /* All lengths are now available, emit all buffered data. */ | |
8742 char buf[UPB_PB_VARINT_MAX_LEN]; | |
8743 upb_pb_encoder_segment *s; | |
8744 const char *ptr = e->buf; | |
8745 for (s = e->segbuf; s <= e->segptr; s++) { | |
8746 size_t lenbytes = upb_vencode64(s->msglen, buf); | |
8747 putbuf(e, buf, lenbytes); | |
8748 putbuf(e, ptr, s->seglen); | |
8749 ptr += s->seglen; | |
8750 } | |
8751 | |
8752 e->ptr = e->buf; | |
8753 e->top = NULL; | |
8754 } else { | |
8755 /* Need to keep buffering; propagate length info into enclosing | |
8756 * submessages. */ | |
8757 --e->top; | |
8758 top(e)->msglen += msglen + upb_varint_size(msglen); | |
8759 } | |
8760 | |
8761 return true; | |
8762 } | |
8763 | |
8764 | |
8765 /* tag_t **********************************************************************/ | |
8766 | |
8767 /* A precomputed (pre-encoded) tag and length. */ | |
8768 | |
8769 typedef struct { | |
8770 uint8_t bytes; | |
8771 char tag[7]; | |
8772 } tag_t; | |
8773 | |
8774 /* Allocates a new tag for this field, and sets it in these handlerattr. */ | |
8775 static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt, | |
8776 upb_handlerattr *attr) { | |
8777 uint32_t n = upb_fielddef_number(f); | |
8778 | |
8779 tag_t *tag = malloc(sizeof(tag_t)); | |
8780 tag->bytes = upb_vencode64((n << 3) | wt, tag->tag); | |
8781 | |
8782 upb_handlerattr_init(attr); | |
8783 upb_handlerattr_sethandlerdata(attr, tag); | |
8784 upb_handlers_addcleanup(h, tag, free); | |
8785 } | |
8786 | |
8787 static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) { | |
8788 return encode_bytes(e, tag->tag, tag->bytes); | |
8789 } | |
8790 | |
8791 | |
8792 /* encoding of wire types *****************************************************/ | |
8793 | |
8794 static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) { | |
8795 /* TODO(haberman): byte-swap for big endian. */ | |
8796 return encode_bytes(e, &val, sizeof(uint64_t)); | |
8797 } | |
8798 | |
8799 static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) { | |
8800 /* TODO(haberman): byte-swap for big endian. */ | |
8801 return encode_bytes(e, &val, sizeof(uint32_t)); | |
8802 } | |
8803 | |
8804 static bool encode_varint(upb_pb_encoder *e, uint64_t val) { | |
8805 if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) { | |
8806 return false; | |
8807 } | |
8808 | |
8809 encoder_advance(e, upb_vencode64(val, e->ptr)); | |
8810 return true; | |
8811 } | |
8812 | |
8813 static uint64_t dbl2uint64(double d) { | |
8814 uint64_t ret; | |
8815 memcpy(&ret, &d, sizeof(uint64_t)); | |
8816 return ret; | |
8817 } | |
8818 | |
8819 static uint32_t flt2uint32(float d) { | |
8820 uint32_t ret; | |
8821 memcpy(&ret, &d, sizeof(uint32_t)); | |
8822 return ret; | |
8823 } | |
8824 | |
8825 | |
8826 /* encoding of proto types ****************************************************/ | |
8827 | |
8828 static bool startmsg(void *c, const void *hd) { | |
8829 upb_pb_encoder *e = c; | |
8830 UPB_UNUSED(hd); | |
8831 if (e->depth++ == 0) { | |
8832 upb_bytessink_start(e->output_, 0, &e->subc); | |
8833 } | |
8834 return true; | |
8835 } | |
8836 | |
8837 static bool endmsg(void *c, const void *hd, upb_status *status) { | |
8838 upb_pb_encoder *e = c; | |
8839 UPB_UNUSED(hd); | |
8840 UPB_UNUSED(status); | |
8841 if (--e->depth == 0) { | |
8842 upb_bytessink_end(e->output_); | |
8843 } | |
8844 return true; | |
8845 } | |
8846 | |
8847 static void *encode_startdelimfield(void *c, const void *hd) { | |
8848 bool ok = encode_tag(c, hd) && commit(c) && start_delim(c); | |
8849 return ok ? c : UPB_BREAK; | |
8850 } | |
8851 | |
8852 static bool encode_enddelimfield(void *c, const void *hd) { | |
8853 UPB_UNUSED(hd); | |
8854 return end_delim(c); | |
8855 } | |
8856 | |
8857 static void *encode_startgroup(void *c, const void *hd) { | |
8858 return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK; | |
8859 } | |
8860 | |
8861 static bool encode_endgroup(void *c, const void *hd) { | |
8862 return encode_tag(c, hd) && commit(c); | |
8863 } | |
8864 | |
8865 static void *encode_startstr(void *c, const void *hd, size_t size_hint) { | |
8866 UPB_UNUSED(size_hint); | |
8867 return encode_startdelimfield(c, hd); | |
8868 } | |
8869 | |
8870 static size_t encode_strbuf(void *c, const void *hd, const char *buf, | |
8871 size_t len, const upb_bufhandle *h) { | |
8872 UPB_UNUSED(hd); | |
8873 UPB_UNUSED(h); | |
8874 return encode_bytes(c, buf, len) ? len : 0; | |
8875 } | |
8876 | |
8877 #define T(type, ctype, convert, encode) \ | |
8878 static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \ | |
8879 return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \ | |
8880 } \ | |
8881 static bool encode_packed_##type(void *e, const void *hd, ctype val) { \ | |
8882 UPB_UNUSED(hd); \ | |
8883 return encode(e, (convert)(val)); \ | |
8884 } | |
8885 | |
8886 T(double, double, dbl2uint64, encode_fixed64) | |
8887 T(float, float, flt2uint32, encode_fixed32) | |
8888 T(int64, int64_t, uint64_t, encode_varint) | |
8889 T(int32, int32_t, uint32_t, encode_varint) | |
8890 T(fixed64, uint64_t, uint64_t, encode_fixed64) | |
8891 T(fixed32, uint32_t, uint32_t, encode_fixed32) | |
8892 T(bool, bool, bool, encode_varint) | |
8893 T(uint32, uint32_t, uint32_t, encode_varint) | |
8894 T(uint64, uint64_t, uint64_t, encode_varint) | |
8895 T(enum, int32_t, uint32_t, encode_varint) | |
8896 T(sfixed32, int32_t, uint32_t, encode_fixed32) | |
8897 T(sfixed64, int64_t, uint64_t, encode_fixed64) | |
8898 T(sint32, int32_t, upb_zzenc_32, encode_varint) | |
8899 T(sint64, int64_t, upb_zzenc_64, encode_varint) | |
8900 | |
8901 #undef T | |
8902 | |
8903 | |
8904 /* code to build the handlers *************************************************/ | |
8905 | |
8906 static void newhandlers_callback(const void *closure, upb_handlers *h) { | |
8907 const upb_msgdef *m; | |
8908 upb_msg_field_iter i; | |
8909 | |
8910 UPB_UNUSED(closure); | |
8911 | |
8912 upb_handlers_setstartmsg(h, startmsg, NULL); | |
8913 upb_handlers_setendmsg(h, endmsg, NULL); | |
8914 | |
8915 m = upb_handlers_msgdef(h); | |
8916 for(upb_msg_field_begin(&i, m); | |
8917 !upb_msg_field_done(&i); | |
8918 upb_msg_field_next(&i)) { | |
8919 const upb_fielddef *f = upb_msg_iter_field(&i); | |
8920 bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) && | |
8921 upb_fielddef_packed(f); | |
8922 upb_handlerattr attr; | |
8923 upb_wiretype_t wt = | |
8924 packed ? UPB_WIRE_TYPE_DELIMITED | |
8925 : upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; | |
8926 | |
8927 /* Pre-encode the tag for this field. */ | |
8928 new_tag(h, f, wt, &attr); | |
8929 | |
8930 if (packed) { | |
8931 upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr); | |
8932 upb_handlers_setendseq(h, f, encode_enddelimfield, &attr); | |
8933 } | |
8934 | |
8935 #define T(upper, lower, upbtype) \ | |
8936 case UPB_DESCRIPTOR_TYPE_##upper: \ | |
8937 if (packed) { \ | |
8938 upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \ | |
8939 } else { \ | |
8940 upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \ | |
8941 } \ | |
8942 break; | |
8943 | |
8944 switch (upb_fielddef_descriptortype(f)) { | |
8945 T(DOUBLE, double, double); | |
8946 T(FLOAT, float, float); | |
8947 T(INT64, int64, int64); | |
8948 T(INT32, int32, int32); | |
8949 T(FIXED64, fixed64, uint64); | |
8950 T(FIXED32, fixed32, uint32); | |
8951 T(BOOL, bool, bool); | |
8952 T(UINT32, uint32, uint32); | |
8953 T(UINT64, uint64, uint64); | |
8954 T(ENUM, enum, int32); | |
8955 T(SFIXED32, sfixed32, int32); | |
8956 T(SFIXED64, sfixed64, int64); | |
8957 T(SINT32, sint32, int32); | |
8958 T(SINT64, sint64, int64); | |
8959 case UPB_DESCRIPTOR_TYPE_STRING: | |
8960 case UPB_DESCRIPTOR_TYPE_BYTES: | |
8961 upb_handlers_setstartstr(h, f, encode_startstr, &attr); | |
8962 upb_handlers_setendstr(h, f, encode_enddelimfield, &attr); | |
8963 upb_handlers_setstring(h, f, encode_strbuf, &attr); | |
8964 break; | |
8965 case UPB_DESCRIPTOR_TYPE_MESSAGE: | |
8966 upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr); | |
8967 upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr); | |
8968 break; | |
8969 case UPB_DESCRIPTOR_TYPE_GROUP: { | |
8970 /* Endgroup takes a different tag (wire_type = END_GROUP). */ | |
8971 upb_handlerattr attr2; | |
8972 new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2); | |
8973 | |
8974 upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr); | |
8975 upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2); | |
8976 | |
8977 upb_handlerattr_uninit(&attr2); | |
8978 break; | |
8979 } | |
8980 } | |
8981 | |
8982 #undef T | |
8983 | |
8984 upb_handlerattr_uninit(&attr); | |
8985 } | |
8986 } | |
8987 | |
8988 void upb_pb_encoder_reset(upb_pb_encoder *e) { | |
8989 e->segptr = NULL; | |
8990 e->top = NULL; | |
8991 e->depth = 0; | |
8992 } | |
8993 | |
8994 | |
8995 /* public API *****************************************************************/ | |
8996 | |
8997 const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m, | |
8998 const void *owner) { | |
8999 return upb_handlers_newfrozen(m, owner, newhandlers_callback, NULL); | |
9000 } | |
9001 | |
9002 upb_pb_encoder *upb_pb_encoder_create(upb_env *env, const upb_handlers *h, | |
9003 upb_bytessink *output) { | |
9004 const size_t initial_bufsize = 256; | |
9005 const size_t initial_segbufsize = 16; | |
9006 /* TODO(haberman): make this configurable. */ | |
9007 const size_t stack_size = 64; | |
9008 #ifndef NDEBUG | |
9009 const size_t size_before = upb_env_bytesallocated(env); | |
9010 #endif | |
9011 | |
9012 upb_pb_encoder *e = upb_env_malloc(env, sizeof(upb_pb_encoder)); | |
9013 if (!e) return NULL; | |
9014 | |
9015 e->buf = upb_env_malloc(env, initial_bufsize); | |
9016 e->segbuf = upb_env_malloc(env, initial_segbufsize * sizeof(*e->segbuf)); | |
9017 e->stack = upb_env_malloc(env, stack_size * sizeof(*e->stack)); | |
9018 | |
9019 if (!e->buf || !e->segbuf || !e->stack) { | |
9020 return NULL; | |
9021 } | |
9022 | |
9023 e->limit = e->buf + initial_bufsize; | |
9024 e->seglimit = e->segbuf + initial_segbufsize; | |
9025 e->stacklimit = e->stack + stack_size; | |
9026 | |
9027 upb_pb_encoder_reset(e); | |
9028 upb_sink_reset(&e->input_, h, e); | |
9029 | |
9030 e->env = env; | |
9031 e->output_ = output; | |
9032 e->subc = output->closure; | |
9033 e->ptr = e->buf; | |
9034 | |
9035 /* If this fails, increase the value in encoder.h. */ | |
9036 assert(upb_env_bytesallocated(env) - size_before <= UPB_PB_ENCODER_SIZE); | |
9037 return e; | |
9038 } | |
9039 | |
9040 upb_sink *upb_pb_encoder_input(upb_pb_encoder *e) { return &e->input_; } | |
9041 | |
9042 | |
9043 #include <stdio.h> | |
9044 #include <stdlib.h> | |
9045 #include <string.h> | |
9046 | |
9047 upb_def **upb_load_defs_from_descriptor(const char *str, size_t len, int *n, | |
9048 void *owner, upb_status *status) { | |
9049 /* Create handlers. */ | |
9050 const upb_pbdecodermethod *decoder_m; | |
9051 const upb_handlers *reader_h = upb_descreader_newhandlers(&reader_h); | |
9052 upb_env env; | |
9053 upb_pbdecodermethodopts opts; | |
9054 upb_pbdecoder *decoder; | |
9055 upb_descreader *reader; | |
9056 bool ok; | |
9057 upb_def **ret = NULL; | |
9058 upb_def **defs; | |
9059 | |
9060 upb_pbdecodermethodopts_init(&opts, reader_h); | |
9061 decoder_m = upb_pbdecodermethod_new(&opts, &decoder_m); | |
9062 | |
9063 upb_env_init(&env); | |
9064 upb_env_reporterrorsto(&env, status); | |
9065 | |
9066 reader = upb_descreader_create(&env, reader_h); | |
9067 decoder = upb_pbdecoder_create(&env, decoder_m, upb_descreader_input(reader)); | |
9068 | |
9069 /* Push input data. */ | |
9070 ok = upb_bufsrc_putbuf(str, len, upb_pbdecoder_input(decoder)); | |
9071 | |
9072 if (!ok) goto cleanup; | |
9073 defs = upb_descreader_getdefs(reader, owner, n); | |
9074 ret = malloc(sizeof(upb_def*) * (*n)); | |
9075 memcpy(ret, defs, sizeof(upb_def*) * (*n)); | |
9076 | |
9077 cleanup: | |
9078 upb_env_uninit(&env); | |
9079 upb_handlers_unref(reader_h, &reader_h); | |
9080 upb_pbdecodermethod_unref(decoder_m, &decoder_m); | |
9081 return ret; | |
9082 } | |
9083 | |
9084 bool upb_load_descriptor_into_symtab(upb_symtab *s, const char *str, size_t len, | |
9085 upb_status *status) { | |
9086 int n; | |
9087 bool success; | |
9088 upb_def **defs = upb_load_defs_from_descriptor(str, len, &n, &defs, status); | |
9089 if (!defs) return false; | |
9090 success = upb_symtab_add(s, defs, n, &defs, status); | |
9091 free(defs); | |
9092 return success; | |
9093 } | |
9094 | |
9095 char *upb_readfile(const char *filename, size_t *len) { | |
9096 long size; | |
9097 char *buf; | |
9098 FILE *f = fopen(filename, "rb"); | |
9099 if(!f) return NULL; | |
9100 if(fseek(f, 0, SEEK_END) != 0) goto error; | |
9101 size = ftell(f); | |
9102 if(size < 0) goto error; | |
9103 if(fseek(f, 0, SEEK_SET) != 0) goto error; | |
9104 buf = malloc(size + 1); | |
9105 if(size && fread(buf, size, 1, f) != 1) goto error; | |
9106 fclose(f); | |
9107 if (len) *len = size; | |
9108 return buf; | |
9109 | |
9110 error: | |
9111 fclose(f); | |
9112 return NULL; | |
9113 } | |
9114 | |
9115 bool upb_load_descriptor_file_into_symtab(upb_symtab *symtab, const char *fname, | |
9116 upb_status *status) { | |
9117 size_t len; | |
9118 bool success; | |
9119 char *data = upb_readfile(fname, &len); | |
9120 if (!data) { | |
9121 if (status) upb_status_seterrf(status, "Couldn't read file: %s", fname); | |
9122 return false; | |
9123 } | |
9124 success = upb_load_descriptor_into_symtab(symtab, data, len, status); | |
9125 free(data); | |
9126 return success; | |
9127 } | |
9128 /* | |
9129 * upb::pb::TextPrinter | |
9130 * | |
9131 * OPT: This is not optimized at all. It uses printf() which parses the format | |
9132 * string every time, and it allocates memory for every put. | |
9133 */ | |
9134 | |
9135 | |
9136 #include <ctype.h> | |
9137 #include <float.h> | |
9138 #include <inttypes.h> | |
9139 #include <stdarg.h> | |
9140 #include <stdio.h> | |
9141 #include <stdlib.h> | |
9142 #include <string.h> | |
9143 | |
9144 | |
9145 struct upb_textprinter { | |
9146 upb_sink input_; | |
9147 upb_bytessink *output_; | |
9148 int indent_depth_; | |
9149 bool single_line_; | |
9150 void *subc; | |
9151 }; | |
9152 | |
9153 #define CHECK(x) if ((x) < 0) goto err; | |
9154 | |
9155 static const char *shortname(const char *longname) { | |
9156 const char *last = strrchr(longname, '.'); | |
9157 return last ? last + 1 : longname; | |
9158 } | |
9159 | |
9160 static int indent(upb_textprinter *p) { | |
9161 int i; | |
9162 if (!p->single_line_) | |
9163 for (i = 0; i < p->indent_depth_; i++) | |
9164 upb_bytessink_putbuf(p->output_, p->subc, " ", 2, NULL); | |
9165 return 0; | |
9166 } | |
9167 | |
9168 static int endfield(upb_textprinter *p) { | |
9169 const char ch = (p->single_line_ ? ' ' : '\n'); | |
9170 upb_bytessink_putbuf(p->output_, p->subc, &ch, 1, NULL); | |
9171 return 0; | |
9172 } | |
9173 | |
9174 static int putescaped(upb_textprinter *p, const char *buf, size_t len, | |
9175 bool preserve_utf8) { | |
9176 /* Based on CEscapeInternal() from Google's protobuf release. */ | |
9177 char dstbuf[4096], *dst = dstbuf, *dstend = dstbuf + sizeof(dstbuf); | |
9178 const char *end = buf + len; | |
9179 | |
9180 /* I think hex is prettier and more useful, but proto2 uses octal; should | |
9181 * investigate whether it can parse hex also. */ | |
9182 const bool use_hex = false; | |
9183 bool last_hex_escape = false; /* true if last output char was \xNN */ | |
9184 | |
9185 for (; buf < end; buf++) { | |
9186 bool is_hex_escape; | |
9187 | |
9188 if (dstend - dst < 4) { | |
9189 upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); | |
9190 dst = dstbuf; | |
9191 } | |
9192 | |
9193 is_hex_escape = false; | |
9194 switch (*buf) { | |
9195 case '\n': *(dst++) = '\\'; *(dst++) = 'n'; break; | |
9196 case '\r': *(dst++) = '\\'; *(dst++) = 'r'; break; | |
9197 case '\t': *(dst++) = '\\'; *(dst++) = 't'; break; | |
9198 case '\"': *(dst++) = '\\'; *(dst++) = '\"'; break; | |
9199 case '\'': *(dst++) = '\\'; *(dst++) = '\''; break; | |
9200 case '\\': *(dst++) = '\\'; *(dst++) = '\\'; break; | |
9201 default: | |
9202 /* Note that if we emit \xNN and the buf character after that is a hex | |
9203 * digit then that digit must be escaped too to prevent it being | |
9204 * interpreted as part of the character code by C. */ | |
9205 if ((!preserve_utf8 || (uint8_t)*buf < 0x80) && | |
9206 (!isprint(*buf) || (last_hex_escape && isxdigit(*buf)))) { | |
9207 sprintf(dst, (use_hex ? "\\x%02x" : "\\%03o"), (uint8_t)*buf); | |
9208 is_hex_escape = use_hex; | |
9209 dst += 4; | |
9210 } else { | |
9211 *(dst++) = *buf; break; | |
9212 } | |
9213 } | |
9214 last_hex_escape = is_hex_escape; | |
9215 } | |
9216 /* Flush remaining data. */ | |
9217 upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); | |
9218 return 0; | |
9219 } | |
9220 | |
9221 bool putf(upb_textprinter *p, const char *fmt, ...) { | |
9222 va_list args; | |
9223 va_list args_copy; | |
9224 char *str; | |
9225 int written; | |
9226 int len; | |
9227 bool ok; | |
9228 | |
9229 va_start(args, fmt); | |
9230 | |
9231 /* Run once to get the length of the string. */ | |
9232 _upb_va_copy(args_copy, args); | |
9233 len = _upb_vsnprintf(NULL, 0, fmt, args_copy); | |
9234 va_end(args_copy); | |
9235 | |
9236 /* + 1 for NULL terminator (vsprintf() requires it even if we don't). */ | |
9237 str = malloc(len + 1); | |
9238 if (!str) return false; | |
9239 written = vsprintf(str, fmt, args); | |
9240 va_end(args); | |
9241 UPB_ASSERT_VAR(written, written == len); | |
9242 | |
9243 ok = upb_bytessink_putbuf(p->output_, p->subc, str, len, NULL); | |
9244 free(str); | |
9245 return ok; | |
9246 } | |
9247 | |
9248 | |
9249 /* handlers *******************************************************************/ | |
9250 | |
9251 static bool textprinter_startmsg(void *c, const void *hd) { | |
9252 upb_textprinter *p = c; | |
9253 UPB_UNUSED(hd); | |
9254 if (p->indent_depth_ == 0) { | |
9255 upb_bytessink_start(p->output_, 0, &p->subc); | |
9256 } | |
9257 return true; | |
9258 } | |
9259 | |
9260 static bool textprinter_endmsg(void *c, const void *hd, upb_status *s) { | |
9261 upb_textprinter *p = c; | |
9262 UPB_UNUSED(hd); | |
9263 UPB_UNUSED(s); | |
9264 if (p->indent_depth_ == 0) { | |
9265 upb_bytessink_end(p->output_); | |
9266 } | |
9267 return true; | |
9268 } | |
9269 | |
9270 #define TYPE(name, ctype, fmt) \ | |
9271 static bool textprinter_put ## name(void *closure, const void *handler_data, \ | |
9272 ctype val) { \ | |
9273 upb_textprinter *p = closure; \ | |
9274 const upb_fielddef *f = handler_data; \ | |
9275 CHECK(indent(p)); \ | |
9276 putf(p, "%s: " fmt, upb_fielddef_name(f), val); \ | |
9277 CHECK(endfield(p)); \ | |
9278 return true; \ | |
9279 err: \ | |
9280 return false; \ | |
9281 } | |
9282 | |
9283 static bool textprinter_putbool(void *closure, const void *handler_data, | |
9284 bool val) { | |
9285 upb_textprinter *p = closure; | |
9286 const upb_fielddef *f = handler_data; | |
9287 CHECK(indent(p)); | |
9288 putf(p, "%s: %s", upb_fielddef_name(f), val ? "true" : "false"); | |
9289 CHECK(endfield(p)); | |
9290 return true; | |
9291 err: | |
9292 return false; | |
9293 } | |
9294 | |
9295 #define STRINGIFY_HELPER(x) #x | |
9296 #define STRINGIFY_MACROVAL(x) STRINGIFY_HELPER(x) | |
9297 | |
9298 TYPE(int32, int32_t, "%" PRId32) | |
9299 TYPE(int64, int64_t, "%" PRId64) | |
9300 TYPE(uint32, uint32_t, "%" PRIu32) | |
9301 TYPE(uint64, uint64_t, "%" PRIu64) | |
9302 TYPE(float, float, "%." STRINGIFY_MACROVAL(FLT_DIG) "g") | |
9303 TYPE(double, double, "%." STRINGIFY_MACROVAL(DBL_DIG) "g") | |
9304 | |
9305 #undef TYPE | |
9306 | |
9307 /* Output a symbolic value from the enum if found, else just print as int32. */ | |
9308 static bool textprinter_putenum(void *closure, const void *handler_data, | |
9309 int32_t val) { | |
9310 upb_textprinter *p = closure; | |
9311 const upb_fielddef *f = handler_data; | |
9312 const upb_enumdef *enum_def = upb_downcast_enumdef(upb_fielddef_subdef(f)); | |
9313 const char *label = upb_enumdef_iton(enum_def, val); | |
9314 if (label) { | |
9315 indent(p); | |
9316 putf(p, "%s: %s", upb_fielddef_name(f), label); | |
9317 endfield(p); | |
9318 } else { | |
9319 if (!textprinter_putint32(closure, handler_data, val)) | |
9320 return false; | |
9321 } | |
9322 return true; | |
9323 } | |
9324 | |
9325 static void *textprinter_startstr(void *closure, const void *handler_data, | |
9326 size_t size_hint) { | |
9327 upb_textprinter *p = closure; | |
9328 const upb_fielddef *f = handler_data; | |
9329 UPB_UNUSED(size_hint); | |
9330 indent(p); | |
9331 putf(p, "%s: \"", upb_fielddef_name(f)); | |
9332 return p; | |
9333 } | |
9334 | |
9335 static bool textprinter_endstr(void *closure, const void *handler_data) { | |
9336 upb_textprinter *p = closure; | |
9337 UPB_UNUSED(handler_data); | |
9338 putf(p, "\""); | |
9339 endfield(p); | |
9340 return true; | |
9341 } | |
9342 | |
9343 static size_t textprinter_putstr(void *closure, const void *hd, const char *buf, | |
9344 size_t len, const upb_bufhandle *handle) { | |
9345 upb_textprinter *p = closure; | |
9346 const upb_fielddef *f = hd; | |
9347 UPB_UNUSED(handle); | |
9348 CHECK(putescaped(p, buf, len, upb_fielddef_type(f) == UPB_TYPE_STRING)); | |
9349 return len; | |
9350 err: | |
9351 return 0; | |
9352 } | |
9353 | |
9354 static void *textprinter_startsubmsg(void *closure, const void *handler_data) { | |
9355 upb_textprinter *p = closure; | |
9356 const char *name = handler_data; | |
9357 CHECK(indent(p)); | |
9358 putf(p, "%s {%c", name, p->single_line_ ? ' ' : '\n'); | |
9359 p->indent_depth_++; | |
9360 return p; | |
9361 err: | |
9362 return UPB_BREAK; | |
9363 } | |
9364 | |
9365 static bool textprinter_endsubmsg(void *closure, const void *handler_data) { | |
9366 upb_textprinter *p = closure; | |
9367 UPB_UNUSED(handler_data); | |
9368 p->indent_depth_--; | |
9369 CHECK(indent(p)); | |
9370 upb_bytessink_putbuf(p->output_, p->subc, "}", 1, NULL); | |
9371 CHECK(endfield(p)); | |
9372 return true; | |
9373 err: | |
9374 return false; | |
9375 } | |
9376 | |
9377 static void onmreg(const void *c, upb_handlers *h) { | |
9378 const upb_msgdef *m = upb_handlers_msgdef(h); | |
9379 upb_msg_field_iter i; | |
9380 UPB_UNUSED(c); | |
9381 | |
9382 upb_handlers_setstartmsg(h, textprinter_startmsg, NULL); | |
9383 upb_handlers_setendmsg(h, textprinter_endmsg, NULL); | |
9384 | |
9385 for(upb_msg_field_begin(&i, m); | |
9386 !upb_msg_field_done(&i); | |
9387 upb_msg_field_next(&i)) { | |
9388 upb_fielddef *f = upb_msg_iter_field(&i); | |
9389 upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | |
9390 upb_handlerattr_sethandlerdata(&attr, f); | |
9391 switch (upb_fielddef_type(f)) { | |
9392 case UPB_TYPE_INT32: | |
9393 upb_handlers_setint32(h, f, textprinter_putint32, &attr); | |
9394 break; | |
9395 case UPB_TYPE_INT64: | |
9396 upb_handlers_setint64(h, f, textprinter_putint64, &attr); | |
9397 break; | |
9398 case UPB_TYPE_UINT32: | |
9399 upb_handlers_setuint32(h, f, textprinter_putuint32, &attr); | |
9400 break; | |
9401 case UPB_TYPE_UINT64: | |
9402 upb_handlers_setuint64(h, f, textprinter_putuint64, &attr); | |
9403 break; | |
9404 case UPB_TYPE_FLOAT: | |
9405 upb_handlers_setfloat(h, f, textprinter_putfloat, &attr); | |
9406 break; | |
9407 case UPB_TYPE_DOUBLE: | |
9408 upb_handlers_setdouble(h, f, textprinter_putdouble, &attr); | |
9409 break; | |
9410 case UPB_TYPE_BOOL: | |
9411 upb_handlers_setbool(h, f, textprinter_putbool, &attr); | |
9412 break; | |
9413 case UPB_TYPE_STRING: | |
9414 case UPB_TYPE_BYTES: | |
9415 upb_handlers_setstartstr(h, f, textprinter_startstr, &attr); | |
9416 upb_handlers_setstring(h, f, textprinter_putstr, &attr); | |
9417 upb_handlers_setendstr(h, f, textprinter_endstr, &attr); | |
9418 break; | |
9419 case UPB_TYPE_MESSAGE: { | |
9420 const char *name = | |
9421 upb_fielddef_istagdelim(f) | |
9422 ? shortname(upb_msgdef_fullname(upb_fielddef_msgsubdef(f))) | |
9423 : upb_fielddef_name(f); | |
9424 upb_handlerattr_sethandlerdata(&attr, name); | |
9425 upb_handlers_setstartsubmsg(h, f, textprinter_startsubmsg, &attr); | |
9426 upb_handlers_setendsubmsg(h, f, textprinter_endsubmsg, &attr); | |
9427 break; | |
9428 } | |
9429 case UPB_TYPE_ENUM: | |
9430 upb_handlers_setint32(h, f, textprinter_putenum, &attr); | |
9431 break; | |
9432 } | |
9433 } | |
9434 } | |
9435 | |
9436 static void textprinter_reset(upb_textprinter *p, bool single_line) { | |
9437 p->single_line_ = single_line; | |
9438 p->indent_depth_ = 0; | |
9439 } | |
9440 | |
9441 | |
9442 /* Public API *****************************************************************/ | |
9443 | |
9444 upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h, | |
9445 upb_bytessink *output) { | |
9446 upb_textprinter *p = upb_env_malloc(env, sizeof(upb_textprinter)); | |
9447 if (!p) return NULL; | |
9448 | |
9449 p->output_ = output; | |
9450 upb_sink_reset(&p->input_, h, p); | |
9451 textprinter_reset(p, false); | |
9452 | |
9453 return p; | |
9454 } | |
9455 | |
9456 const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m, | |
9457 const void *owner) { | |
9458 return upb_handlers_newfrozen(m, owner, &onmreg, NULL); | |
9459 } | |
9460 | |
9461 upb_sink *upb_textprinter_input(upb_textprinter *p) { return &p->input_; } | |
9462 | |
9463 void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line) { | |
9464 p->single_line_ = single_line; | |
9465 } | |
9466 | |
9467 | |
9468 /* Index is descriptor type. */ | |
9469 const uint8_t upb_pb_native_wire_types[] = { | |
9470 UPB_WIRE_TYPE_END_GROUP, /* ENDGROUP */ | |
9471 UPB_WIRE_TYPE_64BIT, /* DOUBLE */ | |
9472 UPB_WIRE_TYPE_32BIT, /* FLOAT */ | |
9473 UPB_WIRE_TYPE_VARINT, /* INT64 */ | |
9474 UPB_WIRE_TYPE_VARINT, /* UINT64 */ | |
9475 UPB_WIRE_TYPE_VARINT, /* INT32 */ | |
9476 UPB_WIRE_TYPE_64BIT, /* FIXED64 */ | |
9477 UPB_WIRE_TYPE_32BIT, /* FIXED32 */ | |
9478 UPB_WIRE_TYPE_VARINT, /* BOOL */ | |
9479 UPB_WIRE_TYPE_DELIMITED, /* STRING */ | |
9480 UPB_WIRE_TYPE_START_GROUP, /* GROUP */ | |
9481 UPB_WIRE_TYPE_DELIMITED, /* MESSAGE */ | |
9482 UPB_WIRE_TYPE_DELIMITED, /* BYTES */ | |
9483 UPB_WIRE_TYPE_VARINT, /* UINT32 */ | |
9484 UPB_WIRE_TYPE_VARINT, /* ENUM */ | |
9485 UPB_WIRE_TYPE_32BIT, /* SFIXED32 */ | |
9486 UPB_WIRE_TYPE_64BIT, /* SFIXED64 */ | |
9487 UPB_WIRE_TYPE_VARINT, /* SINT32 */ | |
9488 UPB_WIRE_TYPE_VARINT, /* SINT64 */ | |
9489 }; | |
9490 | |
9491 /* A basic branch-based decoder, uses 32-bit values to get good performance | |
9492 * on 32-bit architectures (but performs well on 64-bits also). | |
9493 * This scheme comes from the original Google Protobuf implementation | |
9494 * (proto2). */ | |
9495 upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r) { | |
9496 upb_decoderet err = {NULL, 0}; | |
9497 const char *p = r.p; | |
9498 uint32_t low = (uint32_t)r.val; | |
9499 uint32_t high = 0; | |
9500 uint32_t b; | |
9501 b = *(p++); low |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; | |
9502 b = *(p++); low |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; | |
9503 b = *(p++); low |= (b & 0x7fU) << 28; | |
9504 high = (b & 0x7fU) >> 4; if (!(b & 0x80)) goto done; | |
9505 b = *(p++); high |= (b & 0x7fU) << 3; if (!(b & 0x80)) goto done; | |
9506 b = *(p++); high |= (b & 0x7fU) << 10; if (!(b & 0x80)) goto done; | |
9507 b = *(p++); high |= (b & 0x7fU) << 17; if (!(b & 0x80)) goto done; | |
9508 b = *(p++); high |= (b & 0x7fU) << 24; if (!(b & 0x80)) goto done; | |
9509 b = *(p++); high |= (b & 0x7fU) << 31; if (!(b & 0x80)) goto done; | |
9510 return err; | |
9511 | |
9512 done: | |
9513 r.val = ((uint64_t)high << 32) | low; | |
9514 r.p = p; | |
9515 return r; | |
9516 } | |
9517 | |
9518 /* Like the previous, but uses 64-bit values. */ | |
9519 upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r) { | |
9520 const char *p = r.p; | |
9521 uint64_t val = r.val; | |
9522 uint64_t b; | |
9523 upb_decoderet err = {NULL, 0}; | |
9524 b = *(p++); val |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; | |
9525 b = *(p++); val |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; | |
9526 b = *(p++); val |= (b & 0x7fU) << 28; if (!(b & 0x80)) goto done; | |
9527 b = *(p++); val |= (b & 0x7fU) << 35; if (!(b & 0x80)) goto done; | |
9528 b = *(p++); val |= (b & 0x7fU) << 42; if (!(b & 0x80)) goto done; | |
9529 b = *(p++); val |= (b & 0x7fU) << 49; if (!(b & 0x80)) goto done; | |
9530 b = *(p++); val |= (b & 0x7fU) << 56; if (!(b & 0x80)) goto done; | |
9531 b = *(p++); val |= (b & 0x7fU) << 63; if (!(b & 0x80)) goto done; | |
9532 return err; | |
9533 | |
9534 done: | |
9535 r.val = val; | |
9536 r.p = p; | |
9537 return r; | |
9538 } | |
9539 | |
9540 /* Given an encoded varint v, returns an integer with a single bit set that | |
9541 * indicates the end of the varint. Subtracting one from this value will | |
9542 * yield a mask that leaves only bits that are part of the varint. Returns | |
9543 * 0 if the varint is unterminated. */ | |
9544 static uint64_t upb_get_vstopbit(uint64_t v) { | |
9545 uint64_t cbits = v | 0x7f7f7f7f7f7f7f7fULL; | |
9546 return ~cbits & (cbits+1); | |
9547 } | |
9548 | |
9549 /* A branchless decoder. Credit to Pascal Massimino for the bit-twiddling. */ | |
9550 upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r) { | |
9551 uint64_t b; | |
9552 uint64_t stop_bit; | |
9553 upb_decoderet my_r; | |
9554 memcpy(&b, r.p, sizeof(b)); | |
9555 stop_bit = upb_get_vstopbit(b); | |
9556 b = (b & 0x7f7f7f7f7f7f7f7fULL) & (stop_bit - 1); | |
9557 b += b & 0x007f007f007f007fULL; | |
9558 b += 3 * (b & 0x0000ffff0000ffffULL); | |
9559 b += 15 * (b & 0x00000000ffffffffULL); | |
9560 if (stop_bit == 0) { | |
9561 /* Error: unterminated varint. */ | |
9562 upb_decoderet err_r = {(void*)0, 0}; | |
9563 return err_r; | |
9564 } | |
9565 my_r = upb_decoderet_make(r.p + ((__builtin_ctzll(stop_bit) + 1) / 8), | |
9566 r.val | (b << 7)); | |
9567 return my_r; | |
9568 } | |
9569 | |
9570 /* A branchless decoder. Credit to Daniel Wright for the bit-twiddling. */ | |
9571 upb_decoderet upb_vdecode_max8_wright(upb_decoderet r) { | |
9572 uint64_t b; | |
9573 uint64_t stop_bit; | |
9574 upb_decoderet my_r; | |
9575 memcpy(&b, r.p, sizeof(b)); | |
9576 stop_bit = upb_get_vstopbit(b); | |
9577 b &= (stop_bit - 1); | |
9578 b = ((b & 0x7f007f007f007f00ULL) >> 1) | (b & 0x007f007f007f007fULL); | |
9579 b = ((b & 0xffff0000ffff0000ULL) >> 2) | (b & 0x0000ffff0000ffffULL); | |
9580 b = ((b & 0xffffffff00000000ULL) >> 4) | (b & 0x00000000ffffffffULL); | |
9581 if (stop_bit == 0) { | |
9582 /* Error: unterminated varint. */ | |
9583 upb_decoderet err_r = {(void*)0, 0}; | |
9584 return err_r; | |
9585 } | |
9586 my_r = upb_decoderet_make(r.p + ((__builtin_ctzll(stop_bit) + 1) / 8), | |
9587 r.val | (b << 14)); | |
9588 return my_r; | |
9589 } | |
9590 | |
9591 #line 1 "upb/json/parser.rl" | |
9592 /* | |
9593 ** upb::json::Parser (upb_json_parser) | |
9594 ** | |
9595 ** A parser that uses the Ragel State Machine Compiler to generate | |
9596 ** the finite automata. | |
9597 ** | |
9598 ** Ragel only natively handles regular languages, but we can manually | |
9599 ** program it a bit to handle context-free languages like JSON, by using | |
9600 ** the "fcall" and "fret" constructs. | |
9601 ** | |
9602 ** This parser can handle the basics, but needs several things to be fleshed | |
9603 ** out: | |
9604 ** | |
9605 ** - handling of unicode escape sequences (including high surrogate pairs). | |
9606 ** - properly check and report errors for unknown fields, stack overflow, | |
9607 ** improper array nesting (or lack of nesting). | |
9608 ** - handling of base64 sequences with padding characters. | |
9609 ** - handling of push-back (non-success returns from sink functions). | |
9610 ** - handling of keys/escape-sequences/etc that span input buffers. | |
9611 */ | |
9612 | |
9613 #include <stdio.h> | |
9614 #include <stdint.h> | |
9615 #include <assert.h> | |
9616 #include <string.h> | |
9617 #include <stdlib.h> | |
9618 #include <errno.h> | |
9619 | |
9620 | |
9621 #define UPB_JSON_MAX_DEPTH 64 | |
9622 | |
9623 typedef struct { | |
9624 upb_sink sink; | |
9625 | |
9626 /* The current message in which we're parsing, and the field whose value we're | |
9627 * expecting next. */ | |
9628 const upb_msgdef *m; | |
9629 const upb_fielddef *f; | |
9630 | |
9631 /* We are in a repeated-field context, ready to emit mapentries as | |
9632 * submessages. This flag alters the start-of-object (open-brace) behavior to | |
9633 * begin a sequence of mapentry messages rather than a single submessage. */ | |
9634 bool is_map; | |
9635 | |
9636 /* We are in a map-entry message context. This flag is set when parsing the | |
9637 * value field of a single map entry and indicates to all value-field parsers | |
9638 * (subobjects, strings, numbers, and bools) that the map-entry submessage | |
9639 * should end as soon as the value is parsed. */ | |
9640 bool is_mapentry; | |
9641 | |
9642 /* If |is_map| or |is_mapentry| is true, |mapfield| refers to the parent | |
9643 * message's map field that we're currently parsing. This differs from |f| | |
9644 * because |f| is the field in the *current* message (i.e., the map-entry | |
9645 * message itself), not the parent's field that leads to this map. */ | |
9646 const upb_fielddef *mapfield; | |
9647 } upb_jsonparser_frame; | |
9648 | |
9649 struct upb_json_parser { | |
9650 upb_env *env; | |
9651 upb_byteshandler input_handler_; | |
9652 upb_bytessink input_; | |
9653 | |
9654 /* Stack to track the JSON scopes we are in. */ | |
9655 upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH]; | |
9656 upb_jsonparser_frame *top; | |
9657 upb_jsonparser_frame *limit; | |
9658 | |
9659 upb_status status; | |
9660 | |
9661 /* Ragel's internal parsing stack for the parsing state machine. */ | |
9662 int current_state; | |
9663 int parser_stack[UPB_JSON_MAX_DEPTH]; | |
9664 int parser_top; | |
9665 | |
9666 /* The handle for the current buffer. */ | |
9667 const upb_bufhandle *handle; | |
9668 | |
9669 /* Accumulate buffer. See details in parser.rl. */ | |
9670 const char *accumulated; | |
9671 size_t accumulated_len; | |
9672 char *accumulate_buf; | |
9673 size_t accumulate_buf_size; | |
9674 | |
9675 /* Multi-part text data. See details in parser.rl. */ | |
9676 int multipart_state; | |
9677 upb_selector_t string_selector; | |
9678 | |
9679 /* Input capture. See details in parser.rl. */ | |
9680 const char *capture; | |
9681 | |
9682 /* Intermediate result of parsing a unicode escape sequence. */ | |
9683 uint32_t digit; | |
9684 }; | |
9685 | |
9686 #define PARSER_CHECK_RETURN(x) if (!(x)) return false | |
9687 | |
9688 /* Used to signal that a capture has been suspended. */ | |
9689 static char suspend_capture; | |
9690 | |
9691 static upb_selector_t getsel_for_handlertype(upb_json_parser *p, | |
9692 upb_handlertype_t type) { | |
9693 upb_selector_t sel; | |
9694 bool ok = upb_handlers_getselector(p->top->f, type, &sel); | |
9695 UPB_ASSERT_VAR(ok, ok); | |
9696 return sel; | |
9697 } | |
9698 | |
9699 static upb_selector_t parser_getsel(upb_json_parser *p) { | |
9700 return getsel_for_handlertype( | |
9701 p, upb_handlers_getprimitivehandlertype(p->top->f)); | |
9702 } | |
9703 | |
9704 static bool check_stack(upb_json_parser *p) { | |
9705 if ((p->top + 1) == p->limit) { | |
9706 upb_status_seterrmsg(&p->status, "Nesting too deep"); | |
9707 upb_env_reporterror(p->env, &p->status); | |
9708 return false; | |
9709 } | |
9710 | |
9711 return true; | |
9712 } | |
9713 | |
9714 /* There are GCC/Clang built-ins for overflow checking which we could start | |
9715 * using if there was any performance benefit to it. */ | |
9716 | |
9717 static bool checked_add(size_t a, size_t b, size_t *c) { | |
9718 if (SIZE_MAX - a < b) return false; | |
9719 *c = a + b; | |
9720 return true; | |
9721 } | |
9722 | |
9723 static size_t saturating_multiply(size_t a, size_t b) { | |
9724 /* size_t is unsigned, so this is defined behavior even on overflow. */ | |
9725 size_t ret = a * b; | |
9726 if (b != 0 && ret / b != a) { | |
9727 ret = SIZE_MAX; | |
9728 } | |
9729 return ret; | |
9730 } | |
9731 | |
9732 | |
9733 /* Base64 decoding ************************************************************/ | |
9734 | |
9735 /* TODO(haberman): make this streaming. */ | |
9736 | |
9737 static const signed char b64table[] = { | |
9738 -1, -1, -1, -1, -1, -1, -1, -1, | |
9739 -1, -1, -1, -1, -1, -1, -1, -1, | |
9740 -1, -1, -1, -1, -1, -1, -1, -1, | |
9741 -1, -1, -1, -1, -1, -1, -1, -1, | |
9742 -1, -1, -1, -1, -1, -1, -1, -1, | |
9743 -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, | |
9744 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, | |
9745 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, | |
9746 -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, | |
9747 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, | |
9748 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, | |
9749 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, | |
9750 -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, | |
9751 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, | |
9752 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, | |
9753 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, | |
9754 -1, -1, -1, -1, -1, -1, -1, -1, | |
9755 -1, -1, -1, -1, -1, -1, -1, -1, | |
9756 -1, -1, -1, -1, -1, -1, -1, -1, | |
9757 -1, -1, -1, -1, -1, -1, -1, -1, | |
9758 -1, -1, -1, -1, -1, -1, -1, -1, | |
9759 -1, -1, -1, -1, -1, -1, -1, -1, | |
9760 -1, -1, -1, -1, -1, -1, -1, -1, | |
9761 -1, -1, -1, -1, -1, -1, -1, -1, | |
9762 -1, -1, -1, -1, -1, -1, -1, -1, | |
9763 -1, -1, -1, -1, -1, -1, -1, -1, | |
9764 -1, -1, -1, -1, -1, -1, -1, -1, | |
9765 -1, -1, -1, -1, -1, -1, -1, -1, | |
9766 -1, -1, -1, -1, -1, -1, -1, -1, | |
9767 -1, -1, -1, -1, -1, -1, -1, -1, | |
9768 -1, -1, -1, -1, -1, -1, -1, -1, | |
9769 -1, -1, -1, -1, -1, -1, -1, -1 | |
9770 }; | |
9771 | |
9772 /* Returns the table value sign-extended to 32 bits. Knowing that the upper | |
9773 * bits will be 1 for unrecognized characters makes it easier to check for | |
9774 * this error condition later (see below). */ | |
9775 int32_t b64lookup(unsigned char ch) { return b64table[ch]; } | |
9776 | |
9777 /* Returns true if the given character is not a valid base64 character or | |
9778 * padding. */ | |
9779 bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; } | |
9780 | |
9781 static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr, | |
9782 size_t len) { | |
9783 const char *limit = ptr + len; | |
9784 for (; ptr < limit; ptr += 4) { | |
9785 uint32_t val; | |
9786 char output[3]; | |
9787 | |
9788 if (limit - ptr < 4) { | |
9789 upb_status_seterrf(&p->status, | |
9790 "Base64 input for bytes field not a multiple of 4: %s", | |
9791 upb_fielddef_name(p->top->f)); | |
9792 upb_env_reporterror(p->env, &p->status); | |
9793 return false; | |
9794 } | |
9795 | |
9796 val = b64lookup(ptr[0]) << 18 | | |
9797 b64lookup(ptr[1]) << 12 | | |
9798 b64lookup(ptr[2]) << 6 | | |
9799 b64lookup(ptr[3]); | |
9800 | |
9801 /* Test the upper bit; returns true if any of the characters returned -1. */ | |
9802 if (val & 0x80000000) { | |
9803 goto otherchar; | |
9804 } | |
9805 | |
9806 output[0] = val >> 16; | |
9807 output[1] = (val >> 8) & 0xff; | |
9808 output[2] = val & 0xff; | |
9809 upb_sink_putstring(&p->top->sink, sel, output, 3, NULL); | |
9810 } | |
9811 return true; | |
9812 | |
9813 otherchar: | |
9814 if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) || | |
9815 nonbase64(ptr[3]) ) { | |
9816 upb_status_seterrf(&p->status, | |
9817 "Non-base64 characters in bytes field: %s", | |
9818 upb_fielddef_name(p->top->f)); | |
9819 upb_env_reporterror(p->env, &p->status); | |
9820 return false; | |
9821 } if (ptr[2] == '=') { | |
9822 uint32_t val; | |
9823 char output; | |
9824 | |
9825 /* Last group contains only two input bytes, one output byte. */ | |
9826 if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') { | |
9827 goto badpadding; | |
9828 } | |
9829 | |
9830 val = b64lookup(ptr[0]) << 18 | | |
9831 b64lookup(ptr[1]) << 12; | |
9832 | |
9833 assert(!(val & 0x80000000)); | |
9834 output = val >> 16; | |
9835 upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL); | |
9836 return true; | |
9837 } else { | |
9838 uint32_t val; | |
9839 char output[2]; | |
9840 | |
9841 /* Last group contains only three input bytes, two output bytes. */ | |
9842 if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') { | |
9843 goto badpadding; | |
9844 } | |
9845 | |
9846 val = b64lookup(ptr[0]) << 18 | | |
9847 b64lookup(ptr[1]) << 12 | | |
9848 b64lookup(ptr[2]) << 6; | |
9849 | |
9850 output[0] = val >> 16; | |
9851 output[1] = (val >> 8) & 0xff; | |
9852 upb_sink_putstring(&p->top->sink, sel, output, 2, NULL); | |
9853 return true; | |
9854 } | |
9855 | |
9856 badpadding: | |
9857 upb_status_seterrf(&p->status, | |
9858 "Incorrect base64 padding for field: %s (%.*s)", | |
9859 upb_fielddef_name(p->top->f), | |
9860 4, ptr); | |
9861 upb_env_reporterror(p->env, &p->status); | |
9862 return false; | |
9863 } | |
9864 | |
9865 | |
9866 /* Accumulate buffer **********************************************************/ | |
9867 | |
9868 /* Functionality for accumulating a buffer. | |
9869 * | |
9870 * Some parts of the parser need an entire value as a contiguous string. For | |
9871 * example, to look up a member name in a hash table, or to turn a string into | |
9872 * a number, the relevant library routines need the input string to be in | |
9873 * contiguous memory, even if the value spanned two or more buffers in the | |
9874 * input. These routines handle that. | |
9875 * | |
9876 * In the common case we can just point to the input buffer to get this | |
9877 * contiguous string and avoid any actual copy. So we optimistically begin | |
9878 * this way. But there are a few cases where we must instead copy into a | |
9879 * separate buffer: | |
9880 * | |
9881 * 1. The string was not contiguous in the input (it spanned buffers). | |
9882 * | |
9883 * 2. The string included escape sequences that need to be interpreted to get | |
9884 * the true value in a contiguous buffer. */ | |
9885 | |
9886 static void assert_accumulate_empty(upb_json_parser *p) { | |
9887 UPB_UNUSED(p); | |
9888 assert(p->accumulated == NULL); | |
9889 assert(p->accumulated_len == 0); | |
9890 } | |
9891 | |
9892 static void accumulate_clear(upb_json_parser *p) { | |
9893 p->accumulated = NULL; | |
9894 p->accumulated_len = 0; | |
9895 } | |
9896 | |
9897 /* Used internally by accumulate_append(). */ | |
9898 static bool accumulate_realloc(upb_json_parser *p, size_t need) { | |
9899 void *mem; | |
9900 size_t old_size = p->accumulate_buf_size; | |
9901 size_t new_size = UPB_MAX(old_size, 128); | |
9902 while (new_size < need) { | |
9903 new_size = saturating_multiply(new_size, 2); | |
9904 } | |
9905 | |
9906 mem = upb_env_realloc(p->env, p->accumulate_buf, old_size, new_size); | |
9907 if (!mem) { | |
9908 upb_status_seterrmsg(&p->status, "Out of memory allocating buffer."); | |
9909 upb_env_reporterror(p->env, &p->status); | |
9910 return false; | |
9911 } | |
9912 | |
9913 p->accumulate_buf = mem; | |
9914 p->accumulate_buf_size = new_size; | |
9915 return true; | |
9916 } | |
9917 | |
9918 /* Logically appends the given data to the append buffer. | |
9919 * If "can_alias" is true, we will try to avoid actually copying, but the buffer | |
9920 * must be valid until the next accumulate_append() call (if any). */ | |
9921 static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len, | |
9922 bool can_alias) { | |
9923 size_t need; | |
9924 | |
9925 if (!p->accumulated && can_alias) { | |
9926 p->accumulated = buf; | |
9927 p->accumulated_len = len; | |
9928 return true; | |
9929 } | |
9930 | |
9931 if (!checked_add(p->accumulated_len, len, &need)) { | |
9932 upb_status_seterrmsg(&p->status, "Integer overflow."); | |
9933 upb_env_reporterror(p->env, &p->status); | |
9934 return false; | |
9935 } | |
9936 | |
9937 if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) { | |
9938 return false; | |
9939 } | |
9940 | |
9941 if (p->accumulated != p->accumulate_buf) { | |
9942 memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len); | |
9943 p->accumulated = p->accumulate_buf; | |
9944 } | |
9945 | |
9946 memcpy(p->accumulate_buf + p->accumulated_len, buf, len); | |
9947 p->accumulated_len += len; | |
9948 return true; | |
9949 } | |
9950 | |
9951 /* Returns a pointer to the data accumulated since the last accumulate_clear() | |
9952 * call, and writes the length to *len. This with point either to the input | |
9953 * buffer or a temporary accumulate buffer. */ | |
9954 static const char *accumulate_getptr(upb_json_parser *p, size_t *len) { | |
9955 assert(p->accumulated); | |
9956 *len = p->accumulated_len; | |
9957 return p->accumulated; | |
9958 } | |
9959 | |
9960 | |
9961 /* Mult-part text data ********************************************************/ | |
9962 | |
9963 /* When we have text data in the input, it can often come in multiple segments. | |
9964 * For example, there may be some raw string data followed by an escape | |
9965 * sequence. The two segments are processed with different logic. Also buffer | |
9966 * seams in the input can cause multiple segments. | |
9967 * | |
9968 * As we see segments, there are two main cases for how we want to process them: | |
9969 * | |
9970 * 1. we want to push the captured input directly to string handlers. | |
9971 * | |
9972 * 2. we need to accumulate all the parts into a contiguous buffer for further | |
9973 * processing (field name lookup, string->number conversion, etc). */ | |
9974 | |
9975 /* This is the set of states for p->multipart_state. */ | |
9976 enum { | |
9977 /* We are not currently processing multipart data. */ | |
9978 MULTIPART_INACTIVE = 0, | |
9979 | |
9980 /* We are processing multipart data by accumulating it into a contiguous | |
9981 * buffer. */ | |
9982 MULTIPART_ACCUMULATE = 1, | |
9983 | |
9984 /* We are processing multipart data by pushing each part directly to the | |
9985 * current string handlers. */ | |
9986 MULTIPART_PUSHEAGERLY = 2 | |
9987 }; | |
9988 | |
9989 /* Start a multi-part text value where we accumulate the data for processing at | |
9990 * the end. */ | |
9991 static void multipart_startaccum(upb_json_parser *p) { | |
9992 assert_accumulate_empty(p); | |
9993 assert(p->multipart_state == MULTIPART_INACTIVE); | |
9994 p->multipart_state = MULTIPART_ACCUMULATE; | |
9995 } | |
9996 | |
9997 /* Start a multi-part text value where we immediately push text data to a string | |
9998 * value with the given selector. */ | |
9999 static void multipart_start(upb_json_parser *p, upb_selector_t sel) { | |
10000 assert_accumulate_empty(p); | |
10001 assert(p->multipart_state == MULTIPART_INACTIVE); | |
10002 p->multipart_state = MULTIPART_PUSHEAGERLY; | |
10003 p->string_selector = sel; | |
10004 } | |
10005 | |
10006 static bool multipart_text(upb_json_parser *p, const char *buf, size_t len, | |
10007 bool can_alias) { | |
10008 switch (p->multipart_state) { | |
10009 case MULTIPART_INACTIVE: | |
10010 upb_status_seterrmsg( | |
10011 &p->status, "Internal error: unexpected state MULTIPART_INACTIVE"); | |
10012 upb_env_reporterror(p->env, &p->status); | |
10013 return false; | |
10014 | |
10015 case MULTIPART_ACCUMULATE: | |
10016 if (!accumulate_append(p, buf, len, can_alias)) { | |
10017 return false; | |
10018 } | |
10019 break; | |
10020 | |
10021 case MULTIPART_PUSHEAGERLY: { | |
10022 const upb_bufhandle *handle = can_alias ? p->handle : NULL; | |
10023 upb_sink_putstring(&p->top->sink, p->string_selector, buf, len, handle); | |
10024 break; | |
10025 } | |
10026 } | |
10027 | |
10028 return true; | |
10029 } | |
10030 | |
10031 /* Note: this invalidates the accumulate buffer! Call only after reading its | |
10032 * contents. */ | |
10033 static void multipart_end(upb_json_parser *p) { | |
10034 assert(p->multipart_state != MULTIPART_INACTIVE); | |
10035 p->multipart_state = MULTIPART_INACTIVE; | |
10036 accumulate_clear(p); | |
10037 } | |
10038 | |
10039 | |
10040 /* Input capture **************************************************************/ | |
10041 | |
10042 /* Functionality for capturing a region of the input as text. Gracefully | |
10043 * handles the case where a buffer seam occurs in the middle of the captured | |
10044 * region. */ | |
10045 | |
10046 static void capture_begin(upb_json_parser *p, const char *ptr) { | |
10047 assert(p->multipart_state != MULTIPART_INACTIVE); | |
10048 assert(p->capture == NULL); | |
10049 p->capture = ptr; | |
10050 } | |
10051 | |
10052 static bool capture_end(upb_json_parser *p, const char *ptr) { | |
10053 assert(p->capture); | |
10054 if (multipart_text(p, p->capture, ptr - p->capture, true)) { | |
10055 p->capture = NULL; | |
10056 return true; | |
10057 } else { | |
10058 return false; | |
10059 } | |
10060 } | |
10061 | |
10062 /* This is called at the end of each input buffer (ie. when we have hit a | |
10063 * buffer seam). If we are in the middle of capturing the input, this | |
10064 * processes the unprocessed capture region. */ | |
10065 static void capture_suspend(upb_json_parser *p, const char **ptr) { | |
10066 if (!p->capture) return; | |
10067 | |
10068 if (multipart_text(p, p->capture, *ptr - p->capture, false)) { | |
10069 /* We use this as a signal that we were in the middle of capturing, and | |
10070 * that capturing should resume at the beginning of the next buffer. | |
10071 * | |
10072 * We can't use *ptr here, because we have no guarantee that this pointer | |
10073 * will be valid when we resume (if the underlying memory is freed, then | |
10074 * using the pointer at all, even to compare to NULL, is likely undefined | |
10075 * behavior). */ | |
10076 p->capture = &suspend_capture; | |
10077 } else { | |
10078 /* Need to back up the pointer to the beginning of the capture, since | |
10079 * we were not able to actually preserve it. */ | |
10080 *ptr = p->capture; | |
10081 } | |
10082 } | |
10083 | |
10084 static void capture_resume(upb_json_parser *p, const char *ptr) { | |
10085 if (p->capture) { | |
10086 assert(p->capture == &suspend_capture); | |
10087 p->capture = ptr; | |
10088 } | |
10089 } | |
10090 | |
10091 | |
10092 /* Callbacks from the parser **************************************************/ | |
10093 | |
10094 /* These are the functions called directly from the parser itself. | |
10095 * We define these in the same order as their declarations in the parser. */ | |
10096 | |
10097 static char escape_char(char in) { | |
10098 switch (in) { | |
10099 case 'r': return '\r'; | |
10100 case 't': return '\t'; | |
10101 case 'n': return '\n'; | |
10102 case 'f': return '\f'; | |
10103 case 'b': return '\b'; | |
10104 case '/': return '/'; | |
10105 case '"': return '"'; | |
10106 case '\\': return '\\'; | |
10107 default: | |
10108 assert(0); | |
10109 return 'x'; | |
10110 } | |
10111 } | |
10112 | |
10113 static bool escape(upb_json_parser *p, const char *ptr) { | |
10114 char ch = escape_char(*ptr); | |
10115 return multipart_text(p, &ch, 1, false); | |
10116 } | |
10117 | |
10118 static void start_hex(upb_json_parser *p) { | |
10119 p->digit = 0; | |
10120 } | |
10121 | |
10122 static void hexdigit(upb_json_parser *p, const char *ptr) { | |
10123 char ch = *ptr; | |
10124 | |
10125 p->digit <<= 4; | |
10126 | |
10127 if (ch >= '0' && ch <= '9') { | |
10128 p->digit += (ch - '0'); | |
10129 } else if (ch >= 'a' && ch <= 'f') { | |
10130 p->digit += ((ch - 'a') + 10); | |
10131 } else { | |
10132 assert(ch >= 'A' && ch <= 'F'); | |
10133 p->digit += ((ch - 'A') + 10); | |
10134 } | |
10135 } | |
10136 | |
10137 static bool end_hex(upb_json_parser *p) { | |
10138 uint32_t codepoint = p->digit; | |
10139 | |
10140 /* emit the codepoint as UTF-8. */ | |
10141 char utf8[3]; /* support \u0000 -- \uFFFF -- need only three bytes. */ | |
10142 int length = 0; | |
10143 if (codepoint <= 0x7F) { | |
10144 utf8[0] = codepoint; | |
10145 length = 1; | |
10146 } else if (codepoint <= 0x07FF) { | |
10147 utf8[1] = (codepoint & 0x3F) | 0x80; | |
10148 codepoint >>= 6; | |
10149 utf8[0] = (codepoint & 0x1F) | 0xC0; | |
10150 length = 2; | |
10151 } else /* codepoint <= 0xFFFF */ { | |
10152 utf8[2] = (codepoint & 0x3F) | 0x80; | |
10153 codepoint >>= 6; | |
10154 utf8[1] = (codepoint & 0x3F) | 0x80; | |
10155 codepoint >>= 6; | |
10156 utf8[0] = (codepoint & 0x0F) | 0xE0; | |
10157 length = 3; | |
10158 } | |
10159 /* TODO(haberman): Handle high surrogates: if codepoint is a high surrogate | |
10160 * we have to wait for the next escape to get the full code point). */ | |
10161 | |
10162 return multipart_text(p, utf8, length, false); | |
10163 } | |
10164 | |
10165 static void start_text(upb_json_parser *p, const char *ptr) { | |
10166 capture_begin(p, ptr); | |
10167 } | |
10168 | |
10169 static bool end_text(upb_json_parser *p, const char *ptr) { | |
10170 return capture_end(p, ptr); | |
10171 } | |
10172 | |
10173 static void start_number(upb_json_parser *p, const char *ptr) { | |
10174 multipart_startaccum(p); | |
10175 capture_begin(p, ptr); | |
10176 } | |
10177 | |
10178 static bool parse_number(upb_json_parser *p); | |
10179 | |
10180 static bool end_number(upb_json_parser *p, const char *ptr) { | |
10181 if (!capture_end(p, ptr)) { | |
10182 return false; | |
10183 } | |
10184 | |
10185 return parse_number(p); | |
10186 } | |
10187 | |
10188 static bool parse_number(upb_json_parser *p) { | |
10189 size_t len; | |
10190 const char *buf; | |
10191 const char *myend; | |
10192 char *end; | |
10193 | |
10194 /* strtol() and friends unfortunately do not support specifying the length of | |
10195 * the input string, so we need to force a copy into a NULL-terminated buffer.
*/ | |
10196 if (!multipart_text(p, "\0", 1, false)) { | |
10197 return false; | |
10198 } | |
10199 | |
10200 buf = accumulate_getptr(p, &len); | |
10201 myend = buf + len - 1; /* One for NULL. */ | |
10202 | |
10203 /* XXX: We are using strtol to parse integers, but this is wrong as even | |
10204 * integers can be represented as 1e6 (for example), which strtol can't | |
10205 * handle correctly. | |
10206 * | |
10207 * XXX: Also, we can't handle large integers properly because strto[u]ll | |
10208 * isn't in C89. | |
10209 * | |
10210 * XXX: Also, we don't properly check floats for overflow, since strtof | |
10211 * isn't in C89. */ | |
10212 switch (upb_fielddef_type(p->top->f)) { | |
10213 case UPB_TYPE_ENUM: | |
10214 case UPB_TYPE_INT32: { | |
10215 long val = strtol(p->accumulated, &end, 0); | |
10216 if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend) | |
10217 goto err; | |
10218 else | |
10219 upb_sink_putint32(&p->top->sink, parser_getsel(p), val); | |
10220 break; | |
10221 } | |
10222 case UPB_TYPE_INT64: { | |
10223 long long val = strtol(p->accumulated, &end, 0); | |
10224 if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend) | |
10225 goto err; | |
10226 else | |
10227 upb_sink_putint64(&p->top->sink, parser_getsel(p), val); | |
10228 break; | |
10229 } | |
10230 case UPB_TYPE_UINT32: { | |
10231 unsigned long val = strtoul(p->accumulated, &end, 0); | |
10232 if (val > UINT32_MAX || errno == ERANGE || end != myend) | |
10233 goto err; | |
10234 else | |
10235 upb_sink_putuint32(&p->top->sink, parser_getsel(p), val); | |
10236 break; | |
10237 } | |
10238 case UPB_TYPE_UINT64: { | |
10239 unsigned long long val = strtoul(p->accumulated, &end, 0); | |
10240 if (val > UINT64_MAX || errno == ERANGE || end != myend) | |
10241 goto err; | |
10242 else | |
10243 upb_sink_putuint64(&p->top->sink, parser_getsel(p), val); | |
10244 break; | |
10245 } | |
10246 case UPB_TYPE_DOUBLE: { | |
10247 double val = strtod(p->accumulated, &end); | |
10248 if (errno == ERANGE || end != myend) | |
10249 goto err; | |
10250 else | |
10251 upb_sink_putdouble(&p->top->sink, parser_getsel(p), val); | |
10252 break; | |
10253 } | |
10254 case UPB_TYPE_FLOAT: { | |
10255 float val = strtod(p->accumulated, &end); | |
10256 if (errno == ERANGE || end != myend) | |
10257 goto err; | |
10258 else | |
10259 upb_sink_putfloat(&p->top->sink, parser_getsel(p), val); | |
10260 break; | |
10261 } | |
10262 default: | |
10263 assert(false); | |
10264 } | |
10265 | |
10266 multipart_end(p); | |
10267 | |
10268 return true; | |
10269 | |
10270 err: | |
10271 upb_status_seterrf(&p->status, "error parsing number: %s", buf); | |
10272 upb_env_reporterror(p->env, &p->status); | |
10273 multipart_end(p); | |
10274 return false; | |
10275 } | |
10276 | |
10277 static bool parser_putbool(upb_json_parser *p, bool val) { | |
10278 bool ok; | |
10279 | |
10280 if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) { | |
10281 upb_status_seterrf(&p->status, | |
10282 "Boolean value specified for non-bool field: %s", | |
10283 upb_fielddef_name(p->top->f)); | |
10284 upb_env_reporterror(p->env, &p->status); | |
10285 return false; | |
10286 } | |
10287 | |
10288 ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val); | |
10289 UPB_ASSERT_VAR(ok, ok); | |
10290 | |
10291 return true; | |
10292 } | |
10293 | |
10294 static bool start_stringval(upb_json_parser *p) { | |
10295 assert(p->top->f); | |
10296 | |
10297 if (upb_fielddef_isstring(p->top->f)) { | |
10298 upb_jsonparser_frame *inner; | |
10299 upb_selector_t sel; | |
10300 | |
10301 if (!check_stack(p)) return false; | |
10302 | |
10303 /* Start a new parser frame: parser frames correspond one-to-one with | |
10304 * handler frames, and string events occur in a sub-frame. */ | |
10305 inner = p->top + 1; | |
10306 sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); | |
10307 upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink); | |
10308 inner->m = p->top->m; | |
10309 inner->f = p->top->f; | |
10310 inner->is_map = false; | |
10311 inner->is_mapentry = false; | |
10312 p->top = inner; | |
10313 | |
10314 if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) { | |
10315 /* For STRING fields we push data directly to the handlers as it is | |
10316 * parsed. We don't do this yet for BYTES fields, because our base64 | |
10317 * decoder is not streaming. | |
10318 * | |
10319 * TODO(haberman): make base64 decoding streaming also. */ | |
10320 multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING)); | |
10321 return true; | |
10322 } else { | |
10323 multipart_startaccum(p); | |
10324 return true; | |
10325 } | |
10326 } else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) { | |
10327 /* No need to push a frame -- symbolic enum names in quotes remain in the | |
10328 * current parser frame. | |
10329 * | |
10330 * Enum string values must accumulate so we can look up the value in a table | |
10331 * once it is complete. */ | |
10332 multipart_startaccum(p); | |
10333 return true; | |
10334 } else { | |
10335 upb_status_seterrf(&p->status, | |
10336 "String specified for non-string/non-enum field: %s", | |
10337 upb_fielddef_name(p->top->f)); | |
10338 upb_env_reporterror(p->env, &p->status); | |
10339 return false; | |
10340 } | |
10341 } | |
10342 | |
10343 static bool end_stringval(upb_json_parser *p) { | |
10344 bool ok = true; | |
10345 | |
10346 switch (upb_fielddef_type(p->top->f)) { | |
10347 case UPB_TYPE_BYTES: | |
10348 if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING), | |
10349 p->accumulated, p->accumulated_len)) { | |
10350 return false; | |
10351 } | |
10352 /* Fall through. */ | |
10353 | |
10354 case UPB_TYPE_STRING: { | |
10355 upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); | |
10356 upb_sink_endstr(&p->top->sink, sel); | |
10357 p->top--; | |
10358 break; | |
10359 } | |
10360 | |
10361 case UPB_TYPE_ENUM: { | |
10362 /* Resolve enum symbolic name to integer value. */ | |
10363 const upb_enumdef *enumdef = | |
10364 (const upb_enumdef*)upb_fielddef_subdef(p->top->f); | |
10365 | |
10366 size_t len; | |
10367 const char *buf = accumulate_getptr(p, &len); | |
10368 | |
10369 int32_t int_val = 0; | |
10370 ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val); | |
10371 | |
10372 if (ok) { | |
10373 upb_selector_t sel = parser_getsel(p); | |
10374 upb_sink_putint32(&p->top->sink, sel, int_val); | |
10375 } else { | |
10376 upb_status_seterrf(&p->status, "Enum value unknown: '%.*s'", len, buf); | |
10377 upb_env_reporterror(p->env, &p->status); | |
10378 } | |
10379 | |
10380 break; | |
10381 } | |
10382 | |
10383 default: | |
10384 assert(false); | |
10385 upb_status_seterrmsg(&p->status, "Internal error in JSON decoder"); | |
10386 upb_env_reporterror(p->env, &p->status); | |
10387 ok = false; | |
10388 break; | |
10389 } | |
10390 | |
10391 multipart_end(p); | |
10392 | |
10393 return ok; | |
10394 } | |
10395 | |
10396 static void start_member(upb_json_parser *p) { | |
10397 assert(!p->top->f); | |
10398 multipart_startaccum(p); | |
10399 } | |
10400 | |
10401 /* Helper: invoked during parse_mapentry() to emit the mapentry message's key | |
10402 * field based on the current contents of the accumulate buffer. */ | |
10403 static bool parse_mapentry_key(upb_json_parser *p) { | |
10404 | |
10405 size_t len; | |
10406 const char *buf = accumulate_getptr(p, &len); | |
10407 | |
10408 /* Emit the key field. We do a bit of ad-hoc parsing here because the | |
10409 * parser state machine has already decided that this is a string field | |
10410 * name, and we are reinterpreting it as some arbitrary key type. In | |
10411 * particular, integer and bool keys are quoted, so we need to parse the | |
10412 * quoted string contents here. */ | |
10413 | |
10414 p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_KEY); | |
10415 if (p->top->f == NULL) { | |
10416 upb_status_seterrmsg(&p->status, "mapentry message has no key"); | |
10417 upb_env_reporterror(p->env, &p->status); | |
10418 return false; | |
10419 } | |
10420 switch (upb_fielddef_type(p->top->f)) { | |
10421 case UPB_TYPE_INT32: | |
10422 case UPB_TYPE_INT64: | |
10423 case UPB_TYPE_UINT32: | |
10424 case UPB_TYPE_UINT64: | |
10425 /* Invoke end_number. The accum buffer has the number's text already. */ | |
10426 if (!parse_number(p)) { | |
10427 return false; | |
10428 } | |
10429 break; | |
10430 case UPB_TYPE_BOOL: | |
10431 if (len == 4 && !strncmp(buf, "true", 4)) { | |
10432 if (!parser_putbool(p, true)) { | |
10433 return false; | |
10434 } | |
10435 } else if (len == 5 && !strncmp(buf, "false", 5)) { | |
10436 if (!parser_putbool(p, false)) { | |
10437 return false; | |
10438 } | |
10439 } else { | |
10440 upb_status_seterrmsg(&p->status, | |
10441 "Map bool key not 'true' or 'false'"); | |
10442 upb_env_reporterror(p->env, &p->status); | |
10443 return false; | |
10444 } | |
10445 multipart_end(p); | |
10446 break; | |
10447 case UPB_TYPE_STRING: | |
10448 case UPB_TYPE_BYTES: { | |
10449 upb_sink subsink; | |
10450 upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); | |
10451 upb_sink_startstr(&p->top->sink, sel, len, &subsink); | |
10452 sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); | |
10453 upb_sink_putstring(&subsink, sel, buf, len, NULL); | |
10454 sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); | |
10455 upb_sink_endstr(&subsink, sel); | |
10456 multipart_end(p); | |
10457 break; | |
10458 } | |
10459 default: | |
10460 upb_status_seterrmsg(&p->status, "Invalid field type for map key"); | |
10461 upb_env_reporterror(p->env, &p->status); | |
10462 return false; | |
10463 } | |
10464 | |
10465 return true; | |
10466 } | |
10467 | |
10468 /* Helper: emit one map entry (as a submessage in the map field sequence). This | |
10469 * is invoked from end_membername(), at the end of the map entry's key string, | |
10470 * with the map key in the accumulate buffer. It parses the key from that | |
10471 * buffer, emits the handler calls to start the mapentry submessage (setting up | |
10472 * its subframe in the process), and sets up state in the subframe so that the | |
10473 * value parser (invoked next) will emit the mapentry's value field and then | |
10474 * end the mapentry message. */ | |
10475 | |
10476 static bool handle_mapentry(upb_json_parser *p) { | |
10477 const upb_fielddef *mapfield; | |
10478 const upb_msgdef *mapentrymsg; | |
10479 upb_jsonparser_frame *inner; | |
10480 upb_selector_t sel; | |
10481 | |
10482 /* Map entry: p->top->sink is the seq frame, so we need to start a frame | |
10483 * for the mapentry itself, and then set |f| in that frame so that the map | |
10484 * value field is parsed, and also set a flag to end the frame after the | |
10485 * map-entry value is parsed. */ | |
10486 if (!check_stack(p)) return false; | |
10487 | |
10488 mapfield = p->top->mapfield; | |
10489 mapentrymsg = upb_fielddef_msgsubdef(mapfield); | |
10490 | |
10491 inner = p->top + 1; | |
10492 p->top->f = mapfield; | |
10493 sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); | |
10494 upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); | |
10495 inner->m = mapentrymsg; | |
10496 inner->mapfield = mapfield; | |
10497 inner->is_map = false; | |
10498 | |
10499 /* Don't set this to true *yet* -- we reuse parsing handlers below to push | |
10500 * the key field value to the sink, and these handlers will pop the frame | |
10501 * if they see is_mapentry (when invoked by the parser state machine, they | |
10502 * would have just seen the map-entry value, not key). */ | |
10503 inner->is_mapentry = false; | |
10504 p->top = inner; | |
10505 | |
10506 /* send STARTMSG in submsg frame. */ | |
10507 upb_sink_startmsg(&p->top->sink); | |
10508 | |
10509 parse_mapentry_key(p); | |
10510 | |
10511 /* Set up the value field to receive the map-entry value. */ | |
10512 p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_VALUE); | |
10513 p->top->is_mapentry = true; /* set up to pop frame after value is parsed. */ | |
10514 p->top->mapfield = mapfield; | |
10515 if (p->top->f == NULL) { | |
10516 upb_status_seterrmsg(&p->status, "mapentry message has no value"); | |
10517 upb_env_reporterror(p->env, &p->status); | |
10518 return false; | |
10519 } | |
10520 | |
10521 return true; | |
10522 } | |
10523 | |
10524 static bool end_membername(upb_json_parser *p) { | |
10525 assert(!p->top->f); | |
10526 | |
10527 if (p->top->is_map) { | |
10528 return handle_mapentry(p); | |
10529 } else { | |
10530 size_t len; | |
10531 const char *buf = accumulate_getptr(p, &len); | |
10532 const upb_fielddef *f = upb_msgdef_ntof(p->top->m, buf, len); | |
10533 | |
10534 if (!f) { | |
10535 /* TODO(haberman): Ignore unknown fields if requested/configured to do | |
10536 * so. */ | |
10537 upb_status_seterrf(&p->status, "No such field: %.*s\n", (int)len, buf); | |
10538 upb_env_reporterror(p->env, &p->status); | |
10539 return false; | |
10540 } | |
10541 | |
10542 p->top->f = f; | |
10543 multipart_end(p); | |
10544 | |
10545 return true; | |
10546 } | |
10547 } | |
10548 | |
10549 static void end_member(upb_json_parser *p) { | |
10550 /* If we just parsed a map-entry value, end that frame too. */ | |
10551 if (p->top->is_mapentry) { | |
10552 upb_status s = UPB_STATUS_INIT; | |
10553 upb_selector_t sel; | |
10554 bool ok; | |
10555 const upb_fielddef *mapfield; | |
10556 | |
10557 assert(p->top > p->stack); | |
10558 /* send ENDMSG on submsg. */ | |
10559 upb_sink_endmsg(&p->top->sink, &s); | |
10560 mapfield = p->top->mapfield; | |
10561 | |
10562 /* send ENDSUBMSG in repeated-field-of-mapentries frame. */ | |
10563 p->top--; | |
10564 ok = upb_handlers_getselector(mapfield, UPB_HANDLER_ENDSUBMSG, &sel); | |
10565 UPB_ASSERT_VAR(ok, ok); | |
10566 upb_sink_endsubmsg(&p->top->sink, sel); | |
10567 } | |
10568 | |
10569 p->top->f = NULL; | |
10570 } | |
10571 | |
10572 static bool start_subobject(upb_json_parser *p) { | |
10573 assert(p->top->f); | |
10574 | |
10575 if (upb_fielddef_ismap(p->top->f)) { | |
10576 upb_jsonparser_frame *inner; | |
10577 upb_selector_t sel; | |
10578 | |
10579 /* Beginning of a map. Start a new parser frame in a repeated-field | |
10580 * context. */ | |
10581 if (!check_stack(p)) return false; | |
10582 | |
10583 inner = p->top + 1; | |
10584 sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); | |
10585 upb_sink_startseq(&p->top->sink, sel, &inner->sink); | |
10586 inner->m = upb_fielddef_msgsubdef(p->top->f); | |
10587 inner->mapfield = p->top->f; | |
10588 inner->f = NULL; | |
10589 inner->is_map = true; | |
10590 inner->is_mapentry = false; | |
10591 p->top = inner; | |
10592 | |
10593 return true; | |
10594 } else if (upb_fielddef_issubmsg(p->top->f)) { | |
10595 upb_jsonparser_frame *inner; | |
10596 upb_selector_t sel; | |
10597 | |
10598 /* Beginning of a subobject. Start a new parser frame in the submsg | |
10599 * context. */ | |
10600 if (!check_stack(p)) return false; | |
10601 | |
10602 inner = p->top + 1; | |
10603 | |
10604 sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); | |
10605 upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); | |
10606 inner->m = upb_fielddef_msgsubdef(p->top->f); | |
10607 inner->f = NULL; | |
10608 inner->is_map = false; | |
10609 inner->is_mapentry = false; | |
10610 p->top = inner; | |
10611 | |
10612 return true; | |
10613 } else { | |
10614 upb_status_seterrf(&p->status, | |
10615 "Object specified for non-message/group field: %s", | |
10616 upb_fielddef_name(p->top->f)); | |
10617 upb_env_reporterror(p->env, &p->status); | |
10618 return false; | |
10619 } | |
10620 } | |
10621 | |
10622 static void end_subobject(upb_json_parser *p) { | |
10623 if (p->top->is_map) { | |
10624 upb_selector_t sel; | |
10625 p->top--; | |
10626 sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); | |
10627 upb_sink_endseq(&p->top->sink, sel); | |
10628 } else { | |
10629 upb_selector_t sel; | |
10630 p->top--; | |
10631 sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG); | |
10632 upb_sink_endsubmsg(&p->top->sink, sel); | |
10633 } | |
10634 } | |
10635 | |
10636 static bool start_array(upb_json_parser *p) { | |
10637 upb_jsonparser_frame *inner; | |
10638 upb_selector_t sel; | |
10639 | |
10640 assert(p->top->f); | |
10641 | |
10642 if (!upb_fielddef_isseq(p->top->f)) { | |
10643 upb_status_seterrf(&p->status, | |
10644 "Array specified for non-repeated field: %s", | |
10645 upb_fielddef_name(p->top->f)); | |
10646 upb_env_reporterror(p->env, &p->status); | |
10647 return false; | |
10648 } | |
10649 | |
10650 if (!check_stack(p)) return false; | |
10651 | |
10652 inner = p->top + 1; | |
10653 sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); | |
10654 upb_sink_startseq(&p->top->sink, sel, &inner->sink); | |
10655 inner->m = p->top->m; | |
10656 inner->f = p->top->f; | |
10657 inner->is_map = false; | |
10658 inner->is_mapentry = false; | |
10659 p->top = inner; | |
10660 | |
10661 return true; | |
10662 } | |
10663 | |
10664 static void end_array(upb_json_parser *p) { | |
10665 upb_selector_t sel; | |
10666 | |
10667 assert(p->top > p->stack); | |
10668 | |
10669 p->top--; | |
10670 sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); | |
10671 upb_sink_endseq(&p->top->sink, sel); | |
10672 } | |
10673 | |
10674 static void start_object(upb_json_parser *p) { | |
10675 if (!p->top->is_map) { | |
10676 upb_sink_startmsg(&p->top->sink); | |
10677 } | |
10678 } | |
10679 | |
10680 static void end_object(upb_json_parser *p) { | |
10681 if (!p->top->is_map) { | |
10682 upb_status status; | |
10683 upb_status_clear(&status); | |
10684 upb_sink_endmsg(&p->top->sink, &status); | |
10685 if (!upb_ok(&status)) { | |
10686 upb_env_reporterror(p->env, &status); | |
10687 } | |
10688 } | |
10689 } | |
10690 | |
10691 | |
10692 #define CHECK_RETURN_TOP(x) if (!(x)) goto error | |
10693 | |
10694 | |
10695 /* The actual parser **********************************************************/ | |
10696 | |
10697 /* What follows is the Ragel parser itself. The language is specified in Ragel | |
10698 * and the actions call our C functions above. | |
10699 * | |
10700 * Ragel has an extensive set of functionality, and we use only a small part of | |
10701 * it. There are many action types but we only use a few: | |
10702 * | |
10703 * ">" -- transition into a machine | |
10704 * "%" -- transition out of a machine | |
10705 * "@" -- transition into a final state of a machine. | |
10706 * | |
10707 * "@" transitions are tricky because a machine can transition into a final | |
10708 * state repeatedly. But in some cases we know this can't happen, for example | |
10709 * a string which is delimited by a final '"' can only transition into its | |
10710 * final state once, when the closing '"' is seen. */ | |
10711 | |
10712 | |
10713 #line 1218 "upb/json/parser.rl" | |
10714 | |
10715 | |
10716 | |
10717 #line 1130 "upb/json/parser.c" | |
10718 static const char _json_actions[] = { | |
10719 0, 1, 0, 1, 2, 1, 3, 1, | |
10720 5, 1, 6, 1, 7, 1, 8, 1, | |
10721 10, 1, 12, 1, 13, 1, 14, 1, | |
10722 15, 1, 16, 1, 17, 1, 21, 1, | |
10723 25, 1, 27, 2, 3, 8, 2, 4, | |
10724 5, 2, 6, 2, 2, 6, 8, 2, | |
10725 11, 9, 2, 13, 15, 2, 14, 15, | |
10726 2, 18, 1, 2, 19, 27, 2, 20, | |
10727 9, 2, 22, 27, 2, 23, 27, 2, | |
10728 24, 27, 2, 26, 27, 3, 14, 11, | |
10729 9 | |
10730 }; | |
10731 | |
10732 static const unsigned char _json_key_offsets[] = { | |
10733 0, 0, 4, 9, 14, 15, 19, 24, | |
10734 29, 34, 38, 42, 45, 48, 50, 54, | |
10735 58, 60, 62, 67, 69, 71, 80, 86, | |
10736 92, 98, 104, 106, 115, 116, 116, 116, | |
10737 121, 126, 131, 132, 133, 134, 135, 135, | |
10738 136, 137, 138, 138, 139, 140, 141, 141, | |
10739 146, 151, 152, 156, 161, 166, 171, 175, | |
10740 175, 178, 178, 178 | |
10741 }; | |
10742 | |
10743 static const char _json_trans_keys[] = { | |
10744 32, 123, 9, 13, 32, 34, 125, 9, | |
10745 13, 32, 34, 125, 9, 13, 34, 32, | |
10746 58, 9, 13, 32, 93, 125, 9, 13, | |
10747 32, 44, 125, 9, 13, 32, 44, 125, | |
10748 9, 13, 32, 34, 9, 13, 45, 48, | |
10749 49, 57, 48, 49, 57, 46, 69, 101, | |
10750 48, 57, 69, 101, 48, 57, 43, 45, | |
10751 48, 57, 48, 57, 48, 57, 46, 69, | |
10752 101, 48, 57, 34, 92, 34, 92, 34, | |
10753 47, 92, 98, 102, 110, 114, 116, 117, | |
10754 48, 57, 65, 70, 97, 102, 48, 57, | |
10755 65, 70, 97, 102, 48, 57, 65, 70, | |
10756 97, 102, 48, 57, 65, 70, 97, 102, | |
10757 34, 92, 34, 45, 91, 102, 110, 116, | |
10758 123, 48, 57, 34, 32, 93, 125, 9, | |
10759 13, 32, 44, 93, 9, 13, 32, 93, | |
10760 125, 9, 13, 97, 108, 115, 101, 117, | |
10761 108, 108, 114, 117, 101, 32, 34, 125, | |
10762 9, 13, 32, 34, 125, 9, 13, 34, | |
10763 32, 58, 9, 13, 32, 93, 125, 9, | |
10764 13, 32, 44, 125, 9, 13, 32, 44, | |
10765 125, 9, 13, 32, 34, 9, 13, 32, | |
10766 9, 13, 0 | |
10767 }; | |
10768 | |
10769 static const char _json_single_lengths[] = { | |
10770 0, 2, 3, 3, 1, 2, 3, 3, | |
10771 3, 2, 2, 1, 3, 0, 2, 2, | |
10772 0, 0, 3, 2, 2, 9, 0, 0, | |
10773 0, 0, 2, 7, 1, 0, 0, 3, | |
10774 3, 3, 1, 1, 1, 1, 0, 1, | |
10775 1, 1, 0, 1, 1, 1, 0, 3, | |
10776 3, 1, 2, 3, 3, 3, 2, 0, | |
10777 1, 0, 0, 0 | |
10778 }; | |
10779 | |
10780 static const char _json_range_lengths[] = { | |
10781 0, 1, 1, 1, 0, 1, 1, 1, | |
10782 1, 1, 1, 1, 0, 1, 1, 1, | |
10783 1, 1, 1, 0, 0, 0, 3, 3, | |
10784 3, 3, 0, 1, 0, 0, 0, 1, | |
10785 1, 1, 0, 0, 0, 0, 0, 0, | |
10786 0, 0, 0, 0, 0, 0, 0, 1, | |
10787 1, 0, 1, 1, 1, 1, 1, 0, | |
10788 1, 0, 0, 0 | |
10789 }; | |
10790 | |
10791 static const short _json_index_offsets[] = { | |
10792 0, 0, 4, 9, 14, 16, 20, 25, | |
10793 30, 35, 39, 43, 46, 50, 52, 56, | |
10794 60, 62, 64, 69, 72, 75, 85, 89, | |
10795 93, 97, 101, 104, 113, 115, 116, 117, | |
10796 122, 127, 132, 134, 136, 138, 140, 141, | |
10797 143, 145, 147, 148, 150, 152, 154, 155, | |
10798 160, 165, 167, 171, 176, 181, 186, 190, | |
10799 191, 194, 195, 196 | |
10800 }; | |
10801 | |
10802 static const char _json_indicies[] = { | |
10803 0, 2, 0, 1, 3, 4, 5, 3, | |
10804 1, 6, 7, 8, 6, 1, 9, 1, | |
10805 10, 11, 10, 1, 11, 1, 1, 11, | |
10806 12, 13, 14, 15, 13, 1, 16, 17, | |
10807 8, 16, 1, 17, 7, 17, 1, 18, | |
10808 19, 20, 1, 19, 20, 1, 22, 23, | |
10809 23, 21, 24, 1, 23, 23, 24, 21, | |
10810 25, 25, 26, 1, 26, 1, 26, 21, | |
10811 22, 23, 23, 20, 21, 28, 29, 27, | |
10812 31, 32, 30, 33, 33, 33, 33, 33, | |
10813 33, 33, 33, 34, 1, 35, 35, 35, | |
10814 1, 36, 36, 36, 1, 37, 37, 37, | |
10815 1, 38, 38, 38, 1, 40, 41, 39, | |
10816 42, 43, 44, 45, 46, 47, 48, 43, | |
10817 1, 49, 1, 50, 51, 53, 54, 1, | |
10818 53, 52, 55, 56, 54, 55, 1, 56, | |
10819 1, 1, 56, 52, 57, 1, 58, 1, | |
10820 59, 1, 60, 1, 61, 62, 1, 63, | |
10821 1, 64, 1, 65, 66, 1, 67, 1, | |
10822 68, 1, 69, 70, 71, 72, 70, 1, | |
10823 73, 74, 75, 73, 1, 76, 1, 77, | |
10824 78, 77, 1, 78, 1, 1, 78, 79, | |
10825 80, 81, 82, 80, 1, 83, 84, 75, | |
10826 83, 1, 84, 74, 84, 1, 85, 86, | |
10827 86, 1, 1, 1, 1, 0 | |
10828 }; | |
10829 | |
10830 static const char _json_trans_targs[] = { | |
10831 1, 0, 2, 3, 4, 56, 3, 4, | |
10832 56, 5, 5, 6, 7, 8, 9, 56, | |
10833 8, 9, 11, 12, 18, 57, 13, 15, | |
10834 14, 16, 17, 20, 58, 21, 20, 58, | |
10835 21, 19, 22, 23, 24, 25, 26, 20, | |
10836 58, 21, 28, 30, 31, 34, 39, 43, | |
10837 47, 29, 59, 59, 32, 31, 29, 32, | |
10838 33, 35, 36, 37, 38, 59, 40, 41, | |
10839 42, 59, 44, 45, 46, 59, 48, 49, | |
10840 55, 48, 49, 55, 50, 50, 51, 52, | |
10841 53, 54, 55, 53, 54, 59, 56 | |
10842 }; | |
10843 | |
10844 static const char _json_trans_actions[] = { | |
10845 0, 0, 0, 21, 77, 53, 0, 47, | |
10846 23, 17, 0, 0, 15, 19, 19, 50, | |
10847 0, 0, 0, 0, 0, 1, 0, 0, | |
10848 0, 0, 0, 3, 13, 0, 0, 35, | |
10849 5, 11, 0, 38, 7, 7, 7, 41, | |
10850 44, 9, 62, 56, 25, 0, 0, 0, | |
10851 31, 29, 33, 59, 15, 0, 27, 0, | |
10852 0, 0, 0, 0, 0, 68, 0, 0, | |
10853 0, 71, 0, 0, 0, 65, 21, 77, | |
10854 53, 0, 47, 23, 17, 0, 0, 15, | |
10855 19, 19, 50, 0, 0, 74, 0 | |
10856 }; | |
10857 | |
10858 static const int json_start = 1; | |
10859 | |
10860 static const int json_en_number_machine = 10; | |
10861 static const int json_en_string_machine = 19; | |
10862 static const int json_en_value_machine = 27; | |
10863 static const int json_en_main = 1; | |
10864 | |
10865 | |
10866 #line 1221 "upb/json/parser.rl" | |
10867 | |
10868 size_t parse(void *closure, const void *hd, const char *buf, size_t size, | |
10869 const upb_bufhandle *handle) { | |
10870 upb_json_parser *parser = closure; | |
10871 | |
10872 /* Variables used by Ragel's generated code. */ | |
10873 int cs = parser->current_state; | |
10874 int *stack = parser->parser_stack; | |
10875 int top = parser->parser_top; | |
10876 | |
10877 const char *p = buf; | |
10878 const char *pe = buf + size; | |
10879 | |
10880 parser->handle = handle; | |
10881 | |
10882 UPB_UNUSED(hd); | |
10883 UPB_UNUSED(handle); | |
10884 | |
10885 capture_resume(parser, buf); | |
10886 | |
10887 | |
10888 #line 1301 "upb/json/parser.c" | |
10889 { | |
10890 int _klen; | |
10891 unsigned int _trans; | |
10892 const char *_acts; | |
10893 unsigned int _nacts; | |
10894 const char *_keys; | |
10895 | |
10896 if ( p == pe ) | |
10897 goto _test_eof; | |
10898 if ( cs == 0 ) | |
10899 goto _out; | |
10900 _resume: | |
10901 _keys = _json_trans_keys + _json_key_offsets[cs]; | |
10902 _trans = _json_index_offsets[cs]; | |
10903 | |
10904 _klen = _json_single_lengths[cs]; | |
10905 if ( _klen > 0 ) { | |
10906 const char *_lower = _keys; | |
10907 const char *_mid; | |
10908 const char *_upper = _keys + _klen - 1; | |
10909 while (1) { | |
10910 if ( _upper < _lower ) | |
10911 break; | |
10912 | |
10913 _mid = _lower + ((_upper-_lower) >> 1); | |
10914 if ( (*p) < *_mid ) | |
10915 _upper = _mid - 1; | |
10916 else if ( (*p) > *_mid ) | |
10917 _lower = _mid + 1; | |
10918 else { | |
10919 _trans += (unsigned int)(_mid - _keys); | |
10920 goto _match; | |
10921 } | |
10922 } | |
10923 _keys += _klen; | |
10924 _trans += _klen; | |
10925 } | |
10926 | |
10927 _klen = _json_range_lengths[cs]; | |
10928 if ( _klen > 0 ) { | |
10929 const char *_lower = _keys; | |
10930 const char *_mid; | |
10931 const char *_upper = _keys + (_klen<<1) - 2; | |
10932 while (1) { | |
10933 if ( _upper < _lower ) | |
10934 break; | |
10935 | |
10936 _mid = _lower + (((_upper-_lower) >> 1) & ~1); | |
10937 if ( (*p) < _mid[0] ) | |
10938 _upper = _mid - 2; | |
10939 else if ( (*p) > _mid[1] ) | |
10940 _lower = _mid + 2; | |
10941 else { | |
10942 _trans += (unsigned int)((_mid - _keys)>>1); | |
10943 goto _match; | |
10944 } | |
10945 } | |
10946 _trans += _klen; | |
10947 } | |
10948 | |
10949 _match: | |
10950 _trans = _json_indicies[_trans]; | |
10951 cs = _json_trans_targs[_trans]; | |
10952 | |
10953 if ( _json_trans_actions[_trans] == 0 ) | |
10954 goto _again; | |
10955 | |
10956 _acts = _json_actions + _json_trans_actions[_trans]; | |
10957 _nacts = (unsigned int) *_acts++; | |
10958 while ( _nacts-- > 0 ) | |
10959 { | |
10960 switch ( *_acts++ ) | |
10961 { | |
10962 case 0: | |
10963 #line 1133 "upb/json/parser.rl" | |
10964 { p--; {cs = stack[--top]; goto _again;} } | |
10965 break; | |
10966 case 1: | |
10967 #line 1134 "upb/json/parser.rl" | |
10968 { p--; {stack[top++] = cs; cs = 10; goto _again;} } | |
10969 break; | |
10970 case 2: | |
10971 #line 1138 "upb/json/parser.rl" | |
10972 { start_text(parser, p); } | |
10973 break; | |
10974 case 3: | |
10975 #line 1139 "upb/json/parser.rl" | |
10976 { CHECK_RETURN_TOP(end_text(parser, p)); } | |
10977 break; | |
10978 case 4: | |
10979 #line 1145 "upb/json/parser.rl" | |
10980 { start_hex(parser); } | |
10981 break; | |
10982 case 5: | |
10983 #line 1146 "upb/json/parser.rl" | |
10984 { hexdigit(parser, p); } | |
10985 break; | |
10986 case 6: | |
10987 #line 1147 "upb/json/parser.rl" | |
10988 { CHECK_RETURN_TOP(end_hex(parser)); } | |
10989 break; | |
10990 case 7: | |
10991 #line 1153 "upb/json/parser.rl" | |
10992 { CHECK_RETURN_TOP(escape(parser, p)); } | |
10993 break; | |
10994 case 8: | |
10995 #line 1159 "upb/json/parser.rl" | |
10996 { p--; {cs = stack[--top]; goto _again;} } | |
10997 break; | |
10998 case 9: | |
10999 #line 1162 "upb/json/parser.rl" | |
11000 { {stack[top++] = cs; cs = 19; goto _again;} } | |
11001 break; | |
11002 case 10: | |
11003 #line 1164 "upb/json/parser.rl" | |
11004 { p--; {stack[top++] = cs; cs = 27; goto _again;} } | |
11005 break; | |
11006 case 11: | |
11007 #line 1169 "upb/json/parser.rl" | |
11008 { start_member(parser); } | |
11009 break; | |
11010 case 12: | |
11011 #line 1170 "upb/json/parser.rl" | |
11012 { CHECK_RETURN_TOP(end_membername(parser)); } | |
11013 break; | |
11014 case 13: | |
11015 #line 1173 "upb/json/parser.rl" | |
11016 { end_member(parser); } | |
11017 break; | |
11018 case 14: | |
11019 #line 1179 "upb/json/parser.rl" | |
11020 { start_object(parser); } | |
11021 break; | |
11022 case 15: | |
11023 #line 1182 "upb/json/parser.rl" | |
11024 { end_object(parser); } | |
11025 break; | |
11026 case 16: | |
11027 #line 1188 "upb/json/parser.rl" | |
11028 { CHECK_RETURN_TOP(start_array(parser)); } | |
11029 break; | |
11030 case 17: | |
11031 #line 1192 "upb/json/parser.rl" | |
11032 { end_array(parser); } | |
11033 break; | |
11034 case 18: | |
11035 #line 1197 "upb/json/parser.rl" | |
11036 { start_number(parser, p); } | |
11037 break; | |
11038 case 19: | |
11039 #line 1198 "upb/json/parser.rl" | |
11040 { CHECK_RETURN_TOP(end_number(parser, p)); } | |
11041 break; | |
11042 case 20: | |
11043 #line 1200 "upb/json/parser.rl" | |
11044 { CHECK_RETURN_TOP(start_stringval(parser)); } | |
11045 break; | |
11046 case 21: | |
11047 #line 1201 "upb/json/parser.rl" | |
11048 { CHECK_RETURN_TOP(end_stringval(parser)); } | |
11049 break; | |
11050 case 22: | |
11051 #line 1203 "upb/json/parser.rl" | |
11052 { CHECK_RETURN_TOP(parser_putbool(parser, true)); } | |
11053 break; | |
11054 case 23: | |
11055 #line 1205 "upb/json/parser.rl" | |
11056 { CHECK_RETURN_TOP(parser_putbool(parser, false)); } | |
11057 break; | |
11058 case 24: | |
11059 #line 1207 "upb/json/parser.rl" | |
11060 { /* null value */ } | |
11061 break; | |
11062 case 25: | |
11063 #line 1209 "upb/json/parser.rl" | |
11064 { CHECK_RETURN_TOP(start_subobject(parser)); } | |
11065 break; | |
11066 case 26: | |
11067 #line 1210 "upb/json/parser.rl" | |
11068 { end_subobject(parser); } | |
11069 break; | |
11070 case 27: | |
11071 #line 1215 "upb/json/parser.rl" | |
11072 { p--; {cs = stack[--top]; goto _again;} } | |
11073 break; | |
11074 #line 1487 "upb/json/parser.c" | |
11075 } | |
11076 } | |
11077 | |
11078 _again: | |
11079 if ( cs == 0 ) | |
11080 goto _out; | |
11081 if ( ++p != pe ) | |
11082 goto _resume; | |
11083 _test_eof: {} | |
11084 _out: {} | |
11085 } | |
11086 | |
11087 #line 1242 "upb/json/parser.rl" | |
11088 | |
11089 if (p != pe) { | |
11090 upb_status_seterrf(&parser->status, "Parse error at %s\n", p); | |
11091 upb_env_reporterror(parser->env, &parser->status); | |
11092 } else { | |
11093 capture_suspend(parser, &p); | |
11094 } | |
11095 | |
11096 error: | |
11097 /* Save parsing state back to parser. */ | |
11098 parser->current_state = cs; | |
11099 parser->parser_top = top; | |
11100 | |
11101 return p - buf; | |
11102 } | |
11103 | |
11104 bool end(void *closure, const void *hd) { | |
11105 UPB_UNUSED(closure); | |
11106 UPB_UNUSED(hd); | |
11107 | |
11108 /* Prevent compile warning on unused static constants. */ | |
11109 UPB_UNUSED(json_start); | |
11110 UPB_UNUSED(json_en_number_machine); | |
11111 UPB_UNUSED(json_en_string_machine); | |
11112 UPB_UNUSED(json_en_value_machine); | |
11113 UPB_UNUSED(json_en_main); | |
11114 return true; | |
11115 } | |
11116 | |
11117 static void json_parser_reset(upb_json_parser *p) { | |
11118 int cs; | |
11119 int top; | |
11120 | |
11121 p->top = p->stack; | |
11122 p->top->f = NULL; | |
11123 p->top->is_map = false; | |
11124 p->top->is_mapentry = false; | |
11125 | |
11126 /* Emit Ragel initialization of the parser. */ | |
11127 | |
11128 #line 1541 "upb/json/parser.c" | |
11129 { | |
11130 cs = json_start; | |
11131 top = 0; | |
11132 } | |
11133 | |
11134 #line 1282 "upb/json/parser.rl" | |
11135 p->current_state = cs; | |
11136 p->parser_top = top; | |
11137 accumulate_clear(p); | |
11138 p->multipart_state = MULTIPART_INACTIVE; | |
11139 p->capture = NULL; | |
11140 p->accumulated = NULL; | |
11141 upb_status_clear(&p->status); | |
11142 } | |
11143 | |
11144 | |
11145 /* Public API *****************************************************************/ | |
11146 | |
11147 upb_json_parser *upb_json_parser_create(upb_env *env, upb_sink *output) { | |
11148 #ifndef NDEBUG | |
11149 const size_t size_before = upb_env_bytesallocated(env); | |
11150 #endif | |
11151 upb_json_parser *p = upb_env_malloc(env, sizeof(upb_json_parser)); | |
11152 if (!p) return false; | |
11153 | |
11154 p->env = env; | |
11155 p->limit = p->stack + UPB_JSON_MAX_DEPTH; | |
11156 p->accumulate_buf = NULL; | |
11157 p->accumulate_buf_size = 0; | |
11158 upb_byteshandler_init(&p->input_handler_); | |
11159 upb_byteshandler_setstring(&p->input_handler_, parse, NULL); | |
11160 upb_byteshandler_setendstr(&p->input_handler_, end, NULL); | |
11161 upb_bytessink_reset(&p->input_, &p->input_handler_, p); | |
11162 | |
11163 json_parser_reset(p); | |
11164 upb_sink_reset(&p->top->sink, output->handlers, output->closure); | |
11165 p->top->m = upb_handlers_msgdef(output->handlers); | |
11166 | |
11167 /* If this fails, uncomment and increase the value in parser.h. */ | |
11168 /* fprintf(stderr, "%zd\n", upb_env_bytesallocated(env) - size_before); */ | |
11169 assert(upb_env_bytesallocated(env) - size_before <= UPB_JSON_PARSER_SIZE); | |
11170 return p; | |
11171 } | |
11172 | |
11173 upb_bytessink *upb_json_parser_input(upb_json_parser *p) { | |
11174 return &p->input_; | |
11175 } | |
11176 /* | |
11177 ** This currently uses snprintf() to format primitives, and could be optimized | |
11178 ** further. | |
11179 */ | |
11180 | |
11181 | |
11182 #include <stdlib.h> | |
11183 #include <stdio.h> | |
11184 #include <string.h> | |
11185 #include <stdint.h> | |
11186 | |
11187 struct upb_json_printer { | |
11188 upb_sink input_; | |
11189 /* BytesSink closure. */ | |
11190 void *subc_; | |
11191 upb_bytessink *output_; | |
11192 | |
11193 /* We track the depth so that we know when to emit startstr/endstr on the | |
11194 * output. */ | |
11195 int depth_; | |
11196 | |
11197 /* Have we emitted the first element? This state is necessary to emit commas | |
11198 * without leaving a trailing comma in arrays/maps. We keep this state per | |
11199 * frame depth. | |
11200 * | |
11201 * Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages. | |
11202 * We count frames (contexts in which we separate elements by commas) as both | |
11203 * repeated fields and messages (maps), and the worst case is a | |
11204 * message->repeated field->submessage->repeated field->... nesting. */ | |
11205 bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2]; | |
11206 }; | |
11207 | |
11208 /* StringPiece; a pointer plus a length. */ | |
11209 typedef struct { | |
11210 const char *ptr; | |
11211 size_t len; | |
11212 } strpc; | |
11213 | |
11214 strpc *newstrpc(upb_handlers *h, const upb_fielddef *f) { | |
11215 strpc *ret = malloc(sizeof(*ret)); | |
11216 ret->ptr = upb_fielddef_name(f); | |
11217 ret->len = strlen(ret->ptr); | |
11218 upb_handlers_addcleanup(h, ret, free); | |
11219 return ret; | |
11220 } | |
11221 | |
11222 /* ------------ JSON string printing: values, maps, arrays ------------------ */ | |
11223 | |
11224 static void print_data( | |
11225 upb_json_printer *p, const char *buf, unsigned int len) { | |
11226 /* TODO: Will need to change if we support pushback from the sink. */ | |
11227 size_t n = upb_bytessink_putbuf(p->output_, p->subc_, buf, len, NULL); | |
11228 UPB_ASSERT_VAR(n, n == len); | |
11229 } | |
11230 | |
11231 static void print_comma(upb_json_printer *p) { | |
11232 if (!p->first_elem_[p->depth_]) { | |
11233 print_data(p, ",", 1); | |
11234 } | |
11235 p->first_elem_[p->depth_] = false; | |
11236 } | |
11237 | |
11238 /* Helpers that print properly formatted elements to the JSON output stream. */ | |
11239 | |
11240 /* Used for escaping control chars in strings. */ | |
11241 static const char kControlCharLimit = 0x20; | |
11242 | |
11243 UPB_INLINE bool is_json_escaped(char c) { | |
11244 /* See RFC 4627. */ | |
11245 unsigned char uc = (unsigned char)c; | |
11246 return uc < kControlCharLimit || uc == '"' || uc == '\\'; | |
11247 } | |
11248 | |
11249 UPB_INLINE char* json_nice_escape(char c) { | |
11250 switch (c) { | |
11251 case '"': return "\\\""; | |
11252 case '\\': return "\\\\"; | |
11253 case '\b': return "\\b"; | |
11254 case '\f': return "\\f"; | |
11255 case '\n': return "\\n"; | |
11256 case '\r': return "\\r"; | |
11257 case '\t': return "\\t"; | |
11258 default: return NULL; | |
11259 } | |
11260 } | |
11261 | |
11262 /* Write a properly escaped string chunk. The surrounding quotes are *not* | |
11263 * printed; this is so that the caller has the option of emitting the string | |
11264 * content in chunks. */ | |
11265 static void putstring(upb_json_printer *p, const char *buf, unsigned int len) { | |
11266 const char* unescaped_run = NULL; | |
11267 unsigned int i; | |
11268 for (i = 0; i < len; i++) { | |
11269 char c = buf[i]; | |
11270 /* Handle escaping. */ | |
11271 if (is_json_escaped(c)) { | |
11272 /* Use a "nice" escape, like \n, if one exists for this character. */ | |
11273 const char* escape = json_nice_escape(c); | |
11274 /* If we don't have a specific 'nice' escape code, use a \uXXXX-style | |
11275 * escape. */ | |
11276 char escape_buf[8]; | |
11277 if (!escape) { | |
11278 unsigned char byte = (unsigned char)c; | |
11279 _upb_snprintf(escape_buf, sizeof(escape_buf), "\\u%04x", (int)byte); | |
11280 escape = escape_buf; | |
11281 } | |
11282 | |
11283 /* N.B. that we assume that the input encoding is equal to the output | |
11284 * encoding (both UTF-8 for now), so for chars >= 0x20 and != \, ", we | |
11285 * can simply pass the bytes through. */ | |
11286 | |
11287 /* If there's a current run of unescaped chars, print that run first. */ | |
11288 if (unescaped_run) { | |
11289 print_data(p, unescaped_run, &buf[i] - unescaped_run); | |
11290 unescaped_run = NULL; | |
11291 } | |
11292 /* Then print the escape code. */ | |
11293 print_data(p, escape, strlen(escape)); | |
11294 } else { | |
11295 /* Add to the current unescaped run of characters. */ | |
11296 if (unescaped_run == NULL) { | |
11297 unescaped_run = &buf[i]; | |
11298 } | |
11299 } | |
11300 } | |
11301 | |
11302 /* If the string ended in a run of unescaped characters, print that last run.
*/ | |
11303 if (unescaped_run) { | |
11304 print_data(p, unescaped_run, &buf[len] - unescaped_run); | |
11305 } | |
11306 } | |
11307 | |
11308 #define CHKLENGTH(x) if (!(x)) return -1; | |
11309 | |
11310 /* Helpers that format floating point values according to our custom formats. | |
11311 * Right now we use %.8g and %.17g for float/double, respectively, to match | |
11312 * proto2::util::JsonFormat's defaults. May want to change this later. */ | |
11313 | |
11314 static size_t fmt_double(double val, char* buf, size_t length) { | |
11315 size_t n = _upb_snprintf(buf, length, "%.17g", val); | |
11316 CHKLENGTH(n > 0 && n < length); | |
11317 return n; | |
11318 } | |
11319 | |
11320 static size_t fmt_float(float val, char* buf, size_t length) { | |
11321 size_t n = _upb_snprintf(buf, length, "%.8g", val); | |
11322 CHKLENGTH(n > 0 && n < length); | |
11323 return n; | |
11324 } | |
11325 | |
11326 static size_t fmt_bool(bool val, char* buf, size_t length) { | |
11327 size_t n = _upb_snprintf(buf, length, "%s", (val ? "true" : "false")); | |
11328 CHKLENGTH(n > 0 && n < length); | |
11329 return n; | |
11330 } | |
11331 | |
11332 static size_t fmt_int64(long val, char* buf, size_t length) { | |
11333 size_t n = _upb_snprintf(buf, length, "%ld", val); | |
11334 CHKLENGTH(n > 0 && n < length); | |
11335 return n; | |
11336 } | |
11337 | |
11338 static size_t fmt_uint64(unsigned long long val, char* buf, size_t length) { | |
11339 size_t n = _upb_snprintf(buf, length, "%llu", val); | |
11340 CHKLENGTH(n > 0 && n < length); | |
11341 return n; | |
11342 } | |
11343 | |
11344 /* Print a map key given a field name. Called by scalar field handlers and by | |
11345 * startseq for repeated fields. */ | |
11346 static bool putkey(void *closure, const void *handler_data) { | |
11347 upb_json_printer *p = closure; | |
11348 const strpc *key = handler_data; | |
11349 print_comma(p); | |
11350 print_data(p, "\"", 1); | |
11351 putstring(p, key->ptr, key->len); | |
11352 print_data(p, "\":", 2); | |
11353 return true; | |
11354 } | |
11355 | |
11356 #define CHKFMT(val) if ((val) == (size_t)-1) return false; | |
11357 #define CHK(val) if (!(val)) return false; | |
11358 | |
11359 #define TYPE_HANDLERS(type, fmt_func) \ | |
11360 static bool put##type(void *closure, const void *handler_data, type val) { \ | |
11361 upb_json_printer *p = closure; \ | |
11362 char data[64]; \ | |
11363 size_t length = fmt_func(val, data, sizeof(data)); \ | |
11364 UPB_UNUSED(handler_data); \ | |
11365 CHKFMT(length); \ | |
11366 print_data(p, data, length); \ | |
11367 return true; \ | |
11368 } \ | |
11369 static bool scalar_##type(void *closure, const void *handler_data, \ | |
11370 type val) { \ | |
11371 CHK(putkey(closure, handler_data)); \ | |
11372 CHK(put##type(closure, handler_data, val)); \ | |
11373 return true; \ | |
11374 } \ | |
11375 static bool repeated_##type(void *closure, const void *handler_data, \ | |
11376 type val) { \ | |
11377 upb_json_printer *p = closure; \ | |
11378 print_comma(p); \ | |
11379 CHK(put##type(closure, handler_data, val)); \ | |
11380 return true; \ | |
11381 } | |
11382 | |
11383 #define TYPE_HANDLERS_MAPKEY(type, fmt_func) \ | |
11384 static bool putmapkey_##type(void *closure, const void *handler_data, \ | |
11385 type val) { \ | |
11386 upb_json_printer *p = closure; \ | |
11387 print_data(p, "\"", 1); \ | |
11388 CHK(put##type(closure, handler_data, val)); \ | |
11389 print_data(p, "\":", 2); \ | |
11390 return true; \ | |
11391 } | |
11392 | |
11393 TYPE_HANDLERS(double, fmt_double) | |
11394 TYPE_HANDLERS(float, fmt_float) | |
11395 TYPE_HANDLERS(bool, fmt_bool) | |
11396 TYPE_HANDLERS(int32_t, fmt_int64) | |
11397 TYPE_HANDLERS(uint32_t, fmt_int64) | |
11398 TYPE_HANDLERS(int64_t, fmt_int64) | |
11399 TYPE_HANDLERS(uint64_t, fmt_uint64) | |
11400 | |
11401 /* double and float are not allowed to be map keys. */ | |
11402 TYPE_HANDLERS_MAPKEY(bool, fmt_bool) | |
11403 TYPE_HANDLERS_MAPKEY(int32_t, fmt_int64) | |
11404 TYPE_HANDLERS_MAPKEY(uint32_t, fmt_int64) | |
11405 TYPE_HANDLERS_MAPKEY(int64_t, fmt_int64) | |
11406 TYPE_HANDLERS_MAPKEY(uint64_t, fmt_uint64) | |
11407 | |
11408 #undef TYPE_HANDLERS | |
11409 #undef TYPE_HANDLERS_MAPKEY | |
11410 | |
11411 typedef struct { | |
11412 void *keyname; | |
11413 const upb_enumdef *enumdef; | |
11414 } EnumHandlerData; | |
11415 | |
11416 static bool scalar_enum(void *closure, const void *handler_data, | |
11417 int32_t val) { | |
11418 const EnumHandlerData *hd = handler_data; | |
11419 upb_json_printer *p = closure; | |
11420 const char *symbolic_name; | |
11421 | |
11422 CHK(putkey(closure, hd->keyname)); | |
11423 | |
11424 symbolic_name = upb_enumdef_iton(hd->enumdef, val); | |
11425 if (symbolic_name) { | |
11426 print_data(p, "\"", 1); | |
11427 putstring(p, symbolic_name, strlen(symbolic_name)); | |
11428 print_data(p, "\"", 1); | |
11429 } else { | |
11430 putint32_t(closure, NULL, val); | |
11431 } | |
11432 | |
11433 return true; | |
11434 } | |
11435 | |
11436 static void print_enum_symbolic_name(upb_json_printer *p, | |
11437 const upb_enumdef *def, | |
11438 int32_t val) { | |
11439 const char *symbolic_name = upb_enumdef_iton(def, val); | |
11440 if (symbolic_name) { | |
11441 print_data(p, "\"", 1); | |
11442 putstring(p, symbolic_name, strlen(symbolic_name)); | |
11443 print_data(p, "\"", 1); | |
11444 } else { | |
11445 putint32_t(p, NULL, val); | |
11446 } | |
11447 } | |
11448 | |
11449 static bool repeated_enum(void *closure, const void *handler_data, | |
11450 int32_t val) { | |
11451 const EnumHandlerData *hd = handler_data; | |
11452 upb_json_printer *p = closure; | |
11453 print_comma(p); | |
11454 | |
11455 print_enum_symbolic_name(p, hd->enumdef, val); | |
11456 | |
11457 return true; | |
11458 } | |
11459 | |
11460 static bool mapvalue_enum(void *closure, const void *handler_data, | |
11461 int32_t val) { | |
11462 const EnumHandlerData *hd = handler_data; | |
11463 upb_json_printer *p = closure; | |
11464 | |
11465 print_enum_symbolic_name(p, hd->enumdef, val); | |
11466 | |
11467 return true; | |
11468 } | |
11469 | |
11470 static void *scalar_startsubmsg(void *closure, const void *handler_data) { | |
11471 return putkey(closure, handler_data) ? closure : UPB_BREAK; | |
11472 } | |
11473 | |
11474 static void *repeated_startsubmsg(void *closure, const void *handler_data) { | |
11475 upb_json_printer *p = closure; | |
11476 UPB_UNUSED(handler_data); | |
11477 print_comma(p); | |
11478 return closure; | |
11479 } | |
11480 | |
11481 static void start_frame(upb_json_printer *p) { | |
11482 p->depth_++; | |
11483 p->first_elem_[p->depth_] = true; | |
11484 print_data(p, "{", 1); | |
11485 } | |
11486 | |
11487 static void end_frame(upb_json_printer *p) { | |
11488 print_data(p, "}", 1); | |
11489 p->depth_--; | |
11490 } | |
11491 | |
11492 static bool printer_startmsg(void *closure, const void *handler_data) { | |
11493 upb_json_printer *p = closure; | |
11494 UPB_UNUSED(handler_data); | |
11495 if (p->depth_ == 0) { | |
11496 upb_bytessink_start(p->output_, 0, &p->subc_); | |
11497 } | |
11498 start_frame(p); | |
11499 return true; | |
11500 } | |
11501 | |
11502 static bool printer_endmsg(void *closure, const void *handler_data, upb_status *
s) { | |
11503 upb_json_printer *p = closure; | |
11504 UPB_UNUSED(handler_data); | |
11505 UPB_UNUSED(s); | |
11506 end_frame(p); | |
11507 if (p->depth_ == 0) { | |
11508 upb_bytessink_end(p->output_); | |
11509 } | |
11510 return true; | |
11511 } | |
11512 | |
11513 static void *startseq(void *closure, const void *handler_data) { | |
11514 upb_json_printer *p = closure; | |
11515 CHK(putkey(closure, handler_data)); | |
11516 p->depth_++; | |
11517 p->first_elem_[p->depth_] = true; | |
11518 print_data(p, "[", 1); | |
11519 return closure; | |
11520 } | |
11521 | |
11522 static bool endseq(void *closure, const void *handler_data) { | |
11523 upb_json_printer *p = closure; | |
11524 UPB_UNUSED(handler_data); | |
11525 print_data(p, "]", 1); | |
11526 p->depth_--; | |
11527 return true; | |
11528 } | |
11529 | |
11530 static void *startmap(void *closure, const void *handler_data) { | |
11531 upb_json_printer *p = closure; | |
11532 CHK(putkey(closure, handler_data)); | |
11533 p->depth_++; | |
11534 p->first_elem_[p->depth_] = true; | |
11535 print_data(p, "{", 1); | |
11536 return closure; | |
11537 } | |
11538 | |
11539 static bool endmap(void *closure, const void *handler_data) { | |
11540 upb_json_printer *p = closure; | |
11541 UPB_UNUSED(handler_data); | |
11542 print_data(p, "}", 1); | |
11543 p->depth_--; | |
11544 return true; | |
11545 } | |
11546 | |
11547 static size_t putstr(void *closure, const void *handler_data, const char *str, | |
11548 size_t len, const upb_bufhandle *handle) { | |
11549 upb_json_printer *p = closure; | |
11550 UPB_UNUSED(handler_data); | |
11551 UPB_UNUSED(handle); | |
11552 putstring(p, str, len); | |
11553 return len; | |
11554 } | |
11555 | |
11556 /* This has to Base64 encode the bytes, because JSON has no "bytes" type. */ | |
11557 static size_t putbytes(void *closure, const void *handler_data, const char *str, | |
11558 size_t len, const upb_bufhandle *handle) { | |
11559 upb_json_printer *p = closure; | |
11560 | |
11561 /* This is the regular base64, not the "web-safe" version. */ | |
11562 static const char base64[] = | |
11563 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; | |
11564 | |
11565 /* Base64-encode. */ | |
11566 char data[16000]; | |
11567 const char *limit = data + sizeof(data); | |
11568 const unsigned char *from = (const unsigned char*)str; | |
11569 char *to = data; | |
11570 size_t remaining = len; | |
11571 size_t bytes; | |
11572 | |
11573 UPB_UNUSED(handler_data); | |
11574 UPB_UNUSED(handle); | |
11575 | |
11576 while (remaining > 2) { | |
11577 /* TODO(haberman): handle encoded lengths > sizeof(data) */ | |
11578 UPB_ASSERT_VAR(limit, (limit - to) >= 4); | |
11579 | |
11580 to[0] = base64[from[0] >> 2]; | |
11581 to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; | |
11582 to[2] = base64[((from[1] & 0xf) << 2) | (from[2] >> 6)]; | |
11583 to[3] = base64[from[2] & 0x3f]; | |
11584 | |
11585 remaining -= 3; | |
11586 to += 4; | |
11587 from += 3; | |
11588 } | |
11589 | |
11590 switch (remaining) { | |
11591 case 2: | |
11592 to[0] = base64[from[0] >> 2]; | |
11593 to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; | |
11594 to[2] = base64[(from[1] & 0xf) << 2]; | |
11595 to[3] = '='; | |
11596 to += 4; | |
11597 from += 2; | |
11598 break; | |
11599 case 1: | |
11600 to[0] = base64[from[0] >> 2]; | |
11601 to[1] = base64[((from[0] & 0x3) << 4)]; | |
11602 to[2] = '='; | |
11603 to[3] = '='; | |
11604 to += 4; | |
11605 from += 1; | |
11606 break; | |
11607 } | |
11608 | |
11609 bytes = to - data; | |
11610 print_data(p, "\"", 1); | |
11611 putstring(p, data, bytes); | |
11612 print_data(p, "\"", 1); | |
11613 return len; | |
11614 } | |
11615 | |
11616 static void *scalar_startstr(void *closure, const void *handler_data, | |
11617 size_t size_hint) { | |
11618 upb_json_printer *p = closure; | |
11619 UPB_UNUSED(handler_data); | |
11620 UPB_UNUSED(size_hint); | |
11621 CHK(putkey(closure, handler_data)); | |
11622 print_data(p, "\"", 1); | |
11623 return p; | |
11624 } | |
11625 | |
11626 static size_t scalar_str(void *closure, const void *handler_data, | |
11627 const char *str, size_t len, | |
11628 const upb_bufhandle *handle) { | |
11629 CHK(putstr(closure, handler_data, str, len, handle)); | |
11630 return len; | |
11631 } | |
11632 | |
11633 static bool scalar_endstr(void *closure, const void *handler_data) { | |
11634 upb_json_printer *p = closure; | |
11635 UPB_UNUSED(handler_data); | |
11636 print_data(p, "\"", 1); | |
11637 return true; | |
11638 } | |
11639 | |
11640 static void *repeated_startstr(void *closure, const void *handler_data, | |
11641 size_t size_hint) { | |
11642 upb_json_printer *p = closure; | |
11643 UPB_UNUSED(handler_data); | |
11644 UPB_UNUSED(size_hint); | |
11645 print_comma(p); | |
11646 print_data(p, "\"", 1); | |
11647 return p; | |
11648 } | |
11649 | |
11650 static size_t repeated_str(void *closure, const void *handler_data, | |
11651 const char *str, size_t len, | |
11652 const upb_bufhandle *handle) { | |
11653 CHK(putstr(closure, handler_data, str, len, handle)); | |
11654 return len; | |
11655 } | |
11656 | |
11657 static bool repeated_endstr(void *closure, const void *handler_data) { | |
11658 upb_json_printer *p = closure; | |
11659 UPB_UNUSED(handler_data); | |
11660 print_data(p, "\"", 1); | |
11661 return true; | |
11662 } | |
11663 | |
11664 static void *mapkeyval_startstr(void *closure, const void *handler_data, | |
11665 size_t size_hint) { | |
11666 upb_json_printer *p = closure; | |
11667 UPB_UNUSED(handler_data); | |
11668 UPB_UNUSED(size_hint); | |
11669 print_data(p, "\"", 1); | |
11670 return p; | |
11671 } | |
11672 | |
11673 static size_t mapkey_str(void *closure, const void *handler_data, | |
11674 const char *str, size_t len, | |
11675 const upb_bufhandle *handle) { | |
11676 CHK(putstr(closure, handler_data, str, len, handle)); | |
11677 return len; | |
11678 } | |
11679 | |
11680 static bool mapkey_endstr(void *closure, const void *handler_data) { | |
11681 upb_json_printer *p = closure; | |
11682 UPB_UNUSED(handler_data); | |
11683 print_data(p, "\":", 2); | |
11684 return true; | |
11685 } | |
11686 | |
11687 static bool mapvalue_endstr(void *closure, const void *handler_data) { | |
11688 upb_json_printer *p = closure; | |
11689 UPB_UNUSED(handler_data); | |
11690 print_data(p, "\"", 1); | |
11691 return true; | |
11692 } | |
11693 | |
11694 static size_t scalar_bytes(void *closure, const void *handler_data, | |
11695 const char *str, size_t len, | |
11696 const upb_bufhandle *handle) { | |
11697 CHK(putkey(closure, handler_data)); | |
11698 CHK(putbytes(closure, handler_data, str, len, handle)); | |
11699 return len; | |
11700 } | |
11701 | |
11702 static size_t repeated_bytes(void *closure, const void *handler_data, | |
11703 const char *str, size_t len, | |
11704 const upb_bufhandle *handle) { | |
11705 upb_json_printer *p = closure; | |
11706 print_comma(p); | |
11707 CHK(putbytes(closure, handler_data, str, len, handle)); | |
11708 return len; | |
11709 } | |
11710 | |
11711 static size_t mapkey_bytes(void *closure, const void *handler_data, | |
11712 const char *str, size_t len, | |
11713 const upb_bufhandle *handle) { | |
11714 upb_json_printer *p = closure; | |
11715 CHK(putbytes(closure, handler_data, str, len, handle)); | |
11716 print_data(p, ":", 1); | |
11717 return len; | |
11718 } | |
11719 | |
11720 static void set_enum_hd(upb_handlers *h, | |
11721 const upb_fielddef *f, | |
11722 upb_handlerattr *attr) { | |
11723 EnumHandlerData *hd = malloc(sizeof(EnumHandlerData)); | |
11724 hd->enumdef = (const upb_enumdef *)upb_fielddef_subdef(f); | |
11725 hd->keyname = newstrpc(h, f); | |
11726 upb_handlers_addcleanup(h, hd, free); | |
11727 upb_handlerattr_sethandlerdata(attr, hd); | |
11728 } | |
11729 | |
11730 /* Set up handlers for a mapentry submessage (i.e., an individual key/value pair | |
11731 * in a map). | |
11732 * | |
11733 * TODO: Handle missing key, missing value, out-of-order key/value, or repeated | |
11734 * key or value cases properly. The right way to do this is to allocate a | |
11735 * temporary structure at the start of a mapentry submessage, store key and | |
11736 * value data in it as key and value handlers are called, and then print the | |
11737 * key/value pair once at the end of the submessage. If we don't do this, we | |
11738 * should at least detect the case and throw an error. However, so far all of | |
11739 * our sources that emit mapentry messages do so canonically (with one key | |
11740 * field, and then one value field), so this is not a pressing concern at the | |
11741 * moment. */ | |
11742 void printer_sethandlers_mapentry(const void *closure, upb_handlers *h) { | |
11743 const upb_msgdef *md = upb_handlers_msgdef(h); | |
11744 | |
11745 /* A mapentry message is printed simply as '"key": value'. Rather than | |
11746 * special-case key and value for every type below, we just handle both | |
11747 * fields explicitly here. */ | |
11748 const upb_fielddef* key_field = upb_msgdef_itof(md, UPB_MAPENTRY_KEY); | |
11749 const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_MAPENTRY_VALUE); | |
11750 | |
11751 upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER; | |
11752 | |
11753 UPB_UNUSED(closure); | |
11754 | |
11755 switch (upb_fielddef_type(key_field)) { | |
11756 case UPB_TYPE_INT32: | |
11757 upb_handlers_setint32(h, key_field, putmapkey_int32_t, &empty_attr); | |
11758 break; | |
11759 case UPB_TYPE_INT64: | |
11760 upb_handlers_setint64(h, key_field, putmapkey_int64_t, &empty_attr); | |
11761 break; | |
11762 case UPB_TYPE_UINT32: | |
11763 upb_handlers_setuint32(h, key_field, putmapkey_uint32_t, &empty_attr); | |
11764 break; | |
11765 case UPB_TYPE_UINT64: | |
11766 upb_handlers_setuint64(h, key_field, putmapkey_uint64_t, &empty_attr); | |
11767 break; | |
11768 case UPB_TYPE_BOOL: | |
11769 upb_handlers_setbool(h, key_field, putmapkey_bool, &empty_attr); | |
11770 break; | |
11771 case UPB_TYPE_STRING: | |
11772 upb_handlers_setstartstr(h, key_field, mapkeyval_startstr, &empty_attr); | |
11773 upb_handlers_setstring(h, key_field, mapkey_str, &empty_attr); | |
11774 upb_handlers_setendstr(h, key_field, mapkey_endstr, &empty_attr); | |
11775 break; | |
11776 case UPB_TYPE_BYTES: | |
11777 upb_handlers_setstring(h, key_field, mapkey_bytes, &empty_attr); | |
11778 break; | |
11779 default: | |
11780 assert(false); | |
11781 break; | |
11782 } | |
11783 | |
11784 switch (upb_fielddef_type(value_field)) { | |
11785 case UPB_TYPE_INT32: | |
11786 upb_handlers_setint32(h, value_field, putint32_t, &empty_attr); | |
11787 break; | |
11788 case UPB_TYPE_INT64: | |
11789 upb_handlers_setint64(h, value_field, putint64_t, &empty_attr); | |
11790 break; | |
11791 case UPB_TYPE_UINT32: | |
11792 upb_handlers_setuint32(h, value_field, putuint32_t, &empty_attr); | |
11793 break; | |
11794 case UPB_TYPE_UINT64: | |
11795 upb_handlers_setuint64(h, value_field, putuint64_t, &empty_attr); | |
11796 break; | |
11797 case UPB_TYPE_BOOL: | |
11798 upb_handlers_setbool(h, value_field, putbool, &empty_attr); | |
11799 break; | |
11800 case UPB_TYPE_FLOAT: | |
11801 upb_handlers_setfloat(h, value_field, putfloat, &empty_attr); | |
11802 break; | |
11803 case UPB_TYPE_DOUBLE: | |
11804 upb_handlers_setdouble(h, value_field, putdouble, &empty_attr); | |
11805 break; | |
11806 case UPB_TYPE_STRING: | |
11807 upb_handlers_setstartstr(h, value_field, mapkeyval_startstr, &empty_attr); | |
11808 upb_handlers_setstring(h, value_field, putstr, &empty_attr); | |
11809 upb_handlers_setendstr(h, value_field, mapvalue_endstr, &empty_attr); | |
11810 break; | |
11811 case UPB_TYPE_BYTES: | |
11812 upb_handlers_setstring(h, value_field, putbytes, &empty_attr); | |
11813 break; | |
11814 case UPB_TYPE_ENUM: { | |
11815 upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER; | |
11816 set_enum_hd(h, value_field, &enum_attr); | |
11817 upb_handlers_setint32(h, value_field, mapvalue_enum, &enum_attr); | |
11818 upb_handlerattr_uninit(&enum_attr); | |
11819 break; | |
11820 } | |
11821 case UPB_TYPE_MESSAGE: | |
11822 /* No handler necessary -- the submsg handlers will print the message | |
11823 * as appropriate. */ | |
11824 break; | |
11825 } | |
11826 | |
11827 upb_handlerattr_uninit(&empty_attr); | |
11828 } | |
11829 | |
11830 void printer_sethandlers(const void *closure, upb_handlers *h) { | |
11831 const upb_msgdef *md = upb_handlers_msgdef(h); | |
11832 bool is_mapentry = upb_msgdef_mapentry(md); | |
11833 upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER; | |
11834 upb_msg_field_iter i; | |
11835 | |
11836 UPB_UNUSED(closure); | |
11837 | |
11838 if (is_mapentry) { | |
11839 /* mapentry messages are sufficiently different that we handle them | |
11840 * separately. */ | |
11841 printer_sethandlers_mapentry(closure, h); | |
11842 return; | |
11843 } | |
11844 | |
11845 upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr); | |
11846 upb_handlers_setendmsg(h, printer_endmsg, &empty_attr); | |
11847 | |
11848 #define TYPE(type, name, ctype) \ | |
11849 case type: \ | |
11850 if (upb_fielddef_isseq(f)) { \ | |
11851 upb_handlers_set##name(h, f, repeated_##ctype, &empty_attr); \ | |
11852 } else { \ | |
11853 upb_handlers_set##name(h, f, scalar_##ctype, &name_attr); \ | |
11854 } \ | |
11855 break; | |
11856 | |
11857 upb_msg_field_begin(&i, md); | |
11858 for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) { | |
11859 const upb_fielddef *f = upb_msg_iter_field(&i); | |
11860 | |
11861 upb_handlerattr name_attr = UPB_HANDLERATTR_INITIALIZER; | |
11862 upb_handlerattr_sethandlerdata(&name_attr, newstrpc(h, f)); | |
11863 | |
11864 if (upb_fielddef_ismap(f)) { | |
11865 upb_handlers_setstartseq(h, f, startmap, &name_attr); | |
11866 upb_handlers_setendseq(h, f, endmap, &name_attr); | |
11867 } else if (upb_fielddef_isseq(f)) { | |
11868 upb_handlers_setstartseq(h, f, startseq, &name_attr); | |
11869 upb_handlers_setendseq(h, f, endseq, &empty_attr); | |
11870 } | |
11871 | |
11872 switch (upb_fielddef_type(f)) { | |
11873 TYPE(UPB_TYPE_FLOAT, float, float); | |
11874 TYPE(UPB_TYPE_DOUBLE, double, double); | |
11875 TYPE(UPB_TYPE_BOOL, bool, bool); | |
11876 TYPE(UPB_TYPE_INT32, int32, int32_t); | |
11877 TYPE(UPB_TYPE_UINT32, uint32, uint32_t); | |
11878 TYPE(UPB_TYPE_INT64, int64, int64_t); | |
11879 TYPE(UPB_TYPE_UINT64, uint64, uint64_t); | |
11880 case UPB_TYPE_ENUM: { | |
11881 /* For now, we always emit symbolic names for enums. We may want an | |
11882 * option later to control this behavior, but we will wait for a real | |
11883 * need first. */ | |
11884 upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER; | |
11885 set_enum_hd(h, f, &enum_attr); | |
11886 | |
11887 if (upb_fielddef_isseq(f)) { | |
11888 upb_handlers_setint32(h, f, repeated_enum, &enum_attr); | |
11889 } else { | |
11890 upb_handlers_setint32(h, f, scalar_enum, &enum_attr); | |
11891 } | |
11892 | |
11893 upb_handlerattr_uninit(&enum_attr); | |
11894 break; | |
11895 } | |
11896 case UPB_TYPE_STRING: | |
11897 if (upb_fielddef_isseq(f)) { | |
11898 upb_handlers_setstartstr(h, f, repeated_startstr, &empty_attr); | |
11899 upb_handlers_setstring(h, f, repeated_str, &empty_attr); | |
11900 upb_handlers_setendstr(h, f, repeated_endstr, &empty_attr); | |
11901 } else { | |
11902 upb_handlers_setstartstr(h, f, scalar_startstr, &name_attr); | |
11903 upb_handlers_setstring(h, f, scalar_str, &empty_attr); | |
11904 upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr); | |
11905 } | |
11906 break; | |
11907 case UPB_TYPE_BYTES: | |
11908 /* XXX: this doesn't support strings that span buffers yet. The base64 | |
11909 * encoder will need to be made resumable for this to work properly. */ | |
11910 if (upb_fielddef_isseq(f)) { | |
11911 upb_handlers_setstring(h, f, repeated_bytes, &empty_attr); | |
11912 } else { | |
11913 upb_handlers_setstring(h, f, scalar_bytes, &name_attr); | |
11914 } | |
11915 break; | |
11916 case UPB_TYPE_MESSAGE: | |
11917 if (upb_fielddef_isseq(f)) { | |
11918 upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &name_attr); | |
11919 } else { | |
11920 upb_handlers_setstartsubmsg(h, f, scalar_startsubmsg, &name_attr); | |
11921 } | |
11922 break; | |
11923 } | |
11924 | |
11925 upb_handlerattr_uninit(&name_attr); | |
11926 } | |
11927 | |
11928 upb_handlerattr_uninit(&empty_attr); | |
11929 #undef TYPE | |
11930 } | |
11931 | |
11932 static void json_printer_reset(upb_json_printer *p) { | |
11933 p->depth_ = 0; | |
11934 } | |
11935 | |
11936 | |
11937 /* Public API *****************************************************************/ | |
11938 | |
11939 upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h, | |
11940 upb_bytessink *output) { | |
11941 #ifndef NDEBUG | |
11942 size_t size_before = upb_env_bytesallocated(e); | |
11943 #endif | |
11944 | |
11945 upb_json_printer *p = upb_env_malloc(e, sizeof(upb_json_printer)); | |
11946 if (!p) return NULL; | |
11947 | |
11948 p->output_ = output; | |
11949 json_printer_reset(p); | |
11950 upb_sink_reset(&p->input_, h, p); | |
11951 | |
11952 /* If this fails, increase the value in printer.h. */ | |
11953 assert(upb_env_bytesallocated(e) - size_before <= UPB_JSON_PRINTER_SIZE); | |
11954 return p; | |
11955 } | |
11956 | |
11957 upb_sink *upb_json_printer_input(upb_json_printer *p) { | |
11958 return &p->input_; | |
11959 } | |
11960 | |
11961 const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md, | |
11962 const void *owner) { | |
11963 return upb_handlers_newfrozen(md, owner, printer_sethandlers, NULL); | |
11964 } | |
OLD | NEW |