| OLD | NEW |
| 1 /* | 1 /* |
| 2 * Copyright 2012 Google Inc. | 2 * Copyright 2012 Google Inc. |
| 3 * | 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
| 6 */ | 6 */ |
| 7 #include "SkGeometry.h" | 7 #include "SkGeometry.h" |
| 8 #include "SkLineParameters.h" | 8 #include "SkLineParameters.h" |
| 9 #include "SkPathOpsConic.h" | 9 #include "SkPathOpsConic.h" |
| 10 #include "SkPathOpsCubic.h" | 10 #include "SkPathOpsCubic.h" |
| (...skipping 211 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 222 fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPt
s[3].fY); | 222 fPts[1].fX), fPts[1].fY), fPts[2].fX), fPts[2].fY), fPts[3].fX), fPt
s[3].fY); |
| 223 largest = SkTMax(largest, -tiniest); | 223 largest = SkTMax(largest, -tiniest); |
| 224 double distance = lineParameters.controlPtDistance(*this, 1); | 224 double distance = lineParameters.controlPtDistance(*this, 1); |
| 225 if (!approximately_zero_when_compared_to(distance, largest)) { | 225 if (!approximately_zero_when_compared_to(distance, largest)) { |
| 226 return false; | 226 return false; |
| 227 } | 227 } |
| 228 distance = lineParameters.controlPtDistance(*this, 2); | 228 distance = lineParameters.controlPtDistance(*this, 2); |
| 229 return approximately_zero_when_compared_to(distance, largest); | 229 return approximately_zero_when_compared_to(distance, largest); |
| 230 } | 230 } |
| 231 | 231 |
| 232 bool SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t, CubicType*
resultType) { | 232 bool SkDCubic::ComplexBreak(const SkPoint pointsPtr[4], SkScalar* t) { |
| 233 SkScalar d[3]; | 233 SkScalar d[3]; |
| 234 SkCubicType cubicType = SkClassifyCubic(pointsPtr, d); | 234 SkCubicType cubicType = SkClassifyCubic(pointsPtr, d); |
| 235 if (cubicType == kLoop_SkCubicType) { | 235 if (cubicType == kLoop_SkCubicType) { |
| 236 // crib code from gpu path utils that finds t values where loop self-int
ersects | 236 // crib code from gpu path utils that finds t values where loop self-int
ersects |
| 237 // use it to find mid of t values which should be a friendly place to ch
op | 237 // use it to find mid of t values which should be a friendly place to ch
op |
| 238 SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); | 238 SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); |
| 239 SkScalar ls = d[1] - tempSqrt; | 239 SkScalar ls = d[1] - tempSqrt; |
| 240 SkScalar lt = 2.f * d[0]; | 240 SkScalar lt = 2.f * d[0]; |
| 241 SkScalar ms = d[1] + tempSqrt; | 241 SkScalar ms = d[1] + tempSqrt; |
| 242 SkScalar mt = 2.f * d[0]; | 242 SkScalar mt = 2.f * d[0]; |
| 243 if (between(0, ls, lt) || between(0, ms, mt)) { | 243 if (between(0, ls, lt) || between(0, ms, mt)) { |
| 244 ls = ls / lt; | 244 ls = ls / lt; |
| 245 ms = ms / mt; | 245 ms = ms / mt; |
| 246 SkScalar smaller = SkTMax(0.f, SkTMin(ls, ms)); | 246 SkScalar smaller = SkTMax(0.f, SkTMin(ls, ms)); |
| 247 SkScalar larger = SkTMin(1.f, SkTMax(ls, ms)); | 247 SkScalar larger = SkTMin(1.f, SkTMax(ls, ms)); |
| 248 *t = (smaller + larger) / 2; | 248 *t = (smaller + larger) / 2; |
| 249 *resultType = kSplitAtLoop_SkDCubicType; | |
| 250 return *t > 0 && *t < 1; | 249 return *t > 0 && *t < 1; |
| 251 } | 250 } |
| 252 } else if (kSerpentine_SkCubicType == cubicType || kCusp_SkCubicType == cubi
cType) { | 251 } else if (kSerpentine_SkCubicType == cubicType || kCusp_SkCubicType == cubi
cType) { |
| 253 SkDCubic cubic; | 252 SkDCubic cubic; |
| 254 cubic.set(pointsPtr); | 253 cubic.set(pointsPtr); |
| 255 double inflectionTs[2]; | 254 double inflectionTs[2]; |
| 256 int infTCount = cubic.findInflections(inflectionTs); | 255 int infTCount = cubic.findInflections(inflectionTs); |
| 257 if (infTCount == 2) { | 256 if (infTCount == 2) { |
| 258 double maxCurvature[3]; | 257 double maxCurvature[3]; |
| 259 int roots = cubic.findMaxCurvature(maxCurvature); | 258 int roots = cubic.findMaxCurvature(maxCurvature); |
| (...skipping 11 matching lines...) Expand all Loading... |
| 271 SkDebugf("maxCurvature[%d]=%1.9g ", index, maxCurvature[index]); | 270 SkDebugf("maxCurvature[%d]=%1.9g ", index, maxCurvature[index]); |
| 272 SkDPoint pt = cubic.ptAtT(maxCurvature[index]); | 271 SkDPoint pt = cubic.ptAtT(maxCurvature[index]); |
| 273 SkDVector dPt = cubic.dxdyAtT(maxCurvature[index]); | 272 SkDVector dPt = cubic.dxdyAtT(maxCurvature[index]); |
| 274 SkDLine perp = {{pt - dPt, pt + dPt}}; | 273 SkDLine perp = {{pt - dPt, pt + dPt}}; |
| 275 perp.dump(); | 274 perp.dump(); |
| 276 } | 275 } |
| 277 #endif | 276 #endif |
| 278 for (int index = 0; index < roots; ++index) { | 277 for (int index = 0; index < roots; ++index) { |
| 279 if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1
])) { | 278 if (between(inflectionTs[0], maxCurvature[index], inflectionTs[1
])) { |
| 280 *t = maxCurvature[index]; | 279 *t = maxCurvature[index]; |
| 281 *resultType = kSplitAtMaxCurvature_SkDCubicType; | |
| 282 return true; | 280 return true; |
| 283 } | 281 } |
| 284 } | 282 } |
| 285 } else if (infTCount == 1) { | 283 } else if (infTCount == 1) { |
| 286 *t = inflectionTs[0]; | 284 *t = inflectionTs[0]; |
| 287 *resultType = kSplitAtInflection_SkDCubicType; | |
| 288 return *t > 0 && *t < 1; | 285 return *t > 0 && *t < 1; |
| 289 } | 286 } |
| 290 } | 287 } |
| 291 return false; | 288 return false; |
| 292 } | 289 } |
| 293 | 290 |
| 294 bool SkDCubic::monotonicInX() const { | 291 bool SkDCubic::monotonicInX() const { |
| 295 return precisely_between(fPts[0].fX, fPts[1].fX, fPts[3].fX) | 292 return precisely_between(fPts[0].fX, fPts[1].fX, fPts[3].fX) |
| 296 && precisely_between(fPts[0].fX, fPts[2].fX, fPts[3].fX); | 293 && precisely_between(fPts[0].fX, fPts[2].fX, fPts[3].fX); |
| 297 } | 294 } |
| (...skipping 394 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
| 692 for (int index = 0; index < roots; ++index) { | 689 for (int index = 0; index < roots; ++index) { |
| 693 double t = startT + (endT - startT) * extremeTs[index]; | 690 double t = startT + (endT - startT) * extremeTs[index]; |
| 694 SkDPoint mid = dCurve.ptAtT(t); | 691 SkDPoint mid = dCurve.ptAtT(t); |
| 695 if (topPt->fY > mid.fY || (topPt->fY == mid.fY && topPt->fX > mid.fX)) { | 692 if (topPt->fY > mid.fY || (topPt->fY == mid.fY && topPt->fX > mid.fX)) { |
| 696 topT = t; | 693 topT = t; |
| 697 *topPt = mid; | 694 *topPt = mid; |
| 698 } | 695 } |
| 699 } | 696 } |
| 700 return topT; | 697 return topT; |
| 701 } | 698 } |
| OLD | NEW |