Index: src/core/SkGeometry.cpp |
diff --git a/src/core/SkGeometry.cpp b/src/core/SkGeometry.cpp |
index 6afd9d7ffb0ed1478b6afd0062a76ce93f2db02a..4f820795a002b5d947f226de706b388f66a79c00 100644 |
--- a/src/core/SkGeometry.cpp |
+++ b/src/core/SkGeometry.cpp |
@@ -130,13 +130,6 @@ |
#endif |
} |
-static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) { |
- SkScalar A = src[4] - 2 * src[2] + src[0]; |
- SkScalar B = src[2] - src[0]; |
- |
- return 2 * SkScalarMulAdd(A, t, B); |
-} |
- |
void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) { |
Sk2s p0 = from_point(pts[0]); |
Sk2s p1 = from_point(pts[1]); |
@@ -157,8 +150,7 @@ |
pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t)); |
} |
if (tangent) { |
- tangent->set(eval_quad_derivative(&src[0].fX, t), |
- eval_quad_derivative(&src[0].fY, t)); |
+ *tangent = SkEvalQuadTangentAt(src, t); |
} |
} |
@@ -179,6 +171,12 @@ |
} |
SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) { |
+ // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a |
+ // zero tangent vector when t is 0 or 1, and the control point is equal |
+ // to the end point. In this case, use the quad end points to compute the tangent. |
+ if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) { |
+ return src[2] - src[0]; |
+ } |
SkASSERT(src); |
SkASSERT(t >= 0 && t <= SK_Scalar1); |
@@ -398,8 +396,22 @@ |
loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t)); |
} |
if (tangent) { |
- tangent->set(eval_cubic_derivative(&src[0].fX, t), |
- eval_cubic_derivative(&src[0].fY, t)); |
+ // The derivative equation returns a zero tangent vector when t is 0 or 1, and the |
+ // adjacent control point is equal to the end point. In this case, use the |
+ // next control point or the end points to compute the tangent. |
+ if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) { |
+ if (t == 0) { |
+ *tangent = src[2] - src[0]; |
+ } else { |
+ *tangent = src[3] - src[1]; |
+ } |
+ if (!tangent->fX && !tangent->fY) { |
+ *tangent = src[3] - src[0]; |
+ } |
+ } else { |
+ tangent->set(eval_cubic_derivative(&src[0].fX, t), |
+ eval_cubic_derivative(&src[0].fY, t)); |
+ } |
} |
if (curvature) { |
curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t), |
@@ -1176,12 +1188,6 @@ |
coeff[2] = wP10; |
} |
-static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) { |
- SkScalar coeff[3]; |
- conic_deriv_coeff(coord, w, coeff); |
- return t * (t * coeff[0] + coeff[1]) + coeff[2]; |
-} |
- |
static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) { |
SkScalar coeff[3]; |
conic_deriv_coeff(src, w, coeff); |
@@ -1232,8 +1238,7 @@ |
conic_eval_pos(&fPts[0].fY, fW, t)); |
} |
if (tangent) { |
- tangent->set(conic_eval_tan(&fPts[0].fX, fW, t), |
- conic_eval_tan(&fPts[0].fY, fW, t)); |
+ *tangent = evalTangentAt(t); |
} |
} |
@@ -1291,6 +1296,12 @@ |
} |
SkVector SkConic::evalTangentAt(SkScalar t) const { |
+ // The derivative equation returns a zero tangent vector when t is 0 or 1, |
+ // and the control point is equal to the end point. |
+ // In this case, use the conic endpoints to compute the tangent. |
+ if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) { |
+ return fPts[2] - fPts[0]; |
+ } |
Sk2s p0 = from_point(fPts[0]); |
Sk2s p1 = from_point(fPts[1]); |
Sk2s p2 = from_point(fPts[2]); |