| Index: src/opts/SkPx_sse.h
|
| diff --git a/src/opts/SkPx_sse.h b/src/opts/SkPx_sse.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..dedf0b5d5b9a0acbd1d37713395120ba6882a17c
|
| --- /dev/null
|
| +++ b/src/opts/SkPx_sse.h
|
| @@ -0,0 +1,150 @@
|
| +/*
|
| + * Copyright 2015 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#ifndef SkPx_sse_DEFINED
|
| +#define SkPx_sse_DEFINED
|
| +
|
| +// SkPx_sse's sweet spot is to work with 4 pixels at a time,
|
| +// stored interlaced, just as they sit in memory: rgba rgba rgba rgba.
|
| +
|
| +// SkPx_sse's best way to work with alphas is similar,
|
| +// replicating the 4 alphas 4 times each across the pixel: aaaa aaaa aaaa aaaa.
|
| +
|
| +// When working with fewer than 4 pixels, we load the pixels in the low lanes,
|
| +// usually filling the top lanes with zeros (but who cares, might be junk).
|
| +
|
| +struct SkPx_sse {
|
| + static const int N = 4;
|
| +
|
| + __m128i fVec;
|
| + SkPx_sse(__m128i vec) : fVec(vec) {}
|
| +
|
| + static SkPx_sse Dup(uint32_t px) { return _mm_set1_epi32(px); }
|
| + static SkPx_sse Load(const uint32_t* px) { return _mm_loadu_si128((const __m128i*)px); }
|
| + static SkPx_sse Load(const uint32_t* px, int n) {
|
| + SkASSERT(n > 0 && n < 4);
|
| + switch (n) {
|
| + case 1: return _mm_cvtsi32_si128(px[0]);
|
| + case 2: return _mm_loadl_epi64((const __m128i*)px);
|
| + case 3: return _mm_or_si128(_mm_loadl_epi64((const __m128i*)px),
|
| + _mm_slli_si128(_mm_cvtsi32_si128(px[2]), 8));
|
| + }
|
| + return _mm_setzero_si128(); // Not actually reachable.
|
| + }
|
| +
|
| + void store(uint32_t* px) const { _mm_storeu_si128((__m128i*)px, fVec); }
|
| + void store(uint32_t* px, int n) const {
|
| + SkASSERT(n > 0 && n < 4);
|
| + __m128i v = fVec;
|
| + if (n & 1) {
|
| + *px++ = _mm_cvtsi128_si32(v);
|
| + v = _mm_srli_si128(v, 4);
|
| + }
|
| + if (n & 2) {
|
| + _mm_storel_epi64((__m128i*)px, v);
|
| + }
|
| + }
|
| +
|
| + struct Alpha {
|
| + __m128i fVec;
|
| + Alpha(__m128i vec) : fVec(vec) {}
|
| +
|
| + static Alpha Dup(uint8_t a) { return _mm_set1_epi8(a); }
|
| + static Alpha Load(const uint8_t* a) {
|
| + __m128i as = _mm_cvtsi32_si128(*(const uint32_t*)a); // ____ ____ ____ 3210
|
| + #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
|
| + return _mm_shuffle_epi8(as, _mm_set_epi8(3,3,3,3, 2,2,2,2, 1,1,1,1, 0,0,0,0));
|
| + #else
|
| + as = _mm_unpacklo_epi8 (as, _mm_setzero_si128()); // ____ ____ _3_2 _1_0
|
| + as = _mm_unpacklo_epi16(as, _mm_setzero_si128()); // ___3 ___2 ___1 ___0
|
| + as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00
|
| + return _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000
|
| + #endif
|
| + }
|
| + static Alpha Load(const uint8_t* a, int n) {
|
| + SkASSERT(n > 0 && n < 4);
|
| + uint8_t a4[] = { 0,0,0,0 };
|
| + switch (n) {
|
| + case 3: a4[2] = a[2]; // fall through
|
| + case 2: a4[1] = a[1]; // fall through
|
| + case 1: a4[0] = a[0];
|
| + }
|
| + return Load(a4);
|
| + }
|
| +
|
| + Alpha inv() const { return _mm_sub_epi8(_mm_set1_epi8(~0), fVec); }
|
| + };
|
| +
|
| + struct Wide {
|
| + __m128i fLo, fHi;
|
| + Wide(__m128i lo, __m128i hi) : fLo(lo), fHi(hi) {}
|
| +
|
| + Wide operator+(const Wide& o) const {
|
| + return Wide(_mm_add_epi16(fLo, o.fLo), _mm_add_epi16(fHi, o.fHi));
|
| + }
|
| + Wide operator-(const Wide& o) const {
|
| + return Wide(_mm_sub_epi16(fLo, o.fLo), _mm_sub_epi16(fHi, o.fHi));
|
| + }
|
| + template <int bits> Wide shl() const {
|
| + return Wide(_mm_slli_epi16(fLo, bits), _mm_slli_epi16(fHi, bits));
|
| + }
|
| + template <int bits> Wide shr() const {
|
| + return Wide(_mm_srli_epi16(fLo, bits), _mm_srli_epi16(fHi, bits));
|
| + }
|
| +
|
| + SkPx_sse addNarrowHi(const SkPx_sse& o) const {
|
| + Wide sum = (*this + o.widenLo()).shr<8>();
|
| + return _mm_packus_epi16(sum.fLo, sum.fHi);
|
| + }
|
| + };
|
| +
|
| + Alpha alpha() const {
|
| + #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSSE3
|
| + return _mm_shuffle_epi8(fVec, _mm_set_epi8(15,15,15,15, 11,11,11,11, 7,7,7,7, 3,3,3,3));
|
| + #else
|
| + __m128i as = _mm_srli_epi32(fVec, 24); // ___3 ___2 ___1 ___0
|
| + as = _mm_or_si128(as, _mm_slli_si128(as, 1)); // __33 __22 __11 __00
|
| + return _mm_or_si128(as, _mm_slli_si128(as, 2)); // 3333 2222 1111 0000
|
| + #endif
|
| + }
|
| +
|
| + Wide widenLo() const {
|
| + return Wide(_mm_unpacklo_epi8(fVec, _mm_setzero_si128()),
|
| + _mm_unpackhi_epi8(fVec, _mm_setzero_si128()));
|
| + }
|
| + Wide widenHi() const {
|
| + return Wide(_mm_unpacklo_epi8(_mm_setzero_si128(), fVec),
|
| + _mm_unpackhi_epi8(_mm_setzero_si128(), fVec));
|
| + }
|
| + Wide widenLoHi() const {
|
| + return Wide(_mm_unpacklo_epi8(fVec, fVec),
|
| + _mm_unpackhi_epi8(fVec, fVec));
|
| + }
|
| +
|
| + SkPx_sse operator+(const SkPx_sse& o) const { return _mm_add_epi8(fVec, o.fVec); }
|
| + SkPx_sse operator-(const SkPx_sse& o) const { return _mm_sub_epi8(fVec, o.fVec); }
|
| + SkPx_sse saturatedAdd(const SkPx_sse& o) const { return _mm_adds_epi8(fVec, o.fVec); }
|
| +
|
| + Wide operator*(const Alpha& a) const {
|
| + __m128i pLo = _mm_unpacklo_epi8( fVec, _mm_setzero_si128()),
|
| + aLo = _mm_unpacklo_epi8(a.fVec, _mm_setzero_si128()),
|
| + pHi = _mm_unpackhi_epi8( fVec, _mm_setzero_si128()),
|
| + aHi = _mm_unpackhi_epi8(a.fVec, _mm_setzero_si128());
|
| + return Wide(_mm_mullo_epi16(pLo, aLo), _mm_mullo_epi16(pHi, aHi));
|
| + }
|
| + SkPx_sse approxMulDiv255(const Alpha& a) const {
|
| + return (*this * a).addNarrowHi(*this);
|
| + }
|
| +
|
| + SkPx_sse addAlpha(const Alpha& a) const {
|
| + return _mm_add_epi8(fVec, _mm_and_si128(a.fVec, _mm_set1_epi32(0xFF000000)));
|
| + }
|
| +};
|
| +
|
| +typedef SkPx_sse SkPx;
|
| +
|
| +#endif//SkPx_sse_DEFINED
|
|
|