OLD | NEW |
1 /* | 1 /* |
2 * Copyright 2014 Google, Inc | 2 * Copyright 2014 Google, Inc |
3 * | 3 * |
4 * Use of this source code is governed by a BSD-style license that can be | 4 * Use of this source code is governed by a BSD-style license that can be |
5 * found in the LICENSE file. | 5 * found in the LICENSE file. |
6 */ | 6 */ |
7 | 7 |
8 #ifndef SkSmallAllocator_DEFINED | 8 #ifndef SkSmallAllocator_DEFINED |
9 #define SkSmallAllocator_DEFINED | 9 #define SkSmallAllocator_DEFINED |
10 | 10 |
11 #include "SkTDArray.h" | 11 #include "SkTDArray.h" |
12 #include "SkTypes.h" | 12 #include "SkTypes.h" |
13 | 13 |
14 // Used by SkSmallAllocator to call the destructor for objects it has | 14 // Used by SkSmallAllocator to call the destructor for objects it has |
15 // allocated. | 15 // allocated. |
16 template<typename T> void destroyT(void* ptr) { | 16 template<typename T> void destroyT(void* ptr) { |
17 static_cast<T*>(ptr)->~T(); | 17 static_cast<T*>(ptr)->~T(); |
18 } | 18 } |
19 | 19 |
20 /* | 20 /* |
21 * Template class for allocating small objects without additional heap memory | 21 * Template class for allocating small objects without additional heap memory |
22 * allocations. kMaxObjects is a hard limit on the number of objects that can | 22 * allocations. kMaxObjects is a hard limit on the number of objects that can |
23 * be allocated using this class. After that, attempts to create more objects | 23 * be allocated using this class. After that, attempts to create more objects |
24 * with this class will assert and return NULL. | 24 * with this class will assert and return nullptr. |
25 * kTotalBytes is the total number of bytes provided for storage for all | 25 * kTotalBytes is the total number of bytes provided for storage for all |
26 * objects created by this allocator. If an object to be created is larger | 26 * objects created by this allocator. If an object to be created is larger |
27 * than the storage (minus storage already used), it will be allocated on the | 27 * than the storage (minus storage already used), it will be allocated on the |
28 * heap. This class's destructor will handle calling the destructor for each | 28 * heap. This class's destructor will handle calling the destructor for each |
29 * object it allocated and freeing its memory. | 29 * object it allocated and freeing its memory. |
30 */ | 30 */ |
31 template<uint32_t kMaxObjects, size_t kTotalBytes> | 31 template<uint32_t kMaxObjects, size_t kTotalBytes> |
32 class SkSmallAllocator : SkNoncopyable { | 32 class SkSmallAllocator : SkNoncopyable { |
33 public: | 33 public: |
34 SkSmallAllocator() | 34 SkSmallAllocator() |
35 : fStorageUsed(0) | 35 : fStorageUsed(0) |
36 , fNumObjects(0) | 36 , fNumObjects(0) |
37 {} | 37 {} |
38 | 38 |
39 ~SkSmallAllocator() { | 39 ~SkSmallAllocator() { |
40 // Destruct in reverse order, in case an earlier object points to a | 40 // Destruct in reverse order, in case an earlier object points to a |
41 // later object. | 41 // later object. |
42 while (fNumObjects > 0) { | 42 while (fNumObjects > 0) { |
43 fNumObjects--; | 43 fNumObjects--; |
44 Rec* rec = &fRecs[fNumObjects]; | 44 Rec* rec = &fRecs[fNumObjects]; |
45 rec->fKillProc(rec->fObj); | 45 rec->fKillProc(rec->fObj); |
46 // Safe to do if fObj is in fStorage, since fHeapStorage will | 46 // Safe to do if fObj is in fStorage, since fHeapStorage will |
47 // point to NULL. | 47 // point to nullptr. |
48 sk_free(rec->fHeapStorage); | 48 sk_free(rec->fHeapStorage); |
49 } | 49 } |
50 } | 50 } |
51 | 51 |
52 /* | 52 /* |
53 * Create a new object of type T. Its lifetime will be handled by this | 53 * Create a new object of type T. Its lifetime will be handled by this |
54 * SkSmallAllocator. | 54 * SkSmallAllocator. |
55 * Each version behaves the same but takes a different number of | 55 * Each version behaves the same but takes a different number of |
56 * arguments. | 56 * arguments. |
57 * Note: If kMaxObjects have been created by this SkSmallAllocator, NULL | 57 * Note: If kMaxObjects have been created by this SkSmallAllocator, nullptr |
58 * will be returned. | 58 * will be returned. |
59 */ | 59 */ |
60 template<typename T> | 60 template<typename T> |
61 T* createT() { | 61 T* createT() { |
62 void* buf = this->reserveT<T>(); | 62 void* buf = this->reserveT<T>(); |
63 if (NULL == buf) { | 63 if (nullptr == buf) { |
64 return NULL; | 64 return nullptr; |
65 } | 65 } |
66 new (buf) T; | 66 new (buf) T; |
67 return static_cast<T*>(buf); | 67 return static_cast<T*>(buf); |
68 } | 68 } |
69 | 69 |
70 template<typename T, typename A1> T* createT(const A1& a1) { | 70 template<typename T, typename A1> T* createT(const A1& a1) { |
71 void* buf = this->reserveT<T>(); | 71 void* buf = this->reserveT<T>(); |
72 if (NULL == buf) { | 72 if (nullptr == buf) { |
73 return NULL; | 73 return nullptr; |
74 } | 74 } |
75 new (buf) T(a1); | 75 new (buf) T(a1); |
76 return static_cast<T*>(buf); | 76 return static_cast<T*>(buf); |
77 } | 77 } |
78 | 78 |
79 template<typename T, typename A1, typename A2> | 79 template<typename T, typename A1, typename A2> |
80 T* createT(const A1& a1, const A2& a2) { | 80 T* createT(const A1& a1, const A2& a2) { |
81 void* buf = this->reserveT<T>(); | 81 void* buf = this->reserveT<T>(); |
82 if (NULL == buf) { | 82 if (nullptr == buf) { |
83 return NULL; | 83 return nullptr; |
84 } | 84 } |
85 new (buf) T(a1, a2); | 85 new (buf) T(a1, a2); |
86 return static_cast<T*>(buf); | 86 return static_cast<T*>(buf); |
87 } | 87 } |
88 | 88 |
89 template<typename T, typename A1, typename A2, typename A3> | 89 template<typename T, typename A1, typename A2, typename A3> |
90 T* createT(const A1& a1, const A2& a2, const A3& a3) { | 90 T* createT(const A1& a1, const A2& a2, const A3& a3) { |
91 void* buf = this->reserveT<T>(); | 91 void* buf = this->reserveT<T>(); |
92 if (NULL == buf) { | 92 if (nullptr == buf) { |
93 return NULL; | 93 return nullptr; |
94 } | 94 } |
95 new (buf) T(a1, a2, a3); | 95 new (buf) T(a1, a2, a3); |
96 return static_cast<T*>(buf); | 96 return static_cast<T*>(buf); |
97 } | 97 } |
98 | 98 |
99 template<typename T, typename A1, typename A2, typename A3, typename A4> | 99 template<typename T, typename A1, typename A2, typename A3, typename A4> |
100 T* createT(const A1& a1, const A2& a2, const A3& a3, const A4& a4) { | 100 T* createT(const A1& a1, const A2& a2, const A3& a3, const A4& a4) { |
101 void* buf = this->reserveT<T>(); | 101 void* buf = this->reserveT<T>(); |
102 if (NULL == buf) { | 102 if (nullptr == buf) { |
103 return NULL; | 103 return nullptr; |
104 } | 104 } |
105 new (buf) T(a1, a2, a3, a4); | 105 new (buf) T(a1, a2, a3, a4); |
106 return static_cast<T*>(buf); | 106 return static_cast<T*>(buf); |
107 } | 107 } |
108 | 108 |
109 /* | 109 /* |
110 * Reserve a specified amount of space (must be enough space for one T). | 110 * Reserve a specified amount of space (must be enough space for one T). |
111 * The space will be in fStorage if there is room, or on the heap otherwise
. | 111 * The space will be in fStorage if there is room, or on the heap otherwise
. |
112 * Either way, this class will call ~T() in its destructor and free the hea
p | 112 * Either way, this class will call ~T() in its destructor and free the hea
p |
113 * allocation if necessary. | 113 * allocation if necessary. |
114 * Unlike createT(), this method will not call the constructor of T. | 114 * Unlike createT(), this method will not call the constructor of T. |
115 */ | 115 */ |
116 template<typename T> void* reserveT(size_t storageRequired = sizeof(T)) { | 116 template<typename T> void* reserveT(size_t storageRequired = sizeof(T)) { |
117 SkASSERT(fNumObjects < kMaxObjects); | 117 SkASSERT(fNumObjects < kMaxObjects); |
118 SkASSERT(storageRequired >= sizeof(T)); | 118 SkASSERT(storageRequired >= sizeof(T)); |
119 if (kMaxObjects == fNumObjects) { | 119 if (kMaxObjects == fNumObjects) { |
120 return NULL; | 120 return nullptr; |
121 } | 121 } |
122 const size_t storageRemaining = SkAlign4(kTotalBytes) - fStorageUsed; | 122 const size_t storageRemaining = SkAlign4(kTotalBytes) - fStorageUsed; |
123 storageRequired = SkAlign4(storageRequired); | 123 storageRequired = SkAlign4(storageRequired); |
124 Rec* rec = &fRecs[fNumObjects]; | 124 Rec* rec = &fRecs[fNumObjects]; |
125 if (storageRequired > storageRemaining) { | 125 if (storageRequired > storageRemaining) { |
126 // Allocate on the heap. Ideally we want to avoid this situation, | 126 // Allocate on the heap. Ideally we want to avoid this situation, |
127 // but we're not sure we can catch all callers, so handle it but | 127 // but we're not sure we can catch all callers, so handle it but |
128 // assert false in debug mode. | 128 // assert false in debug mode. |
129 SkASSERT(false); | 129 SkASSERT(false); |
130 rec->fStorageSize = 0; | 130 rec->fStorageSize = 0; |
131 rec->fHeapStorage = sk_malloc_throw(storageRequired); | 131 rec->fHeapStorage = sk_malloc_throw(storageRequired); |
132 rec->fObj = static_cast<void*>(rec->fHeapStorage); | 132 rec->fObj = static_cast<void*>(rec->fHeapStorage); |
133 } else { | 133 } else { |
134 // There is space in fStorage. | 134 // There is space in fStorage. |
135 rec->fStorageSize = storageRequired; | 135 rec->fStorageSize = storageRequired; |
136 rec->fHeapStorage = NULL; | 136 rec->fHeapStorage = nullptr; |
137 SkASSERT(SkIsAlign4(fStorageUsed)); | 137 SkASSERT(SkIsAlign4(fStorageUsed)); |
138 rec->fObj = static_cast<void*>(fStorage + (fStorageUsed / 4)); | 138 rec->fObj = static_cast<void*>(fStorage + (fStorageUsed / 4)); |
139 fStorageUsed += storageRequired; | 139 fStorageUsed += storageRequired; |
140 } | 140 } |
141 rec->fKillProc = destroyT<T>; | 141 rec->fKillProc = destroyT<T>; |
142 fNumObjects++; | 142 fNumObjects++; |
143 return rec->fObj; | 143 return rec->fObj; |
144 } | 144 } |
145 | 145 |
146 /* | 146 /* |
(...skipping 20 matching lines...) Expand all Loading... |
167 | 167 |
168 // Number of bytes used so far. | 168 // Number of bytes used so far. |
169 size_t fStorageUsed; | 169 size_t fStorageUsed; |
170 // Pad the storage size to be 4-byte aligned. | 170 // Pad the storage size to be 4-byte aligned. |
171 uint32_t fStorage[SkAlign4(kTotalBytes) >> 2]; | 171 uint32_t fStorage[SkAlign4(kTotalBytes) >> 2]; |
172 uint32_t fNumObjects; | 172 uint32_t fNumObjects; |
173 Rec fRecs[kMaxObjects]; | 173 Rec fRecs[kMaxObjects]; |
174 }; | 174 }; |
175 | 175 |
176 #endif // SkSmallAllocator_DEFINED | 176 #endif // SkSmallAllocator_DEFINED |
OLD | NEW |