| Index: src/core/SkGeometry.cpp
|
| diff --git a/src/core/SkGeometry.cpp b/src/core/SkGeometry.cpp
|
| index 6afd9d7ffb0ed1478b6afd0062a76ce93f2db02a..4f820795a002b5d947f226de706b388f66a79c00 100644
|
| --- a/src/core/SkGeometry.cpp
|
| +++ b/src/core/SkGeometry.cpp
|
| @@ -130,13 +130,6 @@ static SkScalar eval_quad(const SkScalar src[], SkScalar t) {
|
| #endif
|
| }
|
|
|
| -static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) {
|
| - SkScalar A = src[4] - 2 * src[2] + src[0];
|
| - SkScalar B = src[2] - src[0];
|
| -
|
| - return 2 * SkScalarMulAdd(A, t, B);
|
| -}
|
| -
|
| void SkQuadToCoeff(const SkPoint pts[3], SkPoint coeff[3]) {
|
| Sk2s p0 = from_point(pts[0]);
|
| Sk2s p1 = from_point(pts[1]);
|
| @@ -157,8 +150,7 @@ void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tange
|
| pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
|
| }
|
| if (tangent) {
|
| - tangent->set(eval_quad_derivative(&src[0].fX, t),
|
| - eval_quad_derivative(&src[0].fY, t));
|
| + *tangent = SkEvalQuadTangentAt(src, t);
|
| }
|
| }
|
|
|
| @@ -179,6 +171,12 @@ SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
|
| }
|
|
|
| SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
|
| + // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
|
| + // zero tangent vector when t is 0 or 1, and the control point is equal
|
| + // to the end point. In this case, use the quad end points to compute the tangent.
|
| + if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
|
| + return src[2] - src[0];
|
| + }
|
| SkASSERT(src);
|
| SkASSERT(t >= 0 && t <= SK_Scalar1);
|
|
|
| @@ -398,8 +396,22 @@ void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
|
| loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
|
| }
|
| if (tangent) {
|
| - tangent->set(eval_cubic_derivative(&src[0].fX, t),
|
| - eval_cubic_derivative(&src[0].fY, t));
|
| + // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
|
| + // adjacent control point is equal to the end point. In this case, use the
|
| + // next control point or the end points to compute the tangent.
|
| + if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
|
| + if (t == 0) {
|
| + *tangent = src[2] - src[0];
|
| + } else {
|
| + *tangent = src[3] - src[1];
|
| + }
|
| + if (!tangent->fX && !tangent->fY) {
|
| + *tangent = src[3] - src[0];
|
| + }
|
| + } else {
|
| + tangent->set(eval_cubic_derivative(&src[0].fX, t),
|
| + eval_cubic_derivative(&src[0].fY, t));
|
| + }
|
| }
|
| if (curvature) {
|
| curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
|
| @@ -1176,12 +1188,6 @@ static void conic_deriv_coeff(const SkScalar src[],
|
| coeff[2] = wP10;
|
| }
|
|
|
| -static SkScalar conic_eval_tan(const SkScalar coord[], SkScalar w, SkScalar t) {
|
| - SkScalar coeff[3];
|
| - conic_deriv_coeff(coord, w, coeff);
|
| - return t * (t * coeff[0] + coeff[1]) + coeff[2];
|
| -}
|
| -
|
| static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
|
| SkScalar coeff[3];
|
| conic_deriv_coeff(src, w, coeff);
|
| @@ -1232,8 +1238,7 @@ void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
|
| conic_eval_pos(&fPts[0].fY, fW, t));
|
| }
|
| if (tangent) {
|
| - tangent->set(conic_eval_tan(&fPts[0].fX, fW, t),
|
| - conic_eval_tan(&fPts[0].fY, fW, t));
|
| + *tangent = evalTangentAt(t);
|
| }
|
| }
|
|
|
| @@ -1291,6 +1296,12 @@ SkPoint SkConic::evalAt(SkScalar t) const {
|
| }
|
|
|
| SkVector SkConic::evalTangentAt(SkScalar t) const {
|
| + // The derivative equation returns a zero tangent vector when t is 0 or 1,
|
| + // and the control point is equal to the end point.
|
| + // In this case, use the conic endpoints to compute the tangent.
|
| + if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
|
| + return fPts[2] - fPts[0];
|
| + }
|
| Sk2s p0 = from_point(fPts[0]);
|
| Sk2s p1 = from_point(fPts[1]);
|
| Sk2s p2 = from_point(fPts[2]);
|
|
|