| Index: tests/PathOpsAngleIdeas.cpp
 | 
| diff --git a/tests/PathOpsAngleIdeas.cpp b/tests/PathOpsAngleIdeas.cpp
 | 
| new file mode 100755
 | 
| index 0000000000000000000000000000000000000000..2887b28febbc2b5dda2f1ec7d1df172704e8e96d
 | 
| --- /dev/null
 | 
| +++ b/tests/PathOpsAngleIdeas.cpp
 | 
| @@ -0,0 +1,858 @@
 | 
| +/*
 | 
| + * Copyright 2013 Google Inc.
 | 
| + *
 | 
| + * Use of this source code is governed by a BSD-style license that can be
 | 
| + * found in the LICENSE file.
 | 
| + */
 | 
| +#include "PathOpsTestCommon.h"
 | 
| +#include "SkIntersections.h"
 | 
| +#include "SkOpSegment.h"
 | 
| +#include "SkPathOpsTriangle.h"
 | 
| +#include "SkRandom.h"
 | 
| +#include "SkTArray.h"
 | 
| +#include "SkTSort.h"
 | 
| +#include "Test.h"
 | 
| +
 | 
| +static bool gPathOpsAngleIdeasVerbose = false;
 | 
| +static bool gPathOpsAngleIdeasEnableBruteCheck = false;
 | 
| +
 | 
| +class PathOpsAngleTester {
 | 
| +public:
 | 
| +    static int ConvexHullOverlaps(const SkOpAngle& lh, const SkOpAngle& rh) {
 | 
| +        return lh.convexHullOverlaps(rh);
 | 
| +    }
 | 
| +
 | 
| +    static int EndsIntersect(const SkOpAngle& lh, const SkOpAngle& rh) {
 | 
| +        return lh.endsIntersect(rh);
 | 
| +    }
 | 
| +};
 | 
| +
 | 
| +struct TRange {
 | 
| +    double tMin1;
 | 
| +    double tMin2;
 | 
| +    double t1;
 | 
| +    double t2;
 | 
| +    double tMin;
 | 
| +    double a1;
 | 
| +    double a2;
 | 
| +    bool ccw;
 | 
| +};
 | 
| +
 | 
| +static double testArc(skiatest::Reporter* reporter, const SkDQuad& quad, const SkDQuad& arcRef,
 | 
| +        int octant) {
 | 
| +    SkDQuad arc = arcRef;
 | 
| +    SkDVector offset = {quad[0].fX, quad[0].fY};
 | 
| +    arc[0] += offset;
 | 
| +    arc[1] += offset;
 | 
| +    arc[2] += offset;
 | 
| +    SkIntersections i;
 | 
| +    i.intersect(arc, quad);
 | 
| +    if (i.used() == 0) {
 | 
| +        return -1;
 | 
| +    }
 | 
| +    int smallest = -1;
 | 
| +    double t = 2;
 | 
| +    for (int idx = 0; idx < i.used(); ++idx) {
 | 
| +        if (i[0][idx] > 1 || i[0][idx] < 0) {
 | 
| +            i.reset();
 | 
| +            i.intersect(arc, quad);
 | 
| +        }
 | 
| +        if (i[1][idx] > 1 || i[1][idx] < 0) {
 | 
| +            i.reset();
 | 
| +            i.intersect(arc, quad);
 | 
| +        }
 | 
| +        if (t > i[1][idx]) {
 | 
| +            smallest = idx;
 | 
| +            t = i[1][idx];
 | 
| +        }
 | 
| +    }
 | 
| +    REPORTER_ASSERT(reporter, smallest >= 0);
 | 
| +    REPORTER_ASSERT(reporter, t >= 0 && t <= 1);
 | 
| +    return i[1][smallest];
 | 
| +}
 | 
| +
 | 
| +static void orderQuads(skiatest::Reporter* reporter, const SkDQuad& quad, double radius,
 | 
| +        SkTArray<double, false>* tArray) {
 | 
| +    double r = radius;
 | 
| +    double s = r * SK_ScalarTanPIOver8;
 | 
| +    double m = r * SK_ScalarRoot2Over2;
 | 
| +    // construct circle from quads
 | 
| +    const SkDQuad circle[8] = {{{{ r,  0}, { r, -s}, { m, -m}}},
 | 
| +                                {{{ m, -m}, { s, -r}, { 0, -r}}},
 | 
| +                                {{{ 0, -r}, {-s, -r}, {-m, -m}}},
 | 
| +                                {{{-m, -m}, {-r, -s}, {-r,  0}}},
 | 
| +                                {{{-r,  0}, {-r,  s}, {-m,  m}}},
 | 
| +                                {{{-m,  m}, {-s,  r}, { 0,  r}}},
 | 
| +                                {{{ 0,  r}, { s,  r}, { m,  m}}},
 | 
| +                                {{{ m,  m}, { r,  s}, { r,  0}}}};
 | 
| +    for (int octant = 0; octant < 8; ++octant) {
 | 
| +        double t = testArc(reporter, quad, circle[octant], octant);
 | 
| +        if (t < 0) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        for (int index = 0; index < tArray->count(); ++index) {
 | 
| +            double matchT = (*tArray)[index];
 | 
| +            if (approximately_equal(t, matchT)) {
 | 
| +                goto next;
 | 
| +            }
 | 
| +        }
 | 
| +        tArray->push_back(t);
 | 
| +next:   ;
 | 
| +    }
 | 
| +}
 | 
| +
 | 
| +static double quadAngle(skiatest::Reporter* reporter, const SkDQuad& quad, double t) {
 | 
| +    const SkDVector& pt = quad.ptAtT(t) - quad[0];
 | 
| +    double angle = (atan2(pt.fY, pt.fX) + SK_ScalarPI) * 8 / (SK_ScalarPI * 2);
 | 
| +    REPORTER_ASSERT(reporter, angle >= 0 && angle <= 8);
 | 
| +    return angle;
 | 
| +}
 | 
| +
 | 
| +static bool angleDirection(double a1, double a2) {
 | 
| +    double delta = a1 - a2;
 | 
| +    return (delta < 4 && delta > 0) || delta < -4;
 | 
| +}
 | 
| +
 | 
| +static void setQuadHullSweep(const SkDQuad& quad, SkDVector sweep[2]) {
 | 
| +    sweep[0] = quad[1] - quad[0];
 | 
| +    sweep[1] = quad[2] - quad[0];
 | 
| +}
 | 
| +
 | 
| +static double distEndRatio(double dist, const SkDQuad& quad) {
 | 
| +    SkDVector v[] = {quad[2] - quad[0], quad[1] - quad[0], quad[2] - quad[1]};
 | 
| +    double longest = SkTMax(v[0].length(), SkTMax(v[1].length(), v[2].length()));
 | 
| +    return longest / dist;
 | 
| +}
 | 
| +
 | 
| +static bool checkParallel(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2) {
 | 
| +    SkDVector sweep[2], tweep[2];
 | 
| +    setQuadHullSweep(quad1, sweep);
 | 
| +    setQuadHullSweep(quad2, tweep);
 | 
| +    // if the ctrl tangents are not nearly parallel, use them
 | 
| +    // solve for opposite direction displacement scale factor == m
 | 
| +    // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
 | 
| +    // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
 | 
| +    // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
 | 
| +    //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
 | 
| +    // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
 | 
| +    // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
 | 
| +    // m = v1.cross(v2) / v1.dot(v2)
 | 
| +    double s0dt0 = sweep[0].dot(tweep[0]);
 | 
| +    REPORTER_ASSERT(reporter, s0dt0 != 0);
 | 
| +    double s0xt0 = sweep[0].crossCheck(tweep[0]);
 | 
| +    double m = s0xt0 / s0dt0;
 | 
| +    double sDist = sweep[0].length() * m;
 | 
| +    double tDist = tweep[0].length() * m;
 | 
| +    bool useS = fabs(sDist) < fabs(tDist);
 | 
| +    double mFactor = fabs(useS ? distEndRatio(sDist, quad1) : distEndRatio(tDist, quad2));
 | 
| +    if (mFactor < 5000) {  // empirically found limit
 | 
| +        return s0xt0 < 0;
 | 
| +    }
 | 
| +    SkDVector m0 = quad1.ptAtT(0.5) - quad1[0];
 | 
| +    SkDVector m1 = quad2.ptAtT(0.5) - quad2[0];
 | 
| +    return m0.crossCheck(m1) < 0;
 | 
| +}
 | 
| +
 | 
| +/* returns
 | 
| +   -1 if overlaps
 | 
| +    0 if no overlap cw
 | 
| +    1 if no overlap ccw
 | 
| +*/
 | 
| +static int quadHullsOverlap(skiatest::Reporter* reporter, const SkDQuad& quad1,
 | 
| +        const SkDQuad& quad2) {
 | 
| +    SkDVector sweep[2], tweep[2];
 | 
| +    setQuadHullSweep(quad1, sweep);
 | 
| +    setQuadHullSweep(quad2, tweep);
 | 
| +    double s0xs1 = sweep[0].crossCheck(sweep[1]);
 | 
| +    double s0xt0 = sweep[0].crossCheck(tweep[0]);
 | 
| +    double s1xt0 = sweep[1].crossCheck(tweep[0]);
 | 
| +    bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
 | 
| +    double s0xt1 = sweep[0].crossCheck(tweep[1]);
 | 
| +    double s1xt1 = sweep[1].crossCheck(tweep[1]);
 | 
| +    tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
 | 
| +    double t0xt1 = tweep[0].crossCheck(tweep[1]);
 | 
| +    if (tBetweenS) {
 | 
| +        return -1;
 | 
| +    }
 | 
| +    if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) {  // s0 to s1 equals t0 to t1
 | 
| +        return -1;
 | 
| +    }
 | 
| +    bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
 | 
| +    sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
 | 
| +    if (sBetweenT) {
 | 
| +        return -1;
 | 
| +    }
 | 
| +    // if all of the sweeps are in the same half plane, then the order of any pair is enough
 | 
| +    if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
 | 
| +        return 0;
 | 
| +    }
 | 
| +    if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
 | 
| +        return 1;
 | 
| +    }
 | 
| +    // if the outside sweeps are greater than 180 degress:
 | 
| +        // first assume the inital tangents are the ordering
 | 
| +        // if the midpoint direction matches the inital order, that is enough
 | 
| +    SkDVector m0 = quad1.ptAtT(0.5) - quad1[0];
 | 
| +    SkDVector m1 = quad2.ptAtT(0.5) - quad2[0];
 | 
| +    double m0xm1 = m0.crossCheck(m1);
 | 
| +    if (s0xt0 > 0 && m0xm1 > 0) {
 | 
| +        return 0;
 | 
| +    }
 | 
| +    if (s0xt0 < 0 && m0xm1 < 0) {
 | 
| +        return 1;
 | 
| +    }
 | 
| +    REPORTER_ASSERT(reporter, s0xt0 != 0);
 | 
| +    return checkParallel(reporter, quad1, quad2);
 | 
| +}
 | 
| +
 | 
| +static double radianSweep(double start, double end) {
 | 
| +    double sweep = end - start;
 | 
| +    if (sweep > SK_ScalarPI) {
 | 
| +        sweep -= 2 * SK_ScalarPI;
 | 
| +    } else if (sweep < -SK_ScalarPI) {
 | 
| +        sweep += 2 * SK_ScalarPI;
 | 
| +    }
 | 
| +    return sweep;
 | 
| +}
 | 
| +
 | 
| +static bool radianBetween(double start, double test, double end) {
 | 
| +    double startToEnd = radianSweep(start, end);
 | 
| +    double startToTest = radianSweep(start, test);
 | 
| +    double testToEnd = radianSweep(test, end);
 | 
| +    return (startToTest <= 0 && testToEnd <= 0 && startToTest >= startToEnd) ||
 | 
| +        (startToTest >= 0 && testToEnd >= 0 && startToTest <= startToEnd);
 | 
| +}
 | 
| +
 | 
| +static bool orderTRange(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
 | 
| +        double r, TRange* result) {
 | 
| +    SkTArray<double, false> t1Array, t2Array;
 | 
| +    orderQuads(reporter, quad1, r, &t1Array);
 | 
| +    orderQuads(reporter,quad2, r, &t2Array);
 | 
| +    if (!t1Array.count() || !t2Array.count()) {
 | 
| +        return false;
 | 
| +    }
 | 
| +    SkTQSort<double>(t1Array.begin(), t1Array.end() - 1);
 | 
| +    SkTQSort<double>(t2Array.begin(), t2Array.end() - 1);
 | 
| +    double t1 = result->tMin1 = t1Array[0];
 | 
| +    double t2 = result->tMin2 = t2Array[0];
 | 
| +    double a1 = quadAngle(reporter,quad1, t1);
 | 
| +    double a2 = quadAngle(reporter,quad2, t2);
 | 
| +    if (approximately_equal(a1, a2)) {
 | 
| +        return false;
 | 
| +    }
 | 
| +    bool refCCW = angleDirection(a1, a2);
 | 
| +    result->t1 = t1;
 | 
| +    result->t2 = t2;
 | 
| +    result->tMin = SkTMin(t1, t2);
 | 
| +    result->a1 = a1;
 | 
| +    result->a2 = a2;
 | 
| +    result->ccw = refCCW;
 | 
| +    return true;
 | 
| +}
 | 
| +
 | 
| +static bool equalPoints(const SkDPoint& pt1, const SkDPoint& pt2, double max) {
 | 
| +    return approximately_zero_when_compared_to(pt1.fX - pt2.fX, max)
 | 
| +            && approximately_zero_when_compared_to(pt1.fY - pt2.fY, max);
 | 
| +}
 | 
| +
 | 
| +static double maxDist(const SkDQuad& quad) {
 | 
| +    SkDRect bounds;
 | 
| +    bounds.setBounds(quad);
 | 
| +    SkDVector corner[4] = {
 | 
| +        { bounds.fLeft - quad[0].fX, bounds.fTop - quad[0].fY },
 | 
| +        { bounds.fRight - quad[0].fX, bounds.fTop - quad[0].fY },
 | 
| +        { bounds.fLeft - quad[0].fX, bounds.fBottom - quad[0].fY },
 | 
| +        { bounds.fRight - quad[0].fX, bounds.fBottom - quad[0].fY }
 | 
| +    };
 | 
| +    double max = 0;
 | 
| +    for (unsigned index = 0; index < SK_ARRAY_COUNT(corner); ++index) {
 | 
| +        max = SkTMax(max, corner[index].length());
 | 
| +    }
 | 
| +    return max;
 | 
| +}
 | 
| +
 | 
| +static double maxQuad(const SkDQuad& quad) {
 | 
| +    double max = 0;
 | 
| +    for (int index = 0; index < 2; ++index) {
 | 
| +        max = SkTMax(max, fabs(quad[index].fX));
 | 
| +        max = SkTMax(max, fabs(quad[index].fY));
 | 
| +    }
 | 
| +    return max;
 | 
| +}
 | 
| +
 | 
| +static bool bruteMinT(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
 | 
| +        TRange* lowerRange, TRange* upperRange) {
 | 
| +    double maxRadius = SkTMin(maxDist(quad1), maxDist(quad2));
 | 
| +    double maxQuads = SkTMax(maxQuad(quad1), maxQuad(quad2));
 | 
| +    double r = maxRadius / 2;
 | 
| +    double rStep = r / 2;
 | 
| +    SkDPoint best1 = {SK_ScalarInfinity, SK_ScalarInfinity};
 | 
| +    SkDPoint best2 = {SK_ScalarInfinity, SK_ScalarInfinity};
 | 
| +    int bestCCW = -1;
 | 
| +    double bestR = maxRadius;
 | 
| +    upperRange->tMin = 0;
 | 
| +    lowerRange->tMin = 1;
 | 
| +    do {
 | 
| +        do {  // find upper bounds of single result
 | 
| +            TRange tRange;
 | 
| +            bool stepUp = orderTRange(reporter, quad1, quad2, r, &tRange);
 | 
| +            if (stepUp) {
 | 
| +                SkDPoint pt1 = quad1.ptAtT(tRange.t1);
 | 
| +                if (equalPoints(pt1, best1, maxQuads)) {
 | 
| +                    break;
 | 
| +                }
 | 
| +                best1 = pt1;
 | 
| +                SkDPoint pt2 = quad2.ptAtT(tRange.t2);
 | 
| +                if (equalPoints(pt2, best2, maxQuads)) {
 | 
| +                    break;
 | 
| +                }
 | 
| +                best2 = pt2;
 | 
| +                if (gPathOpsAngleIdeasVerbose) {
 | 
| +                    SkDebugf("u bestCCW=%d ccw=%d bestMin=%1.9g:%1.9g r=%1.9g tMin=%1.9g\n",
 | 
| +                            bestCCW, tRange.ccw, lowerRange->tMin, upperRange->tMin, r,
 | 
| +                            tRange.tMin);
 | 
| +                }
 | 
| +                if (bestCCW >= 0 && bestCCW != (int) tRange.ccw) {
 | 
| +                    if (tRange.tMin < upperRange->tMin) {
 | 
| +                        upperRange->tMin = 0;
 | 
| +                    } else {
 | 
| +                        stepUp = false;
 | 
| +                    }
 | 
| +                }
 | 
| +                if (upperRange->tMin < tRange.tMin) {
 | 
| +                    bestCCW = tRange.ccw;
 | 
| +                    bestR = r;
 | 
| +                    *upperRange = tRange;
 | 
| +                }
 | 
| +                if (lowerRange->tMin > tRange.tMin) {
 | 
| +                    *lowerRange = tRange;
 | 
| +                }
 | 
| +            }
 | 
| +            r += stepUp ? rStep : -rStep;
 | 
| +            rStep /= 2;
 | 
| +        } while (rStep > FLT_EPSILON);
 | 
| +        if (bestCCW < 0) {
 | 
| +            REPORTER_ASSERT(reporter, bestR < maxRadius);
 | 
| +            return false;
 | 
| +        }
 | 
| +        double lastHighR = bestR;
 | 
| +        r = bestR / 2;
 | 
| +        rStep = r / 2;
 | 
| +        do {  // find lower bounds of single result
 | 
| +            TRange tRange;
 | 
| +            bool success = orderTRange(reporter, quad1, quad2, r, &tRange);
 | 
| +            if (success) {
 | 
| +                if (gPathOpsAngleIdeasVerbose) {
 | 
| +                    SkDebugf("l bestCCW=%d ccw=%d bestMin=%1.9g:%1.9g r=%1.9g tMin=%1.9g\n",
 | 
| +                            bestCCW, tRange.ccw, lowerRange->tMin, upperRange->tMin, r,
 | 
| +                            tRange.tMin);
 | 
| +                }
 | 
| +                if (bestCCW != (int) tRange.ccw || upperRange->tMin < tRange.tMin) {
 | 
| +                    bestCCW = tRange.ccw;
 | 
| +                    *upperRange = tRange;
 | 
| +                    bestR = lastHighR;
 | 
| +                    break;  // need to establish a new upper bounds
 | 
| +                }
 | 
| +                SkDPoint pt1 = quad1.ptAtT(tRange.t1);
 | 
| +                SkDPoint pt2 = quad2.ptAtT(tRange.t2);
 | 
| +                if (equalPoints(pt1, best1, maxQuads)) {
 | 
| +                    goto breakOut;
 | 
| +                }
 | 
| +                best1 = pt1;
 | 
| +                if (equalPoints(pt2, best2, maxQuads)) {
 | 
| +                    goto breakOut;
 | 
| +                }
 | 
| +                best2 = pt2;
 | 
| +                if (equalPoints(pt1, pt2, maxQuads)) {
 | 
| +                    success = false;
 | 
| +                } else {
 | 
| +                    if (upperRange->tMin < tRange.tMin) {
 | 
| +                        *upperRange = tRange;
 | 
| +                    }
 | 
| +                    if (lowerRange->tMin > tRange.tMin) {
 | 
| +                        *lowerRange = tRange;
 | 
| +                    }
 | 
| +                }
 | 
| +                lastHighR = SkTMin(r, lastHighR);
 | 
| +            }
 | 
| +            r += success ? -rStep : rStep;
 | 
| +            rStep /= 2;
 | 
| +        } while (rStep > FLT_EPSILON);
 | 
| +    } while (rStep > FLT_EPSILON);
 | 
| +breakOut:
 | 
| +    if (gPathOpsAngleIdeasVerbose) {
 | 
| +        SkDebugf("l a2-a1==%1.9g\n", lowerRange->a2 - lowerRange->a1);
 | 
| +    }
 | 
| +    return true;
 | 
| +}
 | 
| +
 | 
| +static void bruteForce(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
 | 
| +        bool ccw) {
 | 
| +    if (!gPathOpsAngleIdeasEnableBruteCheck) {
 | 
| +        return;
 | 
| +    }
 | 
| +    TRange lowerRange, upperRange;
 | 
| +    bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
 | 
| +    REPORTER_ASSERT(reporter, result);
 | 
| +    double angle = fabs(lowerRange.a2 - lowerRange.a1);
 | 
| +    REPORTER_ASSERT(reporter, angle > 3.998 || ccw == upperRange.ccw);
 | 
| +}
 | 
| +
 | 
| +static bool bruteForceCheck(skiatest::Reporter* reporter, const SkDQuad& quad1,
 | 
| +        const SkDQuad& quad2, bool ccw) {
 | 
| +    TRange lowerRange, upperRange;
 | 
| +    bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
 | 
| +    REPORTER_ASSERT(reporter, result);
 | 
| +    return ccw == upperRange.ccw;
 | 
| +}
 | 
| +
 | 
| +class PathOpsSegmentTester {
 | 
| +public:
 | 
| +    static void ConstructQuad(SkOpSegment* segment, SkPoint shortQuad[3]) {
 | 
| +        segment->debugConstructQuad(shortQuad);
 | 
| +    }
 | 
| +};
 | 
| +
 | 
| +static void makeSegment(const SkDQuad& quad, SkPoint shortQuad[3], SkOpSegment* result) {
 | 
| +    shortQuad[0] = quad[0].asSkPoint();
 | 
| +    shortQuad[1] = quad[1].asSkPoint();
 | 
| +    shortQuad[2] = quad[2].asSkPoint();
 | 
| +    PathOpsSegmentTester::ConstructQuad(result, shortQuad);
 | 
| +}
 | 
| +
 | 
| +static void testQuadAngles(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
 | 
| +        int testNo) {
 | 
| +    SkPoint shortQuads[2][3];
 | 
| +    SkOpSegment seg[2];
 | 
| +    makeSegment(quad1, shortQuads[0], &seg[0]);
 | 
| +    makeSegment(quad2, shortQuads[1], &seg[1]);
 | 
| +    int realOverlap = PathOpsAngleTester::ConvexHullOverlaps(seg[0].angle(0), seg[1].angle(0));
 | 
| +    const SkDPoint& origin = quad1[0];
 | 
| +    REPORTER_ASSERT(reporter, origin == quad2[0]);
 | 
| +    double a1s = atan2(origin.fY - quad1[1].fY, quad1[1].fX - origin.fX);
 | 
| +    double a1e = atan2(origin.fY - quad1[2].fY, quad1[2].fX - origin.fX);
 | 
| +    double a2s = atan2(origin.fY - quad2[1].fY, quad2[1].fX - origin.fX);
 | 
| +    double a2e = atan2(origin.fY - quad2[2].fY, quad2[2].fX - origin.fX);
 | 
| +    bool oldSchoolOverlap = radianBetween(a1s, a2s, a1e)
 | 
| +        || radianBetween(a1s, a2e, a1e) || radianBetween(a2s, a1s, a2e)
 | 
| +        || radianBetween(a2s, a1e, a2e);
 | 
| +    int overlap = quadHullsOverlap(reporter, quad1, quad2);
 | 
| +    bool realMatchesOverlap = realOverlap == overlap || SK_ScalarPI - fabs(a2s - a1s) < 0.002;
 | 
| +    if (realOverlap != overlap) {
 | 
| +        SkDebugf("\nSK_ScalarPI - fabs(a2s - a1s) = %1.9g\n", SK_ScalarPI - fabs(a2s - a1s));
 | 
| +    }
 | 
| +    if (!realMatchesOverlap) {
 | 
| +        DumpQ(quad1, quad2, testNo);
 | 
| +    }
 | 
| +    REPORTER_ASSERT(reporter, realMatchesOverlap);
 | 
| +    if (oldSchoolOverlap != (overlap < 0)) {
 | 
| +        overlap = quadHullsOverlap(reporter, quad1, quad2);  // set a breakpoint and debug if assert fires
 | 
| +        REPORTER_ASSERT(reporter, oldSchoolOverlap == (overlap < 0));
 | 
| +    }
 | 
| +    SkDVector v1s = quad1[1] - quad1[0];
 | 
| +    SkDVector v1e = quad1[2] - quad1[0];
 | 
| +    SkDVector v2s = quad2[1] - quad2[0];
 | 
| +    SkDVector v2e = quad2[2] - quad2[0];
 | 
| +    double vDir[2] = { v1s.cross(v1e), v2s.cross(v2e) };
 | 
| +    bool ray1In2 = v1s.cross(v2s) * vDir[1] <= 0 && v1s.cross(v2e) * vDir[1] >= 0;
 | 
| +    bool ray2In1 = v2s.cross(v1s) * vDir[0] <= 0 && v2s.cross(v1e) * vDir[0] >= 0;
 | 
| +    if (overlap >= 0) {
 | 
| +        // verify that hulls really don't overlap
 | 
| +        REPORTER_ASSERT(reporter, !ray1In2);
 | 
| +        REPORTER_ASSERT(reporter, !ray2In1);
 | 
| +        bool ctrl1In2 = v1e.cross(v2s) * vDir[1] <= 0 && v1e.cross(v2e) * vDir[1] >= 0;
 | 
| +        REPORTER_ASSERT(reporter, !ctrl1In2);
 | 
| +        bool ctrl2In1 = v2e.cross(v1s) * vDir[0] <= 0 && v2e.cross(v1e) * vDir[0] >= 0;
 | 
| +        REPORTER_ASSERT(reporter, !ctrl2In1);
 | 
| +        // check answer against reference
 | 
| +        bruteForce(reporter, quad1, quad2, overlap > 0);
 | 
| +    }
 | 
| +    // continue end point rays and see if they intersect the opposite curve
 | 
| +    SkDLine rays[] = {{{origin, quad2[2]}}, {{origin, quad1[2]}}};
 | 
| +    const SkDQuad* quads[] = {&quad1, &quad2};
 | 
| +    SkDVector midSpokes[2];
 | 
| +    SkIntersections intersect[2];
 | 
| +    double minX, minY, maxX, maxY;
 | 
| +    minX = minY = SK_ScalarInfinity;
 | 
| +    maxX = maxY = -SK_ScalarInfinity;
 | 
| +    double maxWidth = 0;
 | 
| +    bool useIntersect = false;
 | 
| +    double smallestTs[] = {1, 1};
 | 
| +    for (unsigned index = 0; index < SK_ARRAY_COUNT(quads); ++index) {
 | 
| +        const SkDQuad& q = *quads[index];
 | 
| +        midSpokes[index] = q.ptAtT(0.5) - origin;
 | 
| +        minX = SkTMin(SkTMin(SkTMin(minX, origin.fX), q[1].fX), q[2].fX);
 | 
| +        minY = SkTMin(SkTMin(SkTMin(minY, origin.fY), q[1].fY), q[2].fY);
 | 
| +        maxX = SkTMax(SkTMax(SkTMax(maxX, origin.fX), q[1].fX), q[2].fX);
 | 
| +        maxY = SkTMax(SkTMax(SkTMax(maxY, origin.fY), q[1].fY), q[2].fY);
 | 
| +        maxWidth = SkTMax(maxWidth, SkTMax(maxX - minX, maxY - minY));
 | 
| +        intersect[index].intersectRay(q, rays[index]);
 | 
| +        const SkIntersections& i = intersect[index];
 | 
| +        REPORTER_ASSERT(reporter, i.used() >= 1);
 | 
| +        bool foundZero = false;
 | 
| +        double smallT = 1;
 | 
| +        for (int idx2 = 0; idx2 < i.used(); ++idx2) {
 | 
| +            double t = i[0][idx2];
 | 
| +            if (t == 0) {
 | 
| +                foundZero = true;
 | 
| +                continue;
 | 
| +            }
 | 
| +            if (smallT > t) {
 | 
| +                smallT = t;
 | 
| +            }
 | 
| +        }
 | 
| +        REPORTER_ASSERT(reporter, foundZero == true);
 | 
| +        if (smallT == 1) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        SkDVector ray = q.ptAtT(smallT) - origin;
 | 
| +        SkDVector end = rays[index][1] - origin;
 | 
| +        if (ray.fX * end.fX < 0 || ray.fY * end.fY < 0) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        double rayDist = ray.length();
 | 
| +        double endDist = end.length();
 | 
| +        double delta = fabs(rayDist - endDist) / maxWidth;
 | 
| +        if (delta > 1e-4) {
 | 
| +            useIntersect ^= true;
 | 
| +        }
 | 
| +        smallestTs[index] = smallT;
 | 
| +    }
 | 
| +    bool firstInside;
 | 
| +    if (useIntersect) {
 | 
| +        int sIndex = (int) (smallestTs[1] < 1);
 | 
| +        REPORTER_ASSERT(reporter, smallestTs[sIndex ^ 1] == 1);
 | 
| +        double t = smallestTs[sIndex];
 | 
| +        const SkDQuad& q = *quads[sIndex];
 | 
| +        SkDVector ray = q.ptAtT(t) - origin;
 | 
| +        SkDVector end = rays[sIndex][1] - origin;
 | 
| +        double rayDist = ray.length();
 | 
| +        double endDist = end.length();
 | 
| +        SkDVector mid = q.ptAtT(t / 2) - origin;
 | 
| +        double midXray = mid.crossCheck(ray);
 | 
| +        if (gPathOpsAngleIdeasVerbose) {
 | 
| +            SkDebugf("rayDist>endDist:%d sIndex==0:%d vDir[sIndex]<0:%d midXray<0:%d\n",
 | 
| +                    rayDist > endDist, sIndex == 0, vDir[sIndex] < 0, midXray < 0);
 | 
| +        }
 | 
| +        SkASSERT(SkScalarSignAsInt(SkDoubleToScalar(midXray))
 | 
| +            == SkScalarSignAsInt(SkDoubleToScalar(vDir[sIndex])));
 | 
| +        firstInside = (rayDist > endDist) ^ (sIndex == 0) ^ (vDir[sIndex] < 0);
 | 
| +    } else if (overlap >= 0) {
 | 
| +        return;  // answer has already been determined
 | 
| +    } else {
 | 
| +        firstInside = checkParallel(reporter, quad1, quad2);
 | 
| +    }
 | 
| +    if (overlap < 0) {
 | 
| +        SkDEBUGCODE(int realEnds =)
 | 
| +                PathOpsAngleTester::EndsIntersect(seg[0].angle(0), seg[1].angle(0));
 | 
| +        SkASSERT(realEnds == (firstInside ? 1 : 0));
 | 
| +    }
 | 
| +    bruteForce(reporter, quad1, quad2, firstInside);
 | 
| +}
 | 
| +
 | 
| +DEF_TEST(PathOpsAngleOverlapHullsOne, reporter) {
 | 
| +//    gPathOpsAngleIdeasVerbose = true;
 | 
| +    const SkDQuad quads[] = {
 | 
| +{{{939.4808349609375, 914.355224609375}, {-357.7921142578125, 590.842529296875}, {736.8936767578125, -350.717529296875}}},
 | 
| +{{{939.4808349609375, 914.355224609375}, {-182.85418701171875, 634.4552001953125}, {-509.62615966796875, 576.1182861328125}}}
 | 
| +    };
 | 
| +    for (int index = 0; index < (int) SK_ARRAY_COUNT(quads); index += 2) {
 | 
| +        testQuadAngles(reporter, quads[index], quads[index + 1], 0);
 | 
| +    }
 | 
| +}
 | 
| +
 | 
| +DEF_TEST(PathOpsAngleOverlapHulls, reporter) {
 | 
| +    if (!gPathOpsAngleIdeasVerbose) {  // takes a while to run -- so exclude it by default
 | 
| +        return;
 | 
| +    }
 | 
| +    SkRandom ran;
 | 
| +    for (int index = 0; index < 100000; ++index) {
 | 
| +        if (index % 1000 == 999) SkDebugf(".");
 | 
| +        SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
 | 
| +        SkDQuad quad1 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
 | 
| +            {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
 | 
| +        if (quad1[0] == quad1[2]) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        SkDQuad quad2 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
 | 
| +            {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
 | 
| +        if (quad2[0] == quad2[2]) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        SkIntersections i;
 | 
| +        i.intersect(quad1, quad2);
 | 
| +        REPORTER_ASSERT(reporter, i.used() >= 1);
 | 
| +        if (i.used() > 1) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        testQuadAngles(reporter, quad1, quad2, index);
 | 
| +    }
 | 
| +}
 | 
| +
 | 
| +DEF_TEST(PathOpsAngleBruteT, reporter) {
 | 
| +    if (!gPathOpsAngleIdeasVerbose) {  // takes a while to run -- so exclude it by default
 | 
| +        return;
 | 
| +    }
 | 
| +    SkRandom ran;
 | 
| +    double smaller = SK_Scalar1;
 | 
| +    SkDQuad small[2];
 | 
| +    SkDEBUGCODE(int smallIndex);
 | 
| +    for (int index = 0; index < 100000; ++index) {
 | 
| +        SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
 | 
| +        SkDQuad quad1 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
 | 
| +            {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
 | 
| +        if (quad1[0] == quad1[2]) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        SkDQuad quad2 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
 | 
| +            {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
 | 
| +        if (quad2[0] == quad2[2]) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        SkIntersections i;
 | 
| +        i.intersect(quad1, quad2);
 | 
| +        REPORTER_ASSERT(reporter, i.used() >= 1);
 | 
| +        if (i.used() > 1) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        TRange lowerRange, upperRange;
 | 
| +        bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
 | 
| +        REPORTER_ASSERT(reporter, result);
 | 
| +        double min = SkTMin(upperRange.t1, upperRange.t2);
 | 
| +        if (smaller > min) {
 | 
| +            small[0] = quad1;
 | 
| +            small[1] = quad2;
 | 
| +            SkDEBUGCODE(smallIndex = index);
 | 
| +            smaller = min;
 | 
| +        }
 | 
| +    }
 | 
| +#ifdef SK_DEBUG
 | 
| +    DumpQ(small[0], small[1], smallIndex);
 | 
| +#endif
 | 
| +}
 | 
| +
 | 
| +DEF_TEST(PathOpsAngleBruteTOne, reporter) {
 | 
| +//    gPathOpsAngleIdeasVerbose = true;
 | 
| +    const SkDQuad quads[] = {
 | 
| +{{{-770.8492431640625, 948.2369384765625}, {-853.37066650390625, 972.0301513671875}, {-200.62042236328125, -26.7174072265625}}},
 | 
| +{{{-770.8492431640625, 948.2369384765625}, {513.602783203125, 578.8681640625}, {960.641357421875, -813.69757080078125}}},
 | 
| +{{{563.8267822265625, -107.4566650390625}, {-44.67724609375, -136.57452392578125}, {492.3856201171875, -268.79644775390625}}},
 | 
| +{{{563.8267822265625, -107.4566650390625}, {708.049072265625, -100.77789306640625}, {-48.88226318359375, 967.9022216796875}}},
 | 
| +{{{598.857421875, 846.345458984375}, {-644.095703125, -316.12921142578125}, {-97.64599609375, 20.6158447265625}}},
 | 
| +{{{598.857421875, 846.345458984375}, {715.7142333984375, 955.3599853515625}, {-919.9478759765625, 691.611328125}}},
 | 
| +    };
 | 
| +    TRange lowerRange, upperRange;
 | 
| +    bruteMinT(reporter, quads[0], quads[1], &lowerRange, &upperRange);
 | 
| +    bruteMinT(reporter, quads[2], quads[3], &lowerRange, &upperRange);
 | 
| +    bruteMinT(reporter, quads[4], quads[5], &lowerRange, &upperRange);
 | 
| +}
 | 
| +
 | 
| +/*
 | 
| +The sorting problem happens when the inital tangents are not a true indicator of the curve direction
 | 
| +Nearly always, the initial tangents do give the right answer,
 | 
| +so the trick is to figure out when the initial tangent cannot be trusted.
 | 
| +If the convex hulls of both curves are in the same half plane, and not overlapping, sorting the
 | 
| +hulls is enough.
 | 
| +If the hulls overlap, and have the same general direction, then intersect the shorter end point ray
 | 
| +with the opposing curve, and see on which side of the shorter curve the opposing intersection lies.
 | 
| +Otherwise, if the control vector is extremely short, likely the point on curve must be computed
 | 
| +If moving the control point slightly can change the sign of the cross product, either answer could
 | 
| +be "right".
 | 
| +We need to determine how short is extremely short. Move the control point a set percentage of
 | 
| +the largest length to determine how stable the curve is vis-a-vis the initial tangent.
 | 
| +*/
 | 
| +
 | 
| +static const SkDQuad extremeTests[][2] = {
 | 
| +    {
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-707.9234268635319,-154.30459999551294},
 | 
| +            {505.58447265625,-504.9130859375}}},
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-711.127526325141,-163.9446090624656},
 | 
| +            {-32.39227294921875,-906.3277587890625}}},
 | 
| +    }, {
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-708.2875337527566,-154.36676458635623},
 | 
| +            {505.58447265625,-504.9130859375}}},
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-708.4111557216864,-154.5366642875255},
 | 
| +            {-32.39227294921875,-906.3277587890625}}},
 | 
| +    }, {
 | 
| +        {{{-609.0230951752058,-267.5435593490574},
 | 
| +            {-594.1120809906336,-136.08492475411555},
 | 
| +            {505.58447265625,-504.9130859375}}},
 | 
| +        {{{-609.0230951752058,-267.5435593490574},
 | 
| +            {-693.7467719138988,-341.3259237831895},
 | 
| +            {-32.39227294921875,-906.3277587890625}}}
 | 
| +    }, {
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-707.9994640658723,-154.58588461064852},
 | 
| +            {505.58447265625,-504.9130859375}}},
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-708.0239418990758,-154.6403553507124},
 | 
| +            {-32.39227294921875,-906.3277587890625}}}
 | 
| +    }, {
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-707.9993222215099,-154.55999389855003},
 | 
| +            {68.88981098017803,296.9273945411635}}},
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-708.0509091919608,-154.64675214697067},
 | 
| +            {-777.4871194247767,-995.1470120113145}}}
 | 
| +    }, {
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-708.0060491116379,-154.60889321524968},
 | 
| +            {229.97088707895057,-430.0569357467175}}},
 | 
| +        {{{-708.0077926931004,-154.61669472244046},
 | 
| +            {-708.013911296257,-154.6219143988058},
 | 
| +            {138.13162892614037,-573.3689311737394}}}
 | 
| +    }, {
 | 
| +        {{{-543.2570545751013,-237.29243831075053},
 | 
| +            {-452.4119186056987,-143.47223056267802},
 | 
| +            {229.97088707895057,-430.0569357467175}}},
 | 
| +        {{{-543.2570545751013,-237.29243831075053},
 | 
| +            {-660.5330371214436,-362.0016148388},
 | 
| +            {138.13162892614037,-573.3689311737394}}},
 | 
| +    },
 | 
| +};
 | 
| +
 | 
| +static double endCtrlRatio(const SkDQuad quad) {
 | 
| +    SkDVector longEdge = quad[2] - quad[0];
 | 
| +    double longLen = longEdge.length();
 | 
| +    SkDVector shortEdge = quad[1] - quad[0];
 | 
| +    double shortLen = shortEdge.length();
 | 
| +    return longLen / shortLen;
 | 
| +}
 | 
| +
 | 
| +static void computeMV(const SkDQuad& quad, const SkDVector& v, double m, SkDVector mV[2]) {
 | 
| +        SkDPoint mPta = {quad[1].fX - m * v.fY, quad[1].fY + m * v.fX};
 | 
| +        SkDPoint mPtb = {quad[1].fX + m * v.fY, quad[1].fY - m * v.fX};
 | 
| +        mV[0] = mPta - quad[0];
 | 
| +        mV[1] = mPtb - quad[0];
 | 
| +}
 | 
| +
 | 
| +static double mDistance(skiatest::Reporter* reporter, bool agrees, const SkDQuad& q1,
 | 
| +        const SkDQuad& q2) {
 | 
| +    if (1 && agrees) {
 | 
| +        return SK_ScalarMax;
 | 
| +    }
 | 
| +    // how close is the angle from inflecting in the opposite direction?
 | 
| +    SkDVector v1 = q1[1] - q1[0];
 | 
| +    SkDVector v2 = q2[1] - q2[0];
 | 
| +    double dir = v1.crossCheck(v2);
 | 
| +    REPORTER_ASSERT(reporter, dir != 0);
 | 
| +    // solve for opposite direction displacement scale factor == m
 | 
| +    // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
 | 
| +    // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
 | 
| +    // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
 | 
| +    //                       v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
 | 
| +    // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
 | 
| +    // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
 | 
| +    // m = v1.cross(v2) / v1.dot(v2)
 | 
| +    double div = v1.dot(v2);
 | 
| +    REPORTER_ASSERT(reporter, div != 0);
 | 
| +    double m = dir / div;
 | 
| +    SkDVector mV1[2], mV2[2];
 | 
| +    computeMV(q1, v1, m, mV1);
 | 
| +    computeMV(q2, v2, m, mV2);
 | 
| +    double dist1 = v1.length() * m;
 | 
| +    double dist2 = v2.length() * m;
 | 
| +    if (gPathOpsAngleIdeasVerbose) {
 | 
| +        SkDebugf("%c r1=%1.9g r2=%1.9g m=%1.9g dist1=%1.9g dist2=%1.9g "
 | 
| +                " dir%c 1a=%1.9g 1b=%1.9g 2a=%1.9g 2b=%1.9g\n", agrees ? 'T' : 'F',
 | 
| +                endCtrlRatio(q1), endCtrlRatio(q2), m, dist1, dist2, dir > 0 ? '+' : '-',
 | 
| +                mV1[0].crossCheck(v2), mV1[1].crossCheck(v2),
 | 
| +                mV2[0].crossCheck(v1), mV2[1].crossCheck(v1));
 | 
| +    }
 | 
| +    if (1) {
 | 
| +        bool use1 = fabs(dist1) < fabs(dist2);
 | 
| +        if (gPathOpsAngleIdeasVerbose) {
 | 
| +            SkDebugf("%c dist=%1.9g r=%1.9g\n", agrees ? 'T' : 'F', use1 ? dist1 : dist2,
 | 
| +                use1 ? distEndRatio(dist1, q1) : distEndRatio(dist2, q2));
 | 
| +        }
 | 
| +        return fabs(use1 ? distEndRatio(dist1, q1) : distEndRatio(dist2, q2));
 | 
| +    }
 | 
| +    return SK_ScalarMax;
 | 
| +}
 | 
| +
 | 
| +static void midPointAgrees(skiatest::Reporter* reporter, const SkDQuad& q1, const SkDQuad& q2,
 | 
| +        bool ccw) {
 | 
| +    SkDPoint mid1 = q1.ptAtT(0.5);
 | 
| +    SkDVector m1 = mid1 - q1[0];
 | 
| +    SkDPoint mid2 = q2.ptAtT(0.5);
 | 
| +    SkDVector m2 = mid2 - q2[0];
 | 
| +    REPORTER_ASSERT(reporter, ccw ? m1.crossCheck(m2) < 0 : m1.crossCheck(m2) > 0);
 | 
| +}
 | 
| +
 | 
| +DEF_TEST(PathOpsAngleExtreme, reporter) {
 | 
| +    if (!gPathOpsAngleIdeasVerbose) {  // takes a while to run -- so exclude it by default
 | 
| +        return;
 | 
| +    }
 | 
| +    double maxR = SK_ScalarMax;
 | 
| +    for (int index = 0; index < (int) SK_ARRAY_COUNT(extremeTests); ++index) {
 | 
| +        const SkDQuad& quad1 = extremeTests[index][0];
 | 
| +        const SkDQuad& quad2 = extremeTests[index][1];
 | 
| +        if (gPathOpsAngleIdeasVerbose) {
 | 
| +            SkDebugf("%s %d\n", __FUNCTION__, index);
 | 
| +        }
 | 
| +        REPORTER_ASSERT(reporter, quad1[0] == quad2[0]);
 | 
| +        SkIntersections i;
 | 
| +        i.intersect(quad1, quad2);
 | 
| +        REPORTER_ASSERT(reporter, i.used() == 1);
 | 
| +        REPORTER_ASSERT(reporter, i.pt(0) == quad1[0]);
 | 
| +        int overlap = quadHullsOverlap(reporter, quad1, quad2);
 | 
| +        REPORTER_ASSERT(reporter, overlap >= 0);
 | 
| +        SkDVector sweep[2], tweep[2];
 | 
| +        setQuadHullSweep(quad1, sweep);
 | 
| +        setQuadHullSweep(quad2, tweep);
 | 
| +        double s0xt0 = sweep[0].crossCheck(tweep[0]);
 | 
| +        REPORTER_ASSERT(reporter, s0xt0 != 0);
 | 
| +        bool ccw = s0xt0 < 0;
 | 
| +        bool agrees = bruteForceCheck(reporter, quad1, quad2, ccw);
 | 
| +        maxR = SkTMin(maxR, mDistance(reporter, agrees, quad1, quad2));
 | 
| +        if (agrees) {
 | 
| +            continue;
 | 
| +        }
 | 
| +        midPointAgrees(reporter, quad1, quad2, !ccw);
 | 
| +        SkDQuad q1 = quad1;
 | 
| +        SkDQuad q2 = quad2;
 | 
| +        double loFail = 1;
 | 
| +        double hiPass = 2;
 | 
| +        // double vectors until t passes
 | 
| +        do {
 | 
| +            q1[1].fX = quad1[0].fX * (1 - hiPass) + quad1[1].fX * hiPass;
 | 
| +            q1[1].fY = quad1[0].fY * (1 - hiPass) + quad1[1].fY * hiPass;
 | 
| +            q2[1].fX = quad2[0].fX * (1 - hiPass) + quad2[1].fX * hiPass;
 | 
| +            q2[1].fY = quad2[0].fY * (1 - hiPass) + quad2[1].fY * hiPass;
 | 
| +            agrees = bruteForceCheck(reporter, q1, q2, ccw);
 | 
| +            maxR = SkTMin(maxR, mDistance(reporter, agrees, q1, q2));
 | 
| +            if (agrees) {
 | 
| +                break;
 | 
| +            }
 | 
| +            midPointAgrees(reporter, quad1, quad2, !ccw);
 | 
| +            loFail = hiPass;
 | 
| +            hiPass *= 2;
 | 
| +        } while (true);
 | 
| +        // binary search to find minimum pass
 | 
| +        double midTest = (loFail + hiPass) / 2;
 | 
| +        double step = (hiPass - loFail) / 4;
 | 
| +        while (step > FLT_EPSILON) {
 | 
| +            q1[1].fX = quad1[0].fX * (1 - midTest) + quad1[1].fX * midTest;
 | 
| +            q1[1].fY = quad1[0].fY * (1 - midTest) + quad1[1].fY * midTest;
 | 
| +            q2[1].fX = quad2[0].fX * (1 - midTest) + quad2[1].fX * midTest;
 | 
| +            q2[1].fY = quad2[0].fY * (1 - midTest) + quad2[1].fY * midTest;
 | 
| +            agrees = bruteForceCheck(reporter, q1, q2, ccw);
 | 
| +            maxR = SkTMin(maxR, mDistance(reporter, agrees, q1, q2));
 | 
| +            if (!agrees) {
 | 
| +                midPointAgrees(reporter, quad1, quad2, !ccw);
 | 
| +            }
 | 
| +            midTest += agrees ? -step : step;
 | 
| +            step /= 2;
 | 
| +        }
 | 
| +#ifdef SK_DEBUG
 | 
| +//        DumpQ(q1, q2, 999);
 | 
| +#endif
 | 
| +    }
 | 
| +    if (gPathOpsAngleIdeasVerbose) {
 | 
| +        SkDebugf("maxR=%1.9g\n", maxR);
 | 
| +    }
 | 
| +}
 | 
| 
 |