Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(123)

Unified Diff: tests/PathOpsAngleIdeas.cpp

Issue 131103009: update pathops to circle sort (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: disable old test that still fails on linux 32 release Created 6 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkQuarticRoot.cpp ('k') | tests/PathOpsAngleTest.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: tests/PathOpsAngleIdeas.cpp
diff --git a/tests/PathOpsAngleIdeas.cpp b/tests/PathOpsAngleIdeas.cpp
new file mode 100755
index 0000000000000000000000000000000000000000..2887b28febbc2b5dda2f1ec7d1df172704e8e96d
--- /dev/null
+++ b/tests/PathOpsAngleIdeas.cpp
@@ -0,0 +1,858 @@
+/*
+ * Copyright 2013 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "PathOpsTestCommon.h"
+#include "SkIntersections.h"
+#include "SkOpSegment.h"
+#include "SkPathOpsTriangle.h"
+#include "SkRandom.h"
+#include "SkTArray.h"
+#include "SkTSort.h"
+#include "Test.h"
+
+static bool gPathOpsAngleIdeasVerbose = false;
+static bool gPathOpsAngleIdeasEnableBruteCheck = false;
+
+class PathOpsAngleTester {
+public:
+ static int ConvexHullOverlaps(const SkOpAngle& lh, const SkOpAngle& rh) {
+ return lh.convexHullOverlaps(rh);
+ }
+
+ static int EndsIntersect(const SkOpAngle& lh, const SkOpAngle& rh) {
+ return lh.endsIntersect(rh);
+ }
+};
+
+struct TRange {
+ double tMin1;
+ double tMin2;
+ double t1;
+ double t2;
+ double tMin;
+ double a1;
+ double a2;
+ bool ccw;
+};
+
+static double testArc(skiatest::Reporter* reporter, const SkDQuad& quad, const SkDQuad& arcRef,
+ int octant) {
+ SkDQuad arc = arcRef;
+ SkDVector offset = {quad[0].fX, quad[0].fY};
+ arc[0] += offset;
+ arc[1] += offset;
+ arc[2] += offset;
+ SkIntersections i;
+ i.intersect(arc, quad);
+ if (i.used() == 0) {
+ return -1;
+ }
+ int smallest = -1;
+ double t = 2;
+ for (int idx = 0; idx < i.used(); ++idx) {
+ if (i[0][idx] > 1 || i[0][idx] < 0) {
+ i.reset();
+ i.intersect(arc, quad);
+ }
+ if (i[1][idx] > 1 || i[1][idx] < 0) {
+ i.reset();
+ i.intersect(arc, quad);
+ }
+ if (t > i[1][idx]) {
+ smallest = idx;
+ t = i[1][idx];
+ }
+ }
+ REPORTER_ASSERT(reporter, smallest >= 0);
+ REPORTER_ASSERT(reporter, t >= 0 && t <= 1);
+ return i[1][smallest];
+}
+
+static void orderQuads(skiatest::Reporter* reporter, const SkDQuad& quad, double radius,
+ SkTArray<double, false>* tArray) {
+ double r = radius;
+ double s = r * SK_ScalarTanPIOver8;
+ double m = r * SK_ScalarRoot2Over2;
+ // construct circle from quads
+ const SkDQuad circle[8] = {{{{ r, 0}, { r, -s}, { m, -m}}},
+ {{{ m, -m}, { s, -r}, { 0, -r}}},
+ {{{ 0, -r}, {-s, -r}, {-m, -m}}},
+ {{{-m, -m}, {-r, -s}, {-r, 0}}},
+ {{{-r, 0}, {-r, s}, {-m, m}}},
+ {{{-m, m}, {-s, r}, { 0, r}}},
+ {{{ 0, r}, { s, r}, { m, m}}},
+ {{{ m, m}, { r, s}, { r, 0}}}};
+ for (int octant = 0; octant < 8; ++octant) {
+ double t = testArc(reporter, quad, circle[octant], octant);
+ if (t < 0) {
+ continue;
+ }
+ for (int index = 0; index < tArray->count(); ++index) {
+ double matchT = (*tArray)[index];
+ if (approximately_equal(t, matchT)) {
+ goto next;
+ }
+ }
+ tArray->push_back(t);
+next: ;
+ }
+}
+
+static double quadAngle(skiatest::Reporter* reporter, const SkDQuad& quad, double t) {
+ const SkDVector& pt = quad.ptAtT(t) - quad[0];
+ double angle = (atan2(pt.fY, pt.fX) + SK_ScalarPI) * 8 / (SK_ScalarPI * 2);
+ REPORTER_ASSERT(reporter, angle >= 0 && angle <= 8);
+ return angle;
+}
+
+static bool angleDirection(double a1, double a2) {
+ double delta = a1 - a2;
+ return (delta < 4 && delta > 0) || delta < -4;
+}
+
+static void setQuadHullSweep(const SkDQuad& quad, SkDVector sweep[2]) {
+ sweep[0] = quad[1] - quad[0];
+ sweep[1] = quad[2] - quad[0];
+}
+
+static double distEndRatio(double dist, const SkDQuad& quad) {
+ SkDVector v[] = {quad[2] - quad[0], quad[1] - quad[0], quad[2] - quad[1]};
+ double longest = SkTMax(v[0].length(), SkTMax(v[1].length(), v[2].length()));
+ return longest / dist;
+}
+
+static bool checkParallel(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2) {
+ SkDVector sweep[2], tweep[2];
+ setQuadHullSweep(quad1, sweep);
+ setQuadHullSweep(quad2, tweep);
+ // if the ctrl tangents are not nearly parallel, use them
+ // solve for opposite direction displacement scale factor == m
+ // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
+ // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
+ // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
+ // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
+ // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
+ // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
+ // m = v1.cross(v2) / v1.dot(v2)
+ double s0dt0 = sweep[0].dot(tweep[0]);
+ REPORTER_ASSERT(reporter, s0dt0 != 0);
+ double s0xt0 = sweep[0].crossCheck(tweep[0]);
+ double m = s0xt0 / s0dt0;
+ double sDist = sweep[0].length() * m;
+ double tDist = tweep[0].length() * m;
+ bool useS = fabs(sDist) < fabs(tDist);
+ double mFactor = fabs(useS ? distEndRatio(sDist, quad1) : distEndRatio(tDist, quad2));
+ if (mFactor < 5000) { // empirically found limit
+ return s0xt0 < 0;
+ }
+ SkDVector m0 = quad1.ptAtT(0.5) - quad1[0];
+ SkDVector m1 = quad2.ptAtT(0.5) - quad2[0];
+ return m0.crossCheck(m1) < 0;
+}
+
+/* returns
+ -1 if overlaps
+ 0 if no overlap cw
+ 1 if no overlap ccw
+*/
+static int quadHullsOverlap(skiatest::Reporter* reporter, const SkDQuad& quad1,
+ const SkDQuad& quad2) {
+ SkDVector sweep[2], tweep[2];
+ setQuadHullSweep(quad1, sweep);
+ setQuadHullSweep(quad2, tweep);
+ double s0xs1 = sweep[0].crossCheck(sweep[1]);
+ double s0xt0 = sweep[0].crossCheck(tweep[0]);
+ double s1xt0 = sweep[1].crossCheck(tweep[0]);
+ bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0;
+ double s0xt1 = sweep[0].crossCheck(tweep[1]);
+ double s1xt1 = sweep[1].crossCheck(tweep[1]);
+ tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0;
+ double t0xt1 = tweep[0].crossCheck(tweep[1]);
+ if (tBetweenS) {
+ return -1;
+ }
+ if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) { // s0 to s1 equals t0 to t1
+ return -1;
+ }
+ bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0;
+ sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0;
+ if (sBetweenT) {
+ return -1;
+ }
+ // if all of the sweeps are in the same half plane, then the order of any pair is enough
+ if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) {
+ return 0;
+ }
+ if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) {
+ return 1;
+ }
+ // if the outside sweeps are greater than 180 degress:
+ // first assume the inital tangents are the ordering
+ // if the midpoint direction matches the inital order, that is enough
+ SkDVector m0 = quad1.ptAtT(0.5) - quad1[0];
+ SkDVector m1 = quad2.ptAtT(0.5) - quad2[0];
+ double m0xm1 = m0.crossCheck(m1);
+ if (s0xt0 > 0 && m0xm1 > 0) {
+ return 0;
+ }
+ if (s0xt0 < 0 && m0xm1 < 0) {
+ return 1;
+ }
+ REPORTER_ASSERT(reporter, s0xt0 != 0);
+ return checkParallel(reporter, quad1, quad2);
+}
+
+static double radianSweep(double start, double end) {
+ double sweep = end - start;
+ if (sweep > SK_ScalarPI) {
+ sweep -= 2 * SK_ScalarPI;
+ } else if (sweep < -SK_ScalarPI) {
+ sweep += 2 * SK_ScalarPI;
+ }
+ return sweep;
+}
+
+static bool radianBetween(double start, double test, double end) {
+ double startToEnd = radianSweep(start, end);
+ double startToTest = radianSweep(start, test);
+ double testToEnd = radianSweep(test, end);
+ return (startToTest <= 0 && testToEnd <= 0 && startToTest >= startToEnd) ||
+ (startToTest >= 0 && testToEnd >= 0 && startToTest <= startToEnd);
+}
+
+static bool orderTRange(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
+ double r, TRange* result) {
+ SkTArray<double, false> t1Array, t2Array;
+ orderQuads(reporter, quad1, r, &t1Array);
+ orderQuads(reporter,quad2, r, &t2Array);
+ if (!t1Array.count() || !t2Array.count()) {
+ return false;
+ }
+ SkTQSort<double>(t1Array.begin(), t1Array.end() - 1);
+ SkTQSort<double>(t2Array.begin(), t2Array.end() - 1);
+ double t1 = result->tMin1 = t1Array[0];
+ double t2 = result->tMin2 = t2Array[0];
+ double a1 = quadAngle(reporter,quad1, t1);
+ double a2 = quadAngle(reporter,quad2, t2);
+ if (approximately_equal(a1, a2)) {
+ return false;
+ }
+ bool refCCW = angleDirection(a1, a2);
+ result->t1 = t1;
+ result->t2 = t2;
+ result->tMin = SkTMin(t1, t2);
+ result->a1 = a1;
+ result->a2 = a2;
+ result->ccw = refCCW;
+ return true;
+}
+
+static bool equalPoints(const SkDPoint& pt1, const SkDPoint& pt2, double max) {
+ return approximately_zero_when_compared_to(pt1.fX - pt2.fX, max)
+ && approximately_zero_when_compared_to(pt1.fY - pt2.fY, max);
+}
+
+static double maxDist(const SkDQuad& quad) {
+ SkDRect bounds;
+ bounds.setBounds(quad);
+ SkDVector corner[4] = {
+ { bounds.fLeft - quad[0].fX, bounds.fTop - quad[0].fY },
+ { bounds.fRight - quad[0].fX, bounds.fTop - quad[0].fY },
+ { bounds.fLeft - quad[0].fX, bounds.fBottom - quad[0].fY },
+ { bounds.fRight - quad[0].fX, bounds.fBottom - quad[0].fY }
+ };
+ double max = 0;
+ for (unsigned index = 0; index < SK_ARRAY_COUNT(corner); ++index) {
+ max = SkTMax(max, corner[index].length());
+ }
+ return max;
+}
+
+static double maxQuad(const SkDQuad& quad) {
+ double max = 0;
+ for (int index = 0; index < 2; ++index) {
+ max = SkTMax(max, fabs(quad[index].fX));
+ max = SkTMax(max, fabs(quad[index].fY));
+ }
+ return max;
+}
+
+static bool bruteMinT(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
+ TRange* lowerRange, TRange* upperRange) {
+ double maxRadius = SkTMin(maxDist(quad1), maxDist(quad2));
+ double maxQuads = SkTMax(maxQuad(quad1), maxQuad(quad2));
+ double r = maxRadius / 2;
+ double rStep = r / 2;
+ SkDPoint best1 = {SK_ScalarInfinity, SK_ScalarInfinity};
+ SkDPoint best2 = {SK_ScalarInfinity, SK_ScalarInfinity};
+ int bestCCW = -1;
+ double bestR = maxRadius;
+ upperRange->tMin = 0;
+ lowerRange->tMin = 1;
+ do {
+ do { // find upper bounds of single result
+ TRange tRange;
+ bool stepUp = orderTRange(reporter, quad1, quad2, r, &tRange);
+ if (stepUp) {
+ SkDPoint pt1 = quad1.ptAtT(tRange.t1);
+ if (equalPoints(pt1, best1, maxQuads)) {
+ break;
+ }
+ best1 = pt1;
+ SkDPoint pt2 = quad2.ptAtT(tRange.t2);
+ if (equalPoints(pt2, best2, maxQuads)) {
+ break;
+ }
+ best2 = pt2;
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("u bestCCW=%d ccw=%d bestMin=%1.9g:%1.9g r=%1.9g tMin=%1.9g\n",
+ bestCCW, tRange.ccw, lowerRange->tMin, upperRange->tMin, r,
+ tRange.tMin);
+ }
+ if (bestCCW >= 0 && bestCCW != (int) tRange.ccw) {
+ if (tRange.tMin < upperRange->tMin) {
+ upperRange->tMin = 0;
+ } else {
+ stepUp = false;
+ }
+ }
+ if (upperRange->tMin < tRange.tMin) {
+ bestCCW = tRange.ccw;
+ bestR = r;
+ *upperRange = tRange;
+ }
+ if (lowerRange->tMin > tRange.tMin) {
+ *lowerRange = tRange;
+ }
+ }
+ r += stepUp ? rStep : -rStep;
+ rStep /= 2;
+ } while (rStep > FLT_EPSILON);
+ if (bestCCW < 0) {
+ REPORTER_ASSERT(reporter, bestR < maxRadius);
+ return false;
+ }
+ double lastHighR = bestR;
+ r = bestR / 2;
+ rStep = r / 2;
+ do { // find lower bounds of single result
+ TRange tRange;
+ bool success = orderTRange(reporter, quad1, quad2, r, &tRange);
+ if (success) {
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("l bestCCW=%d ccw=%d bestMin=%1.9g:%1.9g r=%1.9g tMin=%1.9g\n",
+ bestCCW, tRange.ccw, lowerRange->tMin, upperRange->tMin, r,
+ tRange.tMin);
+ }
+ if (bestCCW != (int) tRange.ccw || upperRange->tMin < tRange.tMin) {
+ bestCCW = tRange.ccw;
+ *upperRange = tRange;
+ bestR = lastHighR;
+ break; // need to establish a new upper bounds
+ }
+ SkDPoint pt1 = quad1.ptAtT(tRange.t1);
+ SkDPoint pt2 = quad2.ptAtT(tRange.t2);
+ if (equalPoints(pt1, best1, maxQuads)) {
+ goto breakOut;
+ }
+ best1 = pt1;
+ if (equalPoints(pt2, best2, maxQuads)) {
+ goto breakOut;
+ }
+ best2 = pt2;
+ if (equalPoints(pt1, pt2, maxQuads)) {
+ success = false;
+ } else {
+ if (upperRange->tMin < tRange.tMin) {
+ *upperRange = tRange;
+ }
+ if (lowerRange->tMin > tRange.tMin) {
+ *lowerRange = tRange;
+ }
+ }
+ lastHighR = SkTMin(r, lastHighR);
+ }
+ r += success ? -rStep : rStep;
+ rStep /= 2;
+ } while (rStep > FLT_EPSILON);
+ } while (rStep > FLT_EPSILON);
+breakOut:
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("l a2-a1==%1.9g\n", lowerRange->a2 - lowerRange->a1);
+ }
+ return true;
+}
+
+static void bruteForce(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
+ bool ccw) {
+ if (!gPathOpsAngleIdeasEnableBruteCheck) {
+ return;
+ }
+ TRange lowerRange, upperRange;
+ bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
+ REPORTER_ASSERT(reporter, result);
+ double angle = fabs(lowerRange.a2 - lowerRange.a1);
+ REPORTER_ASSERT(reporter, angle > 3.998 || ccw == upperRange.ccw);
+}
+
+static bool bruteForceCheck(skiatest::Reporter* reporter, const SkDQuad& quad1,
+ const SkDQuad& quad2, bool ccw) {
+ TRange lowerRange, upperRange;
+ bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
+ REPORTER_ASSERT(reporter, result);
+ return ccw == upperRange.ccw;
+}
+
+class PathOpsSegmentTester {
+public:
+ static void ConstructQuad(SkOpSegment* segment, SkPoint shortQuad[3]) {
+ segment->debugConstructQuad(shortQuad);
+ }
+};
+
+static void makeSegment(const SkDQuad& quad, SkPoint shortQuad[3], SkOpSegment* result) {
+ shortQuad[0] = quad[0].asSkPoint();
+ shortQuad[1] = quad[1].asSkPoint();
+ shortQuad[2] = quad[2].asSkPoint();
+ PathOpsSegmentTester::ConstructQuad(result, shortQuad);
+}
+
+static void testQuadAngles(skiatest::Reporter* reporter, const SkDQuad& quad1, const SkDQuad& quad2,
+ int testNo) {
+ SkPoint shortQuads[2][3];
+ SkOpSegment seg[2];
+ makeSegment(quad1, shortQuads[0], &seg[0]);
+ makeSegment(quad2, shortQuads[1], &seg[1]);
+ int realOverlap = PathOpsAngleTester::ConvexHullOverlaps(seg[0].angle(0), seg[1].angle(0));
+ const SkDPoint& origin = quad1[0];
+ REPORTER_ASSERT(reporter, origin == quad2[0]);
+ double a1s = atan2(origin.fY - quad1[1].fY, quad1[1].fX - origin.fX);
+ double a1e = atan2(origin.fY - quad1[2].fY, quad1[2].fX - origin.fX);
+ double a2s = atan2(origin.fY - quad2[1].fY, quad2[1].fX - origin.fX);
+ double a2e = atan2(origin.fY - quad2[2].fY, quad2[2].fX - origin.fX);
+ bool oldSchoolOverlap = radianBetween(a1s, a2s, a1e)
+ || radianBetween(a1s, a2e, a1e) || radianBetween(a2s, a1s, a2e)
+ || radianBetween(a2s, a1e, a2e);
+ int overlap = quadHullsOverlap(reporter, quad1, quad2);
+ bool realMatchesOverlap = realOverlap == overlap || SK_ScalarPI - fabs(a2s - a1s) < 0.002;
+ if (realOverlap != overlap) {
+ SkDebugf("\nSK_ScalarPI - fabs(a2s - a1s) = %1.9g\n", SK_ScalarPI - fabs(a2s - a1s));
+ }
+ if (!realMatchesOverlap) {
+ DumpQ(quad1, quad2, testNo);
+ }
+ REPORTER_ASSERT(reporter, realMatchesOverlap);
+ if (oldSchoolOverlap != (overlap < 0)) {
+ overlap = quadHullsOverlap(reporter, quad1, quad2); // set a breakpoint and debug if assert fires
+ REPORTER_ASSERT(reporter, oldSchoolOverlap == (overlap < 0));
+ }
+ SkDVector v1s = quad1[1] - quad1[0];
+ SkDVector v1e = quad1[2] - quad1[0];
+ SkDVector v2s = quad2[1] - quad2[0];
+ SkDVector v2e = quad2[2] - quad2[0];
+ double vDir[2] = { v1s.cross(v1e), v2s.cross(v2e) };
+ bool ray1In2 = v1s.cross(v2s) * vDir[1] <= 0 && v1s.cross(v2e) * vDir[1] >= 0;
+ bool ray2In1 = v2s.cross(v1s) * vDir[0] <= 0 && v2s.cross(v1e) * vDir[0] >= 0;
+ if (overlap >= 0) {
+ // verify that hulls really don't overlap
+ REPORTER_ASSERT(reporter, !ray1In2);
+ REPORTER_ASSERT(reporter, !ray2In1);
+ bool ctrl1In2 = v1e.cross(v2s) * vDir[1] <= 0 && v1e.cross(v2e) * vDir[1] >= 0;
+ REPORTER_ASSERT(reporter, !ctrl1In2);
+ bool ctrl2In1 = v2e.cross(v1s) * vDir[0] <= 0 && v2e.cross(v1e) * vDir[0] >= 0;
+ REPORTER_ASSERT(reporter, !ctrl2In1);
+ // check answer against reference
+ bruteForce(reporter, quad1, quad2, overlap > 0);
+ }
+ // continue end point rays and see if they intersect the opposite curve
+ SkDLine rays[] = {{{origin, quad2[2]}}, {{origin, quad1[2]}}};
+ const SkDQuad* quads[] = {&quad1, &quad2};
+ SkDVector midSpokes[2];
+ SkIntersections intersect[2];
+ double minX, minY, maxX, maxY;
+ minX = minY = SK_ScalarInfinity;
+ maxX = maxY = -SK_ScalarInfinity;
+ double maxWidth = 0;
+ bool useIntersect = false;
+ double smallestTs[] = {1, 1};
+ for (unsigned index = 0; index < SK_ARRAY_COUNT(quads); ++index) {
+ const SkDQuad& q = *quads[index];
+ midSpokes[index] = q.ptAtT(0.5) - origin;
+ minX = SkTMin(SkTMin(SkTMin(minX, origin.fX), q[1].fX), q[2].fX);
+ minY = SkTMin(SkTMin(SkTMin(minY, origin.fY), q[1].fY), q[2].fY);
+ maxX = SkTMax(SkTMax(SkTMax(maxX, origin.fX), q[1].fX), q[2].fX);
+ maxY = SkTMax(SkTMax(SkTMax(maxY, origin.fY), q[1].fY), q[2].fY);
+ maxWidth = SkTMax(maxWidth, SkTMax(maxX - minX, maxY - minY));
+ intersect[index].intersectRay(q, rays[index]);
+ const SkIntersections& i = intersect[index];
+ REPORTER_ASSERT(reporter, i.used() >= 1);
+ bool foundZero = false;
+ double smallT = 1;
+ for (int idx2 = 0; idx2 < i.used(); ++idx2) {
+ double t = i[0][idx2];
+ if (t == 0) {
+ foundZero = true;
+ continue;
+ }
+ if (smallT > t) {
+ smallT = t;
+ }
+ }
+ REPORTER_ASSERT(reporter, foundZero == true);
+ if (smallT == 1) {
+ continue;
+ }
+ SkDVector ray = q.ptAtT(smallT) - origin;
+ SkDVector end = rays[index][1] - origin;
+ if (ray.fX * end.fX < 0 || ray.fY * end.fY < 0) {
+ continue;
+ }
+ double rayDist = ray.length();
+ double endDist = end.length();
+ double delta = fabs(rayDist - endDist) / maxWidth;
+ if (delta > 1e-4) {
+ useIntersect ^= true;
+ }
+ smallestTs[index] = smallT;
+ }
+ bool firstInside;
+ if (useIntersect) {
+ int sIndex = (int) (smallestTs[1] < 1);
+ REPORTER_ASSERT(reporter, smallestTs[sIndex ^ 1] == 1);
+ double t = smallestTs[sIndex];
+ const SkDQuad& q = *quads[sIndex];
+ SkDVector ray = q.ptAtT(t) - origin;
+ SkDVector end = rays[sIndex][1] - origin;
+ double rayDist = ray.length();
+ double endDist = end.length();
+ SkDVector mid = q.ptAtT(t / 2) - origin;
+ double midXray = mid.crossCheck(ray);
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("rayDist>endDist:%d sIndex==0:%d vDir[sIndex]<0:%d midXray<0:%d\n",
+ rayDist > endDist, sIndex == 0, vDir[sIndex] < 0, midXray < 0);
+ }
+ SkASSERT(SkScalarSignAsInt(SkDoubleToScalar(midXray))
+ == SkScalarSignAsInt(SkDoubleToScalar(vDir[sIndex])));
+ firstInside = (rayDist > endDist) ^ (sIndex == 0) ^ (vDir[sIndex] < 0);
+ } else if (overlap >= 0) {
+ return; // answer has already been determined
+ } else {
+ firstInside = checkParallel(reporter, quad1, quad2);
+ }
+ if (overlap < 0) {
+ SkDEBUGCODE(int realEnds =)
+ PathOpsAngleTester::EndsIntersect(seg[0].angle(0), seg[1].angle(0));
+ SkASSERT(realEnds == (firstInside ? 1 : 0));
+ }
+ bruteForce(reporter, quad1, quad2, firstInside);
+}
+
+DEF_TEST(PathOpsAngleOverlapHullsOne, reporter) {
+// gPathOpsAngleIdeasVerbose = true;
+ const SkDQuad quads[] = {
+{{{939.4808349609375, 914.355224609375}, {-357.7921142578125, 590.842529296875}, {736.8936767578125, -350.717529296875}}},
+{{{939.4808349609375, 914.355224609375}, {-182.85418701171875, 634.4552001953125}, {-509.62615966796875, 576.1182861328125}}}
+ };
+ for (int index = 0; index < (int) SK_ARRAY_COUNT(quads); index += 2) {
+ testQuadAngles(reporter, quads[index], quads[index + 1], 0);
+ }
+}
+
+DEF_TEST(PathOpsAngleOverlapHulls, reporter) {
+ if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default
+ return;
+ }
+ SkRandom ran;
+ for (int index = 0; index < 100000; ++index) {
+ if (index % 1000 == 999) SkDebugf(".");
+ SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
+ SkDQuad quad1 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
+ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
+ if (quad1[0] == quad1[2]) {
+ continue;
+ }
+ SkDQuad quad2 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
+ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
+ if (quad2[0] == quad2[2]) {
+ continue;
+ }
+ SkIntersections i;
+ i.intersect(quad1, quad2);
+ REPORTER_ASSERT(reporter, i.used() >= 1);
+ if (i.used() > 1) {
+ continue;
+ }
+ testQuadAngles(reporter, quad1, quad2, index);
+ }
+}
+
+DEF_TEST(PathOpsAngleBruteT, reporter) {
+ if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default
+ return;
+ }
+ SkRandom ran;
+ double smaller = SK_Scalar1;
+ SkDQuad small[2];
+ SkDEBUGCODE(int smallIndex);
+ for (int index = 0; index < 100000; ++index) {
+ SkDPoint origin = {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)};
+ SkDQuad quad1 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
+ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
+ if (quad1[0] == quad1[2]) {
+ continue;
+ }
+ SkDQuad quad2 = {{origin, {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
+ {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}}};
+ if (quad2[0] == quad2[2]) {
+ continue;
+ }
+ SkIntersections i;
+ i.intersect(quad1, quad2);
+ REPORTER_ASSERT(reporter, i.used() >= 1);
+ if (i.used() > 1) {
+ continue;
+ }
+ TRange lowerRange, upperRange;
+ bool result = bruteMinT(reporter, quad1, quad2, &lowerRange, &upperRange);
+ REPORTER_ASSERT(reporter, result);
+ double min = SkTMin(upperRange.t1, upperRange.t2);
+ if (smaller > min) {
+ small[0] = quad1;
+ small[1] = quad2;
+ SkDEBUGCODE(smallIndex = index);
+ smaller = min;
+ }
+ }
+#ifdef SK_DEBUG
+ DumpQ(small[0], small[1], smallIndex);
+#endif
+}
+
+DEF_TEST(PathOpsAngleBruteTOne, reporter) {
+// gPathOpsAngleIdeasVerbose = true;
+ const SkDQuad quads[] = {
+{{{-770.8492431640625, 948.2369384765625}, {-853.37066650390625, 972.0301513671875}, {-200.62042236328125, -26.7174072265625}}},
+{{{-770.8492431640625, 948.2369384765625}, {513.602783203125, 578.8681640625}, {960.641357421875, -813.69757080078125}}},
+{{{563.8267822265625, -107.4566650390625}, {-44.67724609375, -136.57452392578125}, {492.3856201171875, -268.79644775390625}}},
+{{{563.8267822265625, -107.4566650390625}, {708.049072265625, -100.77789306640625}, {-48.88226318359375, 967.9022216796875}}},
+{{{598.857421875, 846.345458984375}, {-644.095703125, -316.12921142578125}, {-97.64599609375, 20.6158447265625}}},
+{{{598.857421875, 846.345458984375}, {715.7142333984375, 955.3599853515625}, {-919.9478759765625, 691.611328125}}},
+ };
+ TRange lowerRange, upperRange;
+ bruteMinT(reporter, quads[0], quads[1], &lowerRange, &upperRange);
+ bruteMinT(reporter, quads[2], quads[3], &lowerRange, &upperRange);
+ bruteMinT(reporter, quads[4], quads[5], &lowerRange, &upperRange);
+}
+
+/*
+The sorting problem happens when the inital tangents are not a true indicator of the curve direction
+Nearly always, the initial tangents do give the right answer,
+so the trick is to figure out when the initial tangent cannot be trusted.
+If the convex hulls of both curves are in the same half plane, and not overlapping, sorting the
+hulls is enough.
+If the hulls overlap, and have the same general direction, then intersect the shorter end point ray
+with the opposing curve, and see on which side of the shorter curve the opposing intersection lies.
+Otherwise, if the control vector is extremely short, likely the point on curve must be computed
+If moving the control point slightly can change the sign of the cross product, either answer could
+be "right".
+We need to determine how short is extremely short. Move the control point a set percentage of
+the largest length to determine how stable the curve is vis-a-vis the initial tangent.
+*/
+
+static const SkDQuad extremeTests[][2] = {
+ {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-707.9234268635319,-154.30459999551294},
+ {505.58447265625,-504.9130859375}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-711.127526325141,-163.9446090624656},
+ {-32.39227294921875,-906.3277587890625}}},
+ }, {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.2875337527566,-154.36676458635623},
+ {505.58447265625,-504.9130859375}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.4111557216864,-154.5366642875255},
+ {-32.39227294921875,-906.3277587890625}}},
+ }, {
+ {{{-609.0230951752058,-267.5435593490574},
+ {-594.1120809906336,-136.08492475411555},
+ {505.58447265625,-504.9130859375}}},
+ {{{-609.0230951752058,-267.5435593490574},
+ {-693.7467719138988,-341.3259237831895},
+ {-32.39227294921875,-906.3277587890625}}}
+ }, {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-707.9994640658723,-154.58588461064852},
+ {505.58447265625,-504.9130859375}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.0239418990758,-154.6403553507124},
+ {-32.39227294921875,-906.3277587890625}}}
+ }, {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-707.9993222215099,-154.55999389855003},
+ {68.88981098017803,296.9273945411635}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.0509091919608,-154.64675214697067},
+ {-777.4871194247767,-995.1470120113145}}}
+ }, {
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.0060491116379,-154.60889321524968},
+ {229.97088707895057,-430.0569357467175}}},
+ {{{-708.0077926931004,-154.61669472244046},
+ {-708.013911296257,-154.6219143988058},
+ {138.13162892614037,-573.3689311737394}}}
+ }, {
+ {{{-543.2570545751013,-237.29243831075053},
+ {-452.4119186056987,-143.47223056267802},
+ {229.97088707895057,-430.0569357467175}}},
+ {{{-543.2570545751013,-237.29243831075053},
+ {-660.5330371214436,-362.0016148388},
+ {138.13162892614037,-573.3689311737394}}},
+ },
+};
+
+static double endCtrlRatio(const SkDQuad quad) {
+ SkDVector longEdge = quad[2] - quad[0];
+ double longLen = longEdge.length();
+ SkDVector shortEdge = quad[1] - quad[0];
+ double shortLen = shortEdge.length();
+ return longLen / shortLen;
+}
+
+static void computeMV(const SkDQuad& quad, const SkDVector& v, double m, SkDVector mV[2]) {
+ SkDPoint mPta = {quad[1].fX - m * v.fY, quad[1].fY + m * v.fX};
+ SkDPoint mPtb = {quad[1].fX + m * v.fY, quad[1].fY - m * v.fX};
+ mV[0] = mPta - quad[0];
+ mV[1] = mPtb - quad[0];
+}
+
+static double mDistance(skiatest::Reporter* reporter, bool agrees, const SkDQuad& q1,
+ const SkDQuad& q2) {
+ if (1 && agrees) {
+ return SK_ScalarMax;
+ }
+ // how close is the angle from inflecting in the opposite direction?
+ SkDVector v1 = q1[1] - q1[0];
+ SkDVector v2 = q2[1] - q2[0];
+ double dir = v1.crossCheck(v2);
+ REPORTER_ASSERT(reporter, dir != 0);
+ // solve for opposite direction displacement scale factor == m
+ // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x
+ // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1]
+ // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x)
+ // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x)
+ // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x
+ // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y)
+ // m = v1.cross(v2) / v1.dot(v2)
+ double div = v1.dot(v2);
+ REPORTER_ASSERT(reporter, div != 0);
+ double m = dir / div;
+ SkDVector mV1[2], mV2[2];
+ computeMV(q1, v1, m, mV1);
+ computeMV(q2, v2, m, mV2);
+ double dist1 = v1.length() * m;
+ double dist2 = v2.length() * m;
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("%c r1=%1.9g r2=%1.9g m=%1.9g dist1=%1.9g dist2=%1.9g "
+ " dir%c 1a=%1.9g 1b=%1.9g 2a=%1.9g 2b=%1.9g\n", agrees ? 'T' : 'F',
+ endCtrlRatio(q1), endCtrlRatio(q2), m, dist1, dist2, dir > 0 ? '+' : '-',
+ mV1[0].crossCheck(v2), mV1[1].crossCheck(v2),
+ mV2[0].crossCheck(v1), mV2[1].crossCheck(v1));
+ }
+ if (1) {
+ bool use1 = fabs(dist1) < fabs(dist2);
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("%c dist=%1.9g r=%1.9g\n", agrees ? 'T' : 'F', use1 ? dist1 : dist2,
+ use1 ? distEndRatio(dist1, q1) : distEndRatio(dist2, q2));
+ }
+ return fabs(use1 ? distEndRatio(dist1, q1) : distEndRatio(dist2, q2));
+ }
+ return SK_ScalarMax;
+}
+
+static void midPointAgrees(skiatest::Reporter* reporter, const SkDQuad& q1, const SkDQuad& q2,
+ bool ccw) {
+ SkDPoint mid1 = q1.ptAtT(0.5);
+ SkDVector m1 = mid1 - q1[0];
+ SkDPoint mid2 = q2.ptAtT(0.5);
+ SkDVector m2 = mid2 - q2[0];
+ REPORTER_ASSERT(reporter, ccw ? m1.crossCheck(m2) < 0 : m1.crossCheck(m2) > 0);
+}
+
+DEF_TEST(PathOpsAngleExtreme, reporter) {
+ if (!gPathOpsAngleIdeasVerbose) { // takes a while to run -- so exclude it by default
+ return;
+ }
+ double maxR = SK_ScalarMax;
+ for (int index = 0; index < (int) SK_ARRAY_COUNT(extremeTests); ++index) {
+ const SkDQuad& quad1 = extremeTests[index][0];
+ const SkDQuad& quad2 = extremeTests[index][1];
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("%s %d\n", __FUNCTION__, index);
+ }
+ REPORTER_ASSERT(reporter, quad1[0] == quad2[0]);
+ SkIntersections i;
+ i.intersect(quad1, quad2);
+ REPORTER_ASSERT(reporter, i.used() == 1);
+ REPORTER_ASSERT(reporter, i.pt(0) == quad1[0]);
+ int overlap = quadHullsOverlap(reporter, quad1, quad2);
+ REPORTER_ASSERT(reporter, overlap >= 0);
+ SkDVector sweep[2], tweep[2];
+ setQuadHullSweep(quad1, sweep);
+ setQuadHullSweep(quad2, tweep);
+ double s0xt0 = sweep[0].crossCheck(tweep[0]);
+ REPORTER_ASSERT(reporter, s0xt0 != 0);
+ bool ccw = s0xt0 < 0;
+ bool agrees = bruteForceCheck(reporter, quad1, quad2, ccw);
+ maxR = SkTMin(maxR, mDistance(reporter, agrees, quad1, quad2));
+ if (agrees) {
+ continue;
+ }
+ midPointAgrees(reporter, quad1, quad2, !ccw);
+ SkDQuad q1 = quad1;
+ SkDQuad q2 = quad2;
+ double loFail = 1;
+ double hiPass = 2;
+ // double vectors until t passes
+ do {
+ q1[1].fX = quad1[0].fX * (1 - hiPass) + quad1[1].fX * hiPass;
+ q1[1].fY = quad1[0].fY * (1 - hiPass) + quad1[1].fY * hiPass;
+ q2[1].fX = quad2[0].fX * (1 - hiPass) + quad2[1].fX * hiPass;
+ q2[1].fY = quad2[0].fY * (1 - hiPass) + quad2[1].fY * hiPass;
+ agrees = bruteForceCheck(reporter, q1, q2, ccw);
+ maxR = SkTMin(maxR, mDistance(reporter, agrees, q1, q2));
+ if (agrees) {
+ break;
+ }
+ midPointAgrees(reporter, quad1, quad2, !ccw);
+ loFail = hiPass;
+ hiPass *= 2;
+ } while (true);
+ // binary search to find minimum pass
+ double midTest = (loFail + hiPass) / 2;
+ double step = (hiPass - loFail) / 4;
+ while (step > FLT_EPSILON) {
+ q1[1].fX = quad1[0].fX * (1 - midTest) + quad1[1].fX * midTest;
+ q1[1].fY = quad1[0].fY * (1 - midTest) + quad1[1].fY * midTest;
+ q2[1].fX = quad2[0].fX * (1 - midTest) + quad2[1].fX * midTest;
+ q2[1].fY = quad2[0].fY * (1 - midTest) + quad2[1].fY * midTest;
+ agrees = bruteForceCheck(reporter, q1, q2, ccw);
+ maxR = SkTMin(maxR, mDistance(reporter, agrees, q1, q2));
+ if (!agrees) {
+ midPointAgrees(reporter, quad1, quad2, !ccw);
+ }
+ midTest += agrees ? -step : step;
+ step /= 2;
+ }
+#ifdef SK_DEBUG
+// DumpQ(q1, q2, 999);
+#endif
+ }
+ if (gPathOpsAngleIdeasVerbose) {
+ SkDebugf("maxR=%1.9g\n", maxR);
+ }
+}
« no previous file with comments | « src/pathops/SkQuarticRoot.cpp ('k') | tests/PathOpsAngleTest.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698