Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(276)

Side by Side Diff: src/mips/simulator-mips.cc

Issue 1310883005: MIPS: Optimize simulator. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@master
Patch Set: Fix nits. Created 5 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « src/mips/simulator-mips.h ('k') | no next file » | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 // Copyright 2011 the V8 project authors. All rights reserved. 1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be 2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file. 3 // found in the LICENSE file.
4 4
5 #include <limits.h> 5 #include <limits.h>
6 #include <stdarg.h> 6 #include <stdarg.h>
7 #include <stdlib.h> 7 #include <stdlib.h>
8 #include <cmath> 8 #include <cmath>
9 9
10 #if V8_TARGET_ARCH_MIPS 10 #if V8_TARGET_ARCH_MIPS
(...skipping 961 matching lines...) Expand 10 before | Expand all | Expand 10 after
972 972
973 // The sp is initialized to point to the bottom (high address) of the 973 // The sp is initialized to point to the bottom (high address) of the
974 // allocated stack area. To be safe in potential stack underflows we leave 974 // allocated stack area. To be safe in potential stack underflows we leave
975 // some buffer below. 975 // some buffer below.
976 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64; 976 registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size_ - 64;
977 // The ra and pc are initialized to a known bad value that will cause an 977 // The ra and pc are initialized to a known bad value that will cause an
978 // access violation if the simulator ever tries to execute it. 978 // access violation if the simulator ever tries to execute it.
979 registers_[pc] = bad_ra; 979 registers_[pc] = bad_ra;
980 registers_[ra] = bad_ra; 980 registers_[ra] = bad_ra;
981 InitializeCoverage(); 981 InitializeCoverage();
982 for (int i = 0; i < kNumExceptions; i++) {
983 exceptions[i] = 0;
984 }
985
986 last_debugger_input_ = NULL; 982 last_debugger_input_ = NULL;
987 } 983 }
988 984
989 985
990 Simulator::~Simulator() { free(stack_); } 986 Simulator::~Simulator() { free(stack_); }
991 987
992 988
993 // When the generated code calls an external reference we need to catch that in 989 // When the generated code calls an external reference we need to catch that in
994 // the simulator. The external reference will be a function compiled for the 990 // the simulator. The external reference will be a function compiled for the
995 // host architecture. We need to call that function instead of trying to 991 // host architecture. We need to call that function instead of trying to
(...skipping 625 matching lines...) Expand 10 before | Expand all | Expand 10 after
1621 void Simulator::TraceRegWr(int32_t value) { 1617 void Simulator::TraceRegWr(int32_t value) {
1622 if (::v8::internal::FLAG_trace_sim) { 1618 if (::v8::internal::FLAG_trace_sim) {
1623 SNPrintF(trace_buf_, "%08x", value); 1619 SNPrintF(trace_buf_, "%08x", value);
1624 } 1620 }
1625 } 1621 }
1626 1622
1627 1623
1628 // TODO(plind): consider making icount_ printing a flag option. 1624 // TODO(plind): consider making icount_ printing a flag option.
1629 void Simulator::TraceMemRd(int32_t addr, int32_t value) { 1625 void Simulator::TraceMemRd(int32_t addr, int32_t value) {
1630 if (::v8::internal::FLAG_trace_sim) { 1626 if (::v8::internal::FLAG_trace_sim) {
1631 SNPrintF(trace_buf_, "%08x <-- [%08x] (%d)", value, addr, icount_); 1627 SNPrintF(trace_buf_, "%08x <-- [%08x] (%" PRIu64 ")", value, addr,
1628 icount_);
1632 } 1629 }
1633 } 1630 }
1634 1631
1635 1632
1636 void Simulator::TraceMemWr(int32_t addr, int32_t value, TraceType t) { 1633 void Simulator::TraceMemWr(int32_t addr, int32_t value, TraceType t) {
1637 if (::v8::internal::FLAG_trace_sim) { 1634 if (::v8::internal::FLAG_trace_sim) {
1638 switch (t) { 1635 switch (t) {
1639 case BYTE: 1636 case BYTE:
1640 SNPrintF(trace_buf_, " %02x --> [%08x]", 1637 SNPrintF(trace_buf_, " %02x --> [%08x]",
1641 static_cast<int8_t>(value), addr); 1638 static_cast<int8_t>(value), addr);
(...skipping 452 matching lines...) Expand 10 before | Expand all | Expand 10 after
2094 2091
2095 // Stop helper functions. 2092 // Stop helper functions.
2096 bool Simulator::IsWatchpoint(uint32_t code) { 2093 bool Simulator::IsWatchpoint(uint32_t code) {
2097 return (code <= kMaxWatchpointCode); 2094 return (code <= kMaxWatchpointCode);
2098 } 2095 }
2099 2096
2100 2097
2101 void Simulator::PrintWatchpoint(uint32_t code) { 2098 void Simulator::PrintWatchpoint(uint32_t code) {
2102 MipsDebugger dbg(this); 2099 MipsDebugger dbg(this);
2103 ++break_count_; 2100 ++break_count_;
2104 PrintF("\n---- break %d marker: %3d (instr count: %8d) ----------" 2101 PrintF("\n---- break %d marker: %3d (instr count: %" PRIu64
2102 ") ----------"
2105 "----------------------------------", 2103 "----------------------------------",
2106 code, break_count_, icount_); 2104 code, break_count_, icount_);
2107 dbg.PrintAllRegs(); // Print registers and continue running. 2105 dbg.PrintAllRegs(); // Print registers and continue running.
2108 } 2106 }
2109 2107
2110 2108
2111 void Simulator::HandleStop(uint32_t code, Instruction* instr) { 2109 void Simulator::HandleStop(uint32_t code, Instruction* instr) {
2112 // Stop if it is enabled, otherwise go on jumping over the stop 2110 // Stop if it is enabled, otherwise go on jumping over the stop
2113 // and the message address. 2111 // and the message address.
2114 if (IsEnabledStop(code)) { 2112 if (IsEnabledStop(code)) {
(...skipping 63 matching lines...) Expand 10 before | Expand all | Expand 10 after
2178 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", 2176 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n",
2179 code, code, state, count, watched_stops_[code].desc); 2177 code, code, state, count, watched_stops_[code].desc);
2180 } else { 2178 } else {
2181 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", 2179 PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n",
2182 code, code, state, count); 2180 code, code, state, count);
2183 } 2181 }
2184 } 2182 }
2185 } 2183 }
2186 2184
2187 2185
2188 void Simulator::SignalExceptions() { 2186 void Simulator::SignalException(Exception e) {
2189 for (int i = 1; i < kNumExceptions; i++) { 2187 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.",
2190 if (exceptions[i] != 0) { 2188 static_cast<int>(e));
2191 V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i);
2192 }
2193 }
2194 } 2189 }
2195 2190
2196 2191
2197 // Handle execution based on instruction types. 2192 void Simulator::DecodeTypeRegisterDRsType() {
2198
2199 void Simulator::ConfigureTypeRegister(Instruction* instr,
2200 int32_t* alu_out,
2201 int64_t* i64hilo,
2202 uint64_t* u64hilo,
2203 int32_t* next_pc,
2204 int32_t* return_addr_reg,
2205 bool* do_interrupt) {
2206 // Every local variable declared here needs to be const.
2207 // This is to make sure that changed values are sent back to
2208 // DecodeTypeRegister correctly.
2209
2210 // Instruction fields.
2211 const Opcode op = instr->OpcodeFieldRaw();
2212 const int32_t rs_reg = instr->RsValue();
2213 const int32_t rs = get_register(rs_reg);
2214 const uint32_t rs_u = static_cast<uint32_t>(rs);
2215 const int32_t rt_reg = instr->RtValue();
2216 const int32_t rt = get_register(rt_reg);
2217 const uint32_t rt_u = static_cast<uint32_t>(rt);
2218 const int32_t rd_reg = instr->RdValue();
2219 const uint32_t sa = instr->SaValue();
2220 const uint8_t bp = instr->Bp2Value();
2221
2222 const int32_t fs_reg = instr->FsValue();
2223
2224
2225 // ---------- Configuration.
2226 switch (op) {
2227 case COP1: // Coprocessor instructions.
2228 switch (instr->RsFieldRaw()) {
2229 case CFC1:
2230 // At the moment only FCSR is supported.
2231 DCHECK(fs_reg == kFCSRRegister);
2232 *alu_out = FCSR_;
2233 break;
2234 case MFC1:
2235 *alu_out = get_fpu_register_word(fs_reg);
2236 break;
2237 case MFHC1:
2238 *alu_out = get_fpu_register_hi_word(fs_reg);
2239 break;
2240 case CTC1:
2241 case MTC1:
2242 case MTHC1:
2243 case S:
2244 case D:
2245 case W:
2246 case L:
2247 case PS:
2248 // Do everything in the execution step.
2249 break;
2250 default:
2251 // BC1 BC1EQZ BC1NEZ handled in DecodeTypeImmed, should never come here.
2252 UNREACHABLE();
2253 }
2254 break;
2255 case COP1X:
2256 break;
2257 case SPECIAL:
2258 switch (instr->FunctionFieldRaw()) {
2259 case JR:
2260 case JALR:
2261 *next_pc = get_register(instr->RsValue());
2262 *return_addr_reg = instr->RdValue();
2263 break;
2264 case SLL:
2265 *alu_out = rt << sa;
2266 break;
2267 case SRL:
2268 if (rs_reg == 0) {
2269 // Regular logical right shift of a word by a fixed number of
2270 // bits instruction. RS field is always equal to 0.
2271 *alu_out = rt_u >> sa;
2272 } else {
2273 // Logical right-rotate of a word by a fixed number of bits. This
2274 // is special case of SRL instruction, added in MIPS32 Release 2.
2275 // RS field is equal to 00001.
2276 *alu_out = base::bits::RotateRight32(rt_u, sa);
2277 }
2278 break;
2279 case SRA:
2280 *alu_out = rt >> sa;
2281 break;
2282 case SLLV:
2283 *alu_out = rt << rs;
2284 break;
2285 case SRLV:
2286 if (sa == 0) {
2287 // Regular logical right-shift of a word by a variable number of
2288 // bits instruction. SA field is always equal to 0.
2289 *alu_out = rt_u >> rs;
2290 } else {
2291 // Logical right-rotate of a word by a variable number of bits.
2292 // This is special case od SRLV instruction, added in MIPS32
2293 // Release 2. SA field is equal to 00001.
2294 *alu_out = base::bits::RotateRight32(rt_u, rs_u);
2295 }
2296 break;
2297 case SRAV:
2298 *alu_out = rt >> rs;
2299 break;
2300 case MFHI: // MFHI == CLZ on R6.
2301 if (!IsMipsArchVariant(kMips32r6)) {
2302 DCHECK(instr->SaValue() == 0);
2303 *alu_out = get_register(HI);
2304 } else {
2305 // MIPS spec: If no bits were set in GPR rs, the result written to
2306 // GPR rd is 32.
2307 DCHECK(instr->SaValue() == 1);
2308 *alu_out = base::bits::CountLeadingZeros32(rs_u);
2309 }
2310 break;
2311 case MFLO:
2312 *alu_out = get_register(LO);
2313 break;
2314 case MULT: // MULT == MUL_MUH.
2315 if (!IsMipsArchVariant(kMips32r6)) {
2316 *i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt);
2317 } else {
2318 switch (instr->SaValue()) {
2319 case MUL_OP:
2320 case MUH_OP:
2321 *i64hilo = static_cast<int64_t>(rs) * static_cast<int64_t>(rt);
2322 break;
2323 default:
2324 UNIMPLEMENTED_MIPS();
2325 break;
2326 }
2327 }
2328 break;
2329 case MULTU: // MULTU == MUL_MUH_U.
2330 if (!IsMipsArchVariant(kMips32r6)) {
2331 *u64hilo = static_cast<uint64_t>(rs_u) *
2332 static_cast<uint64_t>(rt_u);
2333 } else {
2334 switch (instr->SaValue()) {
2335 case MUL_OP:
2336 case MUH_OP:
2337 *u64hilo = static_cast<uint64_t>(rs_u) *
2338 static_cast<uint64_t>(rt_u);
2339 break;
2340 default:
2341 UNIMPLEMENTED_MIPS();
2342 break;
2343 }
2344 }
2345 break;
2346 case ADD:
2347 if (HaveSameSign(rs, rt)) {
2348 if (rs > 0) {
2349 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt);
2350 } else if (rs < 0) {
2351 exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt);
2352 }
2353 }
2354 *alu_out = rs + rt;
2355 break;
2356 case ADDU:
2357 *alu_out = rs + rt;
2358 break;
2359 case SUB:
2360 if (!HaveSameSign(rs, rt)) {
2361 if (rs > 0) {
2362 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt);
2363 } else if (rs < 0) {
2364 exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt);
2365 }
2366 }
2367 *alu_out = rs - rt;
2368 break;
2369 case SUBU:
2370 *alu_out = rs - rt;
2371 break;
2372 case AND:
2373 *alu_out = rs & rt;
2374 break;
2375 case OR:
2376 *alu_out = rs | rt;
2377 break;
2378 case XOR:
2379 *alu_out = rs ^ rt;
2380 break;
2381 case NOR:
2382 *alu_out = ~(rs | rt);
2383 break;
2384 case SLT:
2385 *alu_out = rs < rt ? 1 : 0;
2386 break;
2387 case SLTU:
2388 *alu_out = rs_u < rt_u ? 1 : 0;
2389 break;
2390 // Break and trap instructions.
2391 case BREAK:
2392 *do_interrupt = true;
2393 break;
2394 case TGE:
2395 *do_interrupt = rs >= rt;
2396 break;
2397 case TGEU:
2398 *do_interrupt = rs_u >= rt_u;
2399 break;
2400 case TLT:
2401 *do_interrupt = rs < rt;
2402 break;
2403 case TLTU:
2404 *do_interrupt = rs_u < rt_u;
2405 break;
2406 case TEQ:
2407 *do_interrupt = rs == rt;
2408 break;
2409 case TNE:
2410 *do_interrupt = rs != rt;
2411 break;
2412 case MOVN:
2413 case MOVZ:
2414 case MOVCI:
2415 // No action taken on decode.
2416 break;
2417 case DIV:
2418 case DIVU:
2419 // div and divu never raise exceptions.
2420 case SELEQZ_S:
2421 case SELNEZ_S:
2422 break;
2423 default:
2424 UNREACHABLE();
2425 }
2426 break;
2427 case SPECIAL2:
2428 switch (instr->FunctionFieldRaw()) {
2429 case MUL:
2430 *alu_out = rs_u * rt_u; // Only the lower 32 bits are kept.
2431 break;
2432 case CLZ:
2433 // MIPS32 spec: If no bits were set in GPR rs, the result written to
2434 // GPR rd is 32.
2435 *alu_out = base::bits::CountLeadingZeros32(rs_u);
2436 break;
2437 default:
2438 UNREACHABLE();
2439 }
2440 break;
2441 case SPECIAL3:
2442 switch (instr->FunctionFieldRaw()) {
2443 case INS: { // Mips32r2 instruction.
2444 // Interpret rd field as 5-bit msb of insert.
2445 uint16_t msb = rd_reg;
2446 // Interpret sa field as 5-bit lsb of insert.
2447 uint16_t lsb = sa;
2448 uint16_t size = msb - lsb + 1;
2449 uint32_t mask = (1 << size) - 1;
2450 *alu_out = (rt_u & ~(mask << lsb)) | ((rs_u & mask) << lsb);
2451 break;
2452 }
2453 case EXT: { // Mips32r2 instruction.
2454 // Interpret rd field as 5-bit msb of extract.
2455 uint16_t msb = rd_reg;
2456 // Interpret sa field as 5-bit lsb of extract.
2457 uint16_t lsb = sa;
2458 uint16_t size = msb + 1;
2459 uint32_t mask = (1 << size) - 1;
2460 *alu_out = (rs_u & (mask << lsb)) >> lsb;
2461 break;
2462 }
2463 case BSHFL: {
2464 int sa = instr->SaFieldRaw() >> kSaShift;
2465 switch (sa) {
2466 case BITSWAP: {
2467 uint32_t input = static_cast<uint32_t>(rt);
2468 uint32_t output = 0;
2469 uint8_t i_byte, o_byte;
2470
2471 // Reverse the bit in byte for each individual byte
2472 for (int i = 0; i < 4; i++) {
2473 output = output >> 8;
2474 i_byte = input & 0xff;
2475
2476 // Fast way to reverse bits in byte
2477 // Devised by Sean Anderson, July 13, 2001
2478 o_byte =
2479 static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
2480 (i_byte * 0x8020LU & 0x88440LU)) *
2481 0x10101LU >>
2482 16);
2483
2484 output = output | (static_cast<uint32_t>(o_byte << 24));
2485 input = input >> 8;
2486 }
2487
2488 *alu_out = static_cast<int32_t>(output);
2489 break;
2490 }
2491 case SEB:
2492 case SEH:
2493 case WSBH:
2494 UNREACHABLE();
2495 break;
2496 default: {
2497 sa >>= kBp2Bits;
2498 switch (sa) {
2499 case ALIGN: {
2500 if (bp == 0) {
2501 *alu_out = static_cast<int32_t>(rt);
2502 } else {
2503 uint32_t rt_hi = rt << (8 * bp);
2504 uint32_t rs_lo = rs >> (8 * (4 - bp));
2505 *alu_out = static_cast<int32_t>(rt_hi | rs_lo);
2506 }
2507 break;
2508 }
2509 default:
2510 UNREACHABLE();
2511 break;
2512 }
2513 }
2514 }
2515 break;
2516 }
2517 default:
2518 UNREACHABLE();
2519 }
2520 break;
2521 default:
2522 UNREACHABLE();
2523 }
2524 }
2525
2526
2527 void Simulator::DecodeTypeRegisterDRsType(Instruction* instr,
2528 const int32_t& fr_reg,
2529 const int32_t& fs_reg,
2530 const int32_t& ft_reg,
2531 const int32_t& fd_reg) {
2532 double ft, fs, fd; 2193 double ft, fs, fd;
2533 uint32_t cc, fcsr_cc; 2194 uint32_t cc, fcsr_cc;
2534 int64_t i64; 2195 int64_t i64;
2535 fs = get_fpu_register_double(fs_reg); 2196 fs = get_fpu_register_double(fs_reg());
2536 ft = (instr->FunctionFieldRaw() != MOVF) ? get_fpu_register_double(ft_reg) 2197 ft = (get_instr()->FunctionFieldRaw() != MOVF)
2537 : 0.0; 2198 ? get_fpu_register_double(ft_reg())
2538 fd = get_fpu_register_double(fd_reg); 2199 : 0.0;
2200 fd = get_fpu_register_double(fd_reg());
2539 int64_t ft_int = bit_cast<int64_t>(ft); 2201 int64_t ft_int = bit_cast<int64_t>(ft);
2540 int64_t fd_int = bit_cast<int64_t>(fd); 2202 int64_t fd_int = bit_cast<int64_t>(fd);
2541 cc = instr->FCccValue(); 2203 cc = get_instr()->FCccValue();
2542 fcsr_cc = get_fcsr_condition_bit(cc); 2204 fcsr_cc = get_fcsr_condition_bit(cc);
2543 switch (instr->FunctionFieldRaw()) { 2205 switch (get_instr()->FunctionFieldRaw()) {
2544 case RINT: { 2206 case RINT: {
2545 DCHECK(IsMipsArchVariant(kMips32r6)); 2207 DCHECK(IsMipsArchVariant(kMips32r6));
2546 double result, temp, temp_result; 2208 double result, temp, temp_result;
2547 double upper = std::ceil(fs); 2209 double upper = std::ceil(fs);
2548 double lower = std::floor(fs); 2210 double lower = std::floor(fs);
2549 switch (get_fcsr_rounding_mode()) { 2211 switch (get_fcsr_rounding_mode()) {
2550 case kRoundToNearest: 2212 case kRoundToNearest:
2551 if (upper - fs < fs - lower) { 2213 if (upper - fs < fs - lower) {
2552 result = upper; 2214 result = upper;
2553 } else if (upper - fs > fs - lower) { 2215 } else if (upper - fs > fs - lower) {
(...skipping 11 matching lines...) Expand all
2565 case kRoundToZero: 2227 case kRoundToZero:
2566 result = (fs > 0 ? lower : upper); 2228 result = (fs > 0 ? lower : upper);
2567 break; 2229 break;
2568 case kRoundToPlusInf: 2230 case kRoundToPlusInf:
2569 result = upper; 2231 result = upper;
2570 break; 2232 break;
2571 case kRoundToMinusInf: 2233 case kRoundToMinusInf:
2572 result = lower; 2234 result = lower;
2573 break; 2235 break;
2574 } 2236 }
2575 set_fpu_register_double(fd_reg, result); 2237 set_fpu_register_double(fd_reg(), result);
2576 if (result != fs) { 2238 if (result != fs) {
2577 set_fcsr_bit(kFCSRInexactFlagBit, true); 2239 set_fcsr_bit(kFCSRInexactFlagBit, true);
2578 } 2240 }
2579 break; 2241 break;
2580 } 2242 }
2581 case SEL: 2243 case SEL:
2582 DCHECK(IsMipsArchVariant(kMips32r6)); 2244 DCHECK(IsMipsArchVariant(kMips32r6));
2583 set_fpu_register_double(fd_reg, (fd_int & 0x1) == 0 ? fs : ft); 2245 set_fpu_register_double(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
2584 break; 2246 break;
2585 case SELEQZ_C: 2247 case SELEQZ_C:
2586 DCHECK(IsMipsArchVariant(kMips32r6)); 2248 DCHECK(IsMipsArchVariant(kMips32r6));
2587 set_fpu_register_double(fd_reg, (ft_int & 0x1) == 0 ? fs : 0.0); 2249 set_fpu_register_double(fd_reg(), (ft_int & 0x1) == 0 ? fs : 0.0);
2588 break; 2250 break;
2589 case SELNEZ_C: 2251 case SELNEZ_C:
2590 DCHECK(IsMipsArchVariant(kMips32r6)); 2252 DCHECK(IsMipsArchVariant(kMips32r6));
2591 set_fpu_register_double(fd_reg, (ft_int & 0x1) != 0 ? fs : 0.0); 2253 set_fpu_register_double(fd_reg(), (ft_int & 0x1) != 0 ? fs : 0.0);
2592 break; 2254 break;
2593 case MOVZ_C: { 2255 case MOVZ_C: {
2594 DCHECK(IsMipsArchVariant(kMips32r2)); 2256 DCHECK(IsMipsArchVariant(kMips32r2));
2595 int32_t rt_reg = instr->RtValue(); 2257 if (rt() == 0) {
2596 int32_t rt = get_register(rt_reg); 2258 set_fpu_register_double(fd_reg(), fs);
2597 if (rt == 0) {
2598 set_fpu_register_double(fd_reg, fs);
2599 } 2259 }
2600 break; 2260 break;
2601 } 2261 }
2602 case MOVN_C: { 2262 case MOVN_C: {
2603 DCHECK(IsMipsArchVariant(kMips32r2)); 2263 DCHECK(IsMipsArchVariant(kMips32r2));
2604 int32_t rt_reg = instr->RtValue(); 2264 int32_t rt_reg = get_instr()->RtValue();
2605 int32_t rt = get_register(rt_reg); 2265 int32_t rt = get_register(rt_reg);
2606 if (rt != 0) { 2266 if (rt != 0) {
2607 set_fpu_register_double(fd_reg, fs); 2267 set_fpu_register_double(fd_reg(), fs);
2608 } 2268 }
2609 break; 2269 break;
2610 } 2270 }
2611 case MOVF: { 2271 case MOVF: {
2612 // Same function field for MOVT.D and MOVF.D 2272 // Same function field for MOVT.D and MOVF.D
2613 uint32_t ft_cc = (ft_reg >> 2) & 0x7; 2273 uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
2614 ft_cc = get_fcsr_condition_bit(ft_cc); 2274 ft_cc = get_fcsr_condition_bit(ft_cc);
2615 if (instr->Bit(16)) { // Read Tf bit. 2275 if (get_instr()->Bit(16)) { // Read Tf bit.
2616 // MOVT.D 2276 // MOVT.D
2617 if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg, fs); 2277 if (test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
2618 } else { 2278 } else {
2619 // MOVF.D 2279 // MOVF.D
2620 if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg, fs); 2280 if (!test_fcsr_bit(ft_cc)) set_fpu_register_double(fd_reg(), fs);
2621 } 2281 }
2622 break; 2282 break;
2623 } 2283 }
2624 case MIN: 2284 case MIN:
2625 DCHECK(IsMipsArchVariant(kMips32r6)); 2285 DCHECK(IsMipsArchVariant(kMips32r6));
2626 fs = get_fpu_register_double(fs_reg); 2286 fs = get_fpu_register_double(fs_reg());
2627 if (std::isnan(fs) && std::isnan(ft)) { 2287 if (std::isnan(fs) && std::isnan(ft)) {
2628 set_fpu_register_double(fd_reg, fs); 2288 set_fpu_register_double(fd_reg(), fs);
2629 } else if (std::isnan(fs) && !std::isnan(ft)) { 2289 } else if (std::isnan(fs) && !std::isnan(ft)) {
2630 set_fpu_register_double(fd_reg, ft); 2290 set_fpu_register_double(fd_reg(), ft);
2631 } else if (!std::isnan(fs) && std::isnan(ft)) { 2291 } else if (!std::isnan(fs) && std::isnan(ft)) {
2632 set_fpu_register_double(fd_reg, fs); 2292 set_fpu_register_double(fd_reg(), fs);
2633 } else { 2293 } else {
2634 set_fpu_register_double(fd_reg, (fs >= ft) ? ft : fs); 2294 set_fpu_register_double(fd_reg(), (fs >= ft) ? ft : fs);
2635 } 2295 }
2636 break; 2296 break;
2637 case MINA: 2297 case MINA:
2638 DCHECK(IsMipsArchVariant(kMips32r6)); 2298 DCHECK(IsMipsArchVariant(kMips32r6));
2639 fs = get_fpu_register_double(fs_reg); 2299 fs = get_fpu_register_double(fs_reg());
2640 if (std::isnan(fs) && std::isnan(ft)) { 2300 if (std::isnan(fs) && std::isnan(ft)) {
2641 set_fpu_register_double(fd_reg, fs); 2301 set_fpu_register_double(fd_reg(), fs);
2642 } else if (std::isnan(fs) && !std::isnan(ft)) { 2302 } else if (std::isnan(fs) && !std::isnan(ft)) {
2643 set_fpu_register_double(fd_reg, ft); 2303 set_fpu_register_double(fd_reg(), ft);
2644 } else if (!std::isnan(fs) && std::isnan(ft)) { 2304 } else if (!std::isnan(fs) && std::isnan(ft)) {
2645 set_fpu_register_double(fd_reg, fs); 2305 set_fpu_register_double(fd_reg(), fs);
2646 } else { 2306 } else {
2647 double result; 2307 double result;
2648 if (fabs(fs) > fabs(ft)) { 2308 if (fabs(fs) > fabs(ft)) {
2649 result = ft; 2309 result = ft;
2650 } else if (fabs(fs) < fabs(ft)) { 2310 } else if (fabs(fs) < fabs(ft)) {
2651 result = fs; 2311 result = fs;
2652 } else { 2312 } else {
2653 result = (fs > ft ? fs : ft); 2313 result = (fs > ft ? fs : ft);
2654 } 2314 }
2655 set_fpu_register_double(fd_reg, result); 2315 set_fpu_register_double(fd_reg(), result);
2656 } 2316 }
2657 break; 2317 break;
2658 case MAXA: 2318 case MAXA:
2659 DCHECK(IsMipsArchVariant(kMips32r6)); 2319 DCHECK(IsMipsArchVariant(kMips32r6));
2660 fs = get_fpu_register_double(fs_reg); 2320 fs = get_fpu_register_double(fs_reg());
2661 if (std::isnan(fs) && std::isnan(ft)) { 2321 if (std::isnan(fs) && std::isnan(ft)) {
2662 set_fpu_register_double(fd_reg, fs); 2322 set_fpu_register_double(fd_reg(), fs);
2663 } else if (std::isnan(fs) && !std::isnan(ft)) { 2323 } else if (std::isnan(fs) && !std::isnan(ft)) {
2664 set_fpu_register_double(fd_reg, ft); 2324 set_fpu_register_double(fd_reg(), ft);
2665 } else if (!std::isnan(fs) && std::isnan(ft)) { 2325 } else if (!std::isnan(fs) && std::isnan(ft)) {
2666 set_fpu_register_double(fd_reg, fs); 2326 set_fpu_register_double(fd_reg(), fs);
2667 } else { 2327 } else {
2668 double result; 2328 double result;
2669 if (fabs(fs) < fabs(ft)) { 2329 if (fabs(fs) < fabs(ft)) {
2670 result = ft; 2330 result = ft;
2671 } else if (fabs(fs) > fabs(ft)) { 2331 } else if (fabs(fs) > fabs(ft)) {
2672 result = fs; 2332 result = fs;
2673 } else { 2333 } else {
2674 result = (fs > ft ? fs : ft); 2334 result = (fs > ft ? fs : ft);
2675 } 2335 }
2676 set_fpu_register_double(fd_reg, result); 2336 set_fpu_register_double(fd_reg(), result);
2677 } 2337 }
2678 break; 2338 break;
2679 case MAX: 2339 case MAX:
2680 DCHECK(IsMipsArchVariant(kMips32r6)); 2340 DCHECK(IsMipsArchVariant(kMips32r6));
2681 fs = get_fpu_register_double(fs_reg); 2341 fs = get_fpu_register_double(fs_reg());
2682 if (std::isnan(fs) && std::isnan(ft)) { 2342 if (std::isnan(fs) && std::isnan(ft)) {
2683 set_fpu_register_double(fd_reg, fs); 2343 set_fpu_register_double(fd_reg(), fs);
2684 } else if (std::isnan(fs) && !std::isnan(ft)) { 2344 } else if (std::isnan(fs) && !std::isnan(ft)) {
2685 set_fpu_register_double(fd_reg, ft); 2345 set_fpu_register_double(fd_reg(), ft);
2686 } else if (!std::isnan(fs) && std::isnan(ft)) { 2346 } else if (!std::isnan(fs) && std::isnan(ft)) {
2687 set_fpu_register_double(fd_reg, fs); 2347 set_fpu_register_double(fd_reg(), fs);
2688 } else { 2348 } else {
2689 set_fpu_register_double(fd_reg, (fs <= ft) ? ft : fs); 2349 set_fpu_register_double(fd_reg(), (fs <= ft) ? ft : fs);
2690 } 2350 }
2691 break; 2351 break;
2692 break; 2352 break;
2693 case ADD_D: 2353 case ADD_D:
2694 set_fpu_register_double(fd_reg, fs + ft); 2354 set_fpu_register_double(fd_reg(), fs + ft);
2695 break; 2355 break;
2696 case SUB_D: 2356 case SUB_D:
2697 set_fpu_register_double(fd_reg, fs - ft); 2357 set_fpu_register_double(fd_reg(), fs - ft);
2698 break; 2358 break;
2699 case MUL_D: 2359 case MUL_D:
2700 set_fpu_register_double(fd_reg, fs * ft); 2360 set_fpu_register_double(fd_reg(), fs * ft);
2701 break; 2361 break;
2702 case DIV_D: 2362 case DIV_D:
2703 set_fpu_register_double(fd_reg, fs / ft); 2363 set_fpu_register_double(fd_reg(), fs / ft);
2704 break; 2364 break;
2705 case ABS_D: 2365 case ABS_D:
2706 set_fpu_register_double(fd_reg, fabs(fs)); 2366 set_fpu_register_double(fd_reg(), fabs(fs));
2707 break; 2367 break;
2708 case MOV_D: 2368 case MOV_D:
2709 set_fpu_register_double(fd_reg, fs); 2369 set_fpu_register_double(fd_reg(), fs);
2710 break; 2370 break;
2711 case NEG_D: 2371 case NEG_D:
2712 set_fpu_register_double(fd_reg, -fs); 2372 set_fpu_register_double(fd_reg(), -fs);
2713 break; 2373 break;
2714 case SQRT_D: 2374 case SQRT_D:
2715 set_fpu_register_double(fd_reg, fast_sqrt(fs)); 2375 set_fpu_register_double(fd_reg(), fast_sqrt(fs));
2716 break; 2376 break;
2717 case RSQRT_D: { 2377 case RSQRT_D: {
2718 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2378 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2719 double result = 1.0 / fast_sqrt(fs); 2379 double result = 1.0 / fast_sqrt(fs);
2720 set_fpu_register_double(fd_reg, result); 2380 set_fpu_register_double(fd_reg(), result);
2721 break; 2381 break;
2722 } 2382 }
2723 case RECIP_D: { 2383 case RECIP_D: {
2724 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2384 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2725 double result = 1.0 / fs; 2385 double result = 1.0 / fs;
2726 set_fpu_register_double(fd_reg, result); 2386 set_fpu_register_double(fd_reg(), result);
2727 break; 2387 break;
2728 } 2388 }
2729 case C_UN_D: 2389 case C_UN_D:
2730 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); 2390 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
2731 break; 2391 break;
2732 case C_EQ_D: 2392 case C_EQ_D:
2733 set_fcsr_bit(fcsr_cc, (fs == ft)); 2393 set_fcsr_bit(fcsr_cc, (fs == ft));
2734 break; 2394 break;
2735 case C_UEQ_D: 2395 case C_UEQ_D:
2736 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); 2396 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
2737 break; 2397 break;
2738 case C_OLT_D: 2398 case C_OLT_D:
2739 set_fcsr_bit(fcsr_cc, (fs < ft)); 2399 set_fcsr_bit(fcsr_cc, (fs < ft));
2740 break; 2400 break;
2741 case C_ULT_D: 2401 case C_ULT_D:
2742 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); 2402 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
2743 break; 2403 break;
2744 case C_OLE_D: 2404 case C_OLE_D:
2745 set_fcsr_bit(fcsr_cc, (fs <= ft)); 2405 set_fcsr_bit(fcsr_cc, (fs <= ft));
2746 break; 2406 break;
2747 case C_ULE_D: 2407 case C_ULE_D:
2748 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); 2408 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
2749 break; 2409 break;
2750 case CVT_W_D: { // Convert double to word. 2410 case CVT_W_D: { // Convert double to word.
2751 double rounded; 2411 double rounded;
2752 int32_t result; 2412 int32_t result;
2753 round_according_to_fcsr(fs, rounded, result, fs); 2413 round_according_to_fcsr(fs, rounded, result, fs);
2754 set_fpu_register_word(fd_reg, result); 2414 set_fpu_register_word(fd_reg(), result);
2755 if (set_fcsr_round_error(fs, rounded)) { 2415 if (set_fcsr_round_error(fs, rounded)) {
2756 set_fpu_register_word(fd_reg, kFPUInvalidResult); 2416 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
2757 } 2417 }
2758 } break; 2418 } break;
2759 case ROUND_W_D: // Round double to word (round half to even). 2419 case ROUND_W_D: // Round double to word (round half to even).
2760 { 2420 {
2761 double rounded = std::floor(fs + 0.5); 2421 double rounded = std::floor(fs + 0.5);
2762 int32_t result = static_cast<int32_t>(rounded); 2422 int32_t result = static_cast<int32_t>(rounded);
2763 if ((result & 1) != 0 && result - fs == 0.5) { 2423 if ((result & 1) != 0 && result - fs == 0.5) {
2764 // If the number is halfway between two integers, 2424 // If the number is halfway between two integers,
2765 // round to the even one. 2425 // round to the even one.
2766 result--; 2426 result--;
2767 } 2427 }
2768 set_fpu_register_word(fd_reg, result); 2428 set_fpu_register_word(fd_reg(), result);
2769 if (set_fcsr_round_error(fs, rounded)) { 2429 if (set_fcsr_round_error(fs, rounded)) {
2770 set_fpu_register_word(fd_reg, kFPUInvalidResult); 2430 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
2771 } 2431 }
2772 } break; 2432 } break;
2773 case TRUNC_W_D: // Truncate double to word (round towards 0). 2433 case TRUNC_W_D: // Truncate double to word (round towards 0).
2774 { 2434 {
2775 double rounded = trunc(fs); 2435 double rounded = trunc(fs);
2776 int32_t result = static_cast<int32_t>(rounded); 2436 int32_t result = static_cast<int32_t>(rounded);
2777 set_fpu_register_word(fd_reg, result); 2437 set_fpu_register_word(fd_reg(), result);
2778 if (set_fcsr_round_error(fs, rounded)) { 2438 if (set_fcsr_round_error(fs, rounded)) {
2779 set_fpu_register_word(fd_reg, kFPUInvalidResult); 2439 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
2780 } 2440 }
2781 } break; 2441 } break;
2782 case FLOOR_W_D: // Round double to word towards negative infinity. 2442 case FLOOR_W_D: // Round double to word towards negative infinity.
2783 { 2443 {
2784 double rounded = std::floor(fs); 2444 double rounded = std::floor(fs);
2785 int32_t result = static_cast<int32_t>(rounded); 2445 int32_t result = static_cast<int32_t>(rounded);
2786 set_fpu_register_word(fd_reg, result); 2446 set_fpu_register_word(fd_reg(), result);
2787 if (set_fcsr_round_error(fs, rounded)) { 2447 if (set_fcsr_round_error(fs, rounded)) {
2788 set_fpu_register_word(fd_reg, kFPUInvalidResult); 2448 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
2789 } 2449 }
2790 } break; 2450 } break;
2791 case CEIL_W_D: // Round double to word towards positive infinity. 2451 case CEIL_W_D: // Round double to word towards positive infinity.
2792 { 2452 {
2793 double rounded = std::ceil(fs); 2453 double rounded = std::ceil(fs);
2794 int32_t result = static_cast<int32_t>(rounded); 2454 int32_t result = static_cast<int32_t>(rounded);
2795 set_fpu_register_word(fd_reg, result); 2455 set_fpu_register_word(fd_reg(), result);
2796 if (set_fcsr_round_error(fs, rounded)) { 2456 if (set_fcsr_round_error(fs, rounded)) {
2797 set_fpu_register_word(fd_reg, kFPUInvalidResult); 2457 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
2798 } 2458 }
2799 } break; 2459 } break;
2800 case CVT_S_D: // Convert double to float (single). 2460 case CVT_S_D: // Convert double to float (single).
2801 set_fpu_register_float(fd_reg, static_cast<float>(fs)); 2461 set_fpu_register_float(fd_reg(), static_cast<float>(fs));
2802 break; 2462 break;
2803 case CVT_L_D: { // Mips32r2: Truncate double to 64-bit long-word. 2463 case CVT_L_D: { // Mips32r2: Truncate double to 64-bit long-word.
2804 if (IsFp64Mode()) { 2464 if (IsFp64Mode()) {
2805 int64_t result; 2465 int64_t result;
2806 double rounded; 2466 double rounded;
2807 round64_according_to_fcsr(fs, rounded, result, fs); 2467 round64_according_to_fcsr(fs, rounded, result, fs);
2808 set_fpu_register(fd_reg, result); 2468 set_fpu_register(fd_reg(), result);
2809 if (set_fcsr_round64_error(fs, rounded)) { 2469 if (set_fcsr_round64_error(fs, rounded)) {
2810 set_fpu_register(fd_reg, kFPU64InvalidResult); 2470 set_fpu_register(fd_reg(), kFPU64InvalidResult);
2811 } 2471 }
2812 } else { 2472 } else {
2813 UNSUPPORTED(); 2473 UNSUPPORTED();
2814 } 2474 }
2815 break; 2475 break;
2816 break; 2476 break;
2817 } 2477 }
2818 case TRUNC_L_D: { // Mips32r2 instruction. 2478 case TRUNC_L_D: { // Mips32r2 instruction.
2819 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2479 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2820 double rounded = trunc(fs); 2480 double rounded = trunc(fs);
2821 i64 = static_cast<int64_t>(rounded); 2481 i64 = static_cast<int64_t>(rounded);
2822 if (IsFp64Mode()) { 2482 if (IsFp64Mode()) {
2823 set_fpu_register(fd_reg, i64); 2483 set_fpu_register(fd_reg(), i64);
2824 if (set_fcsr_round64_error(fs, rounded)) { 2484 if (set_fcsr_round64_error(fs, rounded)) {
2825 set_fpu_register(fd_reg, kFPU64InvalidResult); 2485 set_fpu_register(fd_reg(), kFPU64InvalidResult);
2826 } 2486 }
2827 } else { 2487 } else {
2828 UNSUPPORTED(); 2488 UNSUPPORTED();
2829 } 2489 }
2830 break; 2490 break;
2831 } 2491 }
2832 case ROUND_L_D: { // Mips32r2 instruction. 2492 case ROUND_L_D: { // Mips32r2 instruction.
2833 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2493 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2834 double rounded = std::floor(fs + 0.5); 2494 double rounded = std::floor(fs + 0.5);
2835 int64_t result = static_cast<int64_t>(rounded); 2495 int64_t result = static_cast<int64_t>(rounded);
2836 if ((result & 1) != 0 && result - fs == 0.5) { 2496 if ((result & 1) != 0 && result - fs == 0.5) {
2837 // If the number is halfway between two integers, 2497 // If the number is halfway between two integers,
2838 // round to the even one. 2498 // round to the even one.
2839 result--; 2499 result--;
2840 } 2500 }
2841 int64_t i64 = static_cast<int64_t>(result); 2501 int64_t i64 = static_cast<int64_t>(result);
2842 if (IsFp64Mode()) { 2502 if (IsFp64Mode()) {
2843 set_fpu_register(fd_reg, i64); 2503 set_fpu_register(fd_reg(), i64);
2844 if (set_fcsr_round64_error(fs, rounded)) { 2504 if (set_fcsr_round64_error(fs, rounded)) {
2845 set_fpu_register(fd_reg, kFPU64InvalidResult); 2505 set_fpu_register(fd_reg(), kFPU64InvalidResult);
2846 } 2506 }
2847 } else { 2507 } else {
2848 UNSUPPORTED(); 2508 UNSUPPORTED();
2849 } 2509 }
2850 break; 2510 break;
2851 } 2511 }
2852 case FLOOR_L_D: { // Mips32r2 instruction. 2512 case FLOOR_L_D: { // Mips32r2 instruction.
2853 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2513 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2854 double rounded = std::floor(fs); 2514 double rounded = std::floor(fs);
2855 int64_t i64 = static_cast<int64_t>(rounded); 2515 int64_t i64 = static_cast<int64_t>(rounded);
2856 if (IsFp64Mode()) { 2516 if (IsFp64Mode()) {
2857 set_fpu_register(fd_reg, i64); 2517 set_fpu_register(fd_reg(), i64);
2858 if (set_fcsr_round64_error(fs, rounded)) { 2518 if (set_fcsr_round64_error(fs, rounded)) {
2859 set_fpu_register(fd_reg, kFPU64InvalidResult); 2519 set_fpu_register(fd_reg(), kFPU64InvalidResult);
2860 } 2520 }
2861 } else { 2521 } else {
2862 UNSUPPORTED(); 2522 UNSUPPORTED();
2863 } 2523 }
2864 break; 2524 break;
2865 } 2525 }
2866 case CEIL_L_D: { // Mips32r2 instruction. 2526 case CEIL_L_D: { // Mips32r2 instruction.
2867 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2527 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2868 double rounded = std::ceil(fs); 2528 double rounded = std::ceil(fs);
2869 int64_t i64 = static_cast<int64_t>(rounded); 2529 int64_t i64 = static_cast<int64_t>(rounded);
2870 if (IsFp64Mode()) { 2530 if (IsFp64Mode()) {
2871 set_fpu_register(fd_reg, i64); 2531 set_fpu_register(fd_reg(), i64);
2872 if (set_fcsr_round64_error(fs, rounded)) { 2532 if (set_fcsr_round64_error(fs, rounded)) {
2873 set_fpu_register(fd_reg, kFPU64InvalidResult); 2533 set_fpu_register(fd_reg(), kFPU64InvalidResult);
2874 } 2534 }
2875 } else { 2535 } else {
2876 UNSUPPORTED(); 2536 UNSUPPORTED();
2877 } 2537 }
2878 break; 2538 break;
2879 } 2539 }
2880 case CLASS_D: { // Mips32r6 instruction 2540 case CLASS_D: { // Mips32r6 instruction
2881 // Convert double input to uint64_t for easier bit manipulation 2541 // Convert double input to uint64_t for easier bit manipulation
2882 uint64_t classed = bit_cast<uint64_t>(fs); 2542 uint64_t classed = bit_cast<uint64_t>(fs);
2883 2543
(...skipping 47 matching lines...) Expand 10 before | Expand all | Expand 10 after
2931 } 2591 }
2932 2592
2933 // Calculating result according to description of CLASS.D instruction 2593 // Calculating result according to description of CLASS.D instruction
2934 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | 2594 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
2935 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | 2595 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
2936 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; 2596 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
2937 2597
2938 DCHECK(result != 0); 2598 DCHECK(result != 0);
2939 2599
2940 dResult = bit_cast<double>(result); 2600 dResult = bit_cast<double>(result);
2941 set_fpu_register_double(fd_reg, dResult); 2601 set_fpu_register_double(fd_reg(), dResult);
2942 2602
2943 break; 2603 break;
2944 } 2604 }
2945 case C_F_D: { 2605 case C_F_D: {
2946 set_fcsr_bit(fcsr_cc, false); 2606 set_fcsr_bit(fcsr_cc, false);
2947 break; 2607 break;
2948 } 2608 }
2949 default: 2609 default:
2950 UNREACHABLE(); 2610 UNREACHABLE();
2951 } 2611 }
2952 } 2612 }
2953 2613
2954 2614
2955 void Simulator::DecodeTypeRegisterWRsType(Instruction* instr, int32_t& alu_out, 2615 void Simulator::DecodeTypeRegisterWRsType() {
2956 const int32_t& fd_reg, 2616 float fs = get_fpu_register_float(fs_reg());
2957 const int32_t& fs_reg, 2617 float ft = get_fpu_register_float(ft_reg());
2958 const int32_t& ft_reg) { 2618 int32_t alu_out = 0x12345678;
2959 float fs = get_fpu_register_float(fs_reg); 2619 switch (get_instr()->FunctionFieldRaw()) {
2960 float ft = get_fpu_register_float(ft_reg);
2961 switch (instr->FunctionFieldRaw()) {
2962 case CVT_S_W: // Convert word to float (single). 2620 case CVT_S_W: // Convert word to float (single).
2963 alu_out = get_fpu_register_signed_word(fs_reg); 2621 alu_out = get_fpu_register_signed_word(fs_reg());
2964 set_fpu_register_float(fd_reg, static_cast<float>(alu_out)); 2622 set_fpu_register_float(fd_reg(), static_cast<float>(alu_out));
2965 break; 2623 break;
2966 case CVT_D_W: // Convert word to double. 2624 case CVT_D_W: // Convert word to double.
2967 alu_out = get_fpu_register_signed_word(fs_reg); 2625 alu_out = get_fpu_register_signed_word(fs_reg());
2968 set_fpu_register_double(fd_reg, static_cast<double>(alu_out)); 2626 set_fpu_register_double(fd_reg(), static_cast<double>(alu_out));
2969 break; 2627 break;
2970 case CMP_AF: 2628 case CMP_AF:
2971 set_fpu_register_word(fd_reg, 0); 2629 set_fpu_register_word(fd_reg(), 0);
2972 break; 2630 break;
2973 case CMP_UN: 2631 case CMP_UN:
2974 if (std::isnan(fs) || std::isnan(ft)) { 2632 if (std::isnan(fs) || std::isnan(ft)) {
2975 set_fpu_register_word(fd_reg, -1); 2633 set_fpu_register_word(fd_reg(), -1);
2976 } else { 2634 } else {
2977 set_fpu_register_word(fd_reg, 0); 2635 set_fpu_register_word(fd_reg(), 0);
2978 } 2636 }
2979 break; 2637 break;
2980 case CMP_EQ: 2638 case CMP_EQ:
2981 if (fs == ft) { 2639 if (fs == ft) {
2982 set_fpu_register_word(fd_reg, -1); 2640 set_fpu_register_word(fd_reg(), -1);
2983 } else { 2641 } else {
2984 set_fpu_register_word(fd_reg, 0); 2642 set_fpu_register_word(fd_reg(), 0);
2985 } 2643 }
2986 break; 2644 break;
2987 case CMP_UEQ: 2645 case CMP_UEQ:
2988 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { 2646 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
2989 set_fpu_register_word(fd_reg, -1); 2647 set_fpu_register_word(fd_reg(), -1);
2990 } else { 2648 } else {
2991 set_fpu_register_word(fd_reg, 0); 2649 set_fpu_register_word(fd_reg(), 0);
2992 } 2650 }
2993 break; 2651 break;
2994 case CMP_LT: 2652 case CMP_LT:
2995 if (fs < ft) { 2653 if (fs < ft) {
2996 set_fpu_register_word(fd_reg, -1); 2654 set_fpu_register_word(fd_reg(), -1);
2997 } else { 2655 } else {
2998 set_fpu_register_word(fd_reg, 0); 2656 set_fpu_register_word(fd_reg(), 0);
2999 } 2657 }
3000 break; 2658 break;
3001 case CMP_ULT: 2659 case CMP_ULT:
3002 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { 2660 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3003 set_fpu_register_word(fd_reg, -1); 2661 set_fpu_register_word(fd_reg(), -1);
3004 } else { 2662 } else {
3005 set_fpu_register_word(fd_reg, 0); 2663 set_fpu_register_word(fd_reg(), 0);
3006 } 2664 }
3007 break; 2665 break;
3008 case CMP_LE: 2666 case CMP_LE:
3009 if (fs <= ft) { 2667 if (fs <= ft) {
3010 set_fpu_register_word(fd_reg, -1); 2668 set_fpu_register_word(fd_reg(), -1);
3011 } else { 2669 } else {
3012 set_fpu_register_word(fd_reg, 0); 2670 set_fpu_register_word(fd_reg(), 0);
3013 } 2671 }
3014 break; 2672 break;
3015 case CMP_ULE: 2673 case CMP_ULE:
3016 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { 2674 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3017 set_fpu_register_word(fd_reg, -1); 2675 set_fpu_register_word(fd_reg(), -1);
3018 } else { 2676 } else {
3019 set_fpu_register_word(fd_reg, 0); 2677 set_fpu_register_word(fd_reg(), 0);
3020 } 2678 }
3021 break; 2679 break;
3022 case CMP_OR: 2680 case CMP_OR:
3023 if (!std::isnan(fs) && !std::isnan(ft)) { 2681 if (!std::isnan(fs) && !std::isnan(ft)) {
3024 set_fpu_register_word(fd_reg, -1); 2682 set_fpu_register_word(fd_reg(), -1);
3025 } else { 2683 } else {
3026 set_fpu_register_word(fd_reg, 0); 2684 set_fpu_register_word(fd_reg(), 0);
3027 } 2685 }
3028 break; 2686 break;
3029 case CMP_UNE: 2687 case CMP_UNE:
3030 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { 2688 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3031 set_fpu_register_word(fd_reg, -1); 2689 set_fpu_register_word(fd_reg(), -1);
3032 } else { 2690 } else {
3033 set_fpu_register_word(fd_reg, 0); 2691 set_fpu_register_word(fd_reg(), 0);
3034 } 2692 }
3035 break; 2693 break;
3036 case CMP_NE: 2694 case CMP_NE:
3037 if (fs != ft) { 2695 if (fs != ft) {
3038 set_fpu_register_word(fd_reg, -1); 2696 set_fpu_register_word(fd_reg(), -1);
3039 } else { 2697 } else {
3040 set_fpu_register_word(fd_reg, 0); 2698 set_fpu_register_word(fd_reg(), 0);
3041 } 2699 }
3042 break; 2700 break;
3043 default: 2701 default:
3044 UNREACHABLE(); 2702 UNREACHABLE();
3045 } 2703 }
3046 } 2704 }
3047 2705
3048 2706
3049 void Simulator::DecodeTypeRegisterSRsType(Instruction* instr, 2707 void Simulator::DecodeTypeRegisterSRsType() {
3050 const int32_t& ft_reg,
3051 const int32_t& fs_reg,
3052 const int32_t& fd_reg) {
3053 float fs, ft, fd; 2708 float fs, ft, fd;
3054 fs = get_fpu_register_float(fs_reg); 2709 fs = get_fpu_register_float(fs_reg());
3055 ft = get_fpu_register_float(ft_reg); 2710 ft = get_fpu_register_float(ft_reg());
3056 fd = get_fpu_register_float(fd_reg); 2711 fd = get_fpu_register_float(fd_reg());
3057 int32_t ft_int = bit_cast<int32_t>(ft); 2712 int32_t ft_int = bit_cast<int32_t>(ft);
3058 int32_t fd_int = bit_cast<int32_t>(fd); 2713 int32_t fd_int = bit_cast<int32_t>(fd);
3059 uint32_t cc, fcsr_cc; 2714 uint32_t cc, fcsr_cc;
3060 cc = instr->FCccValue(); 2715 cc = get_instr()->FCccValue();
3061 fcsr_cc = get_fcsr_condition_bit(cc); 2716 fcsr_cc = get_fcsr_condition_bit(cc);
3062 switch (instr->FunctionFieldRaw()) { 2717 switch (get_instr()->FunctionFieldRaw()) {
3063 case RINT: { 2718 case RINT: {
3064 DCHECK(IsMipsArchVariant(kMips32r6)); 2719 DCHECK(IsMipsArchVariant(kMips32r6));
3065 float result, temp_result; 2720 float result, temp_result;
3066 double temp; 2721 double temp;
3067 float upper = std::ceil(fs); 2722 float upper = std::ceil(fs);
3068 float lower = std::floor(fs); 2723 float lower = std::floor(fs);
3069 switch (get_fcsr_rounding_mode()) { 2724 switch (get_fcsr_rounding_mode()) {
3070 case kRoundToNearest: 2725 case kRoundToNearest:
3071 if (upper - fs < fs - lower) { 2726 if (upper - fs < fs - lower) {
3072 result = upper; 2727 result = upper;
(...skipping 12 matching lines...) Expand all
3085 case kRoundToZero: 2740 case kRoundToZero:
3086 result = (fs > 0 ? lower : upper); 2741 result = (fs > 0 ? lower : upper);
3087 break; 2742 break;
3088 case kRoundToPlusInf: 2743 case kRoundToPlusInf:
3089 result = upper; 2744 result = upper;
3090 break; 2745 break;
3091 case kRoundToMinusInf: 2746 case kRoundToMinusInf:
3092 result = lower; 2747 result = lower;
3093 break; 2748 break;
3094 } 2749 }
3095 set_fpu_register_float(fd_reg, result); 2750 set_fpu_register_float(fd_reg(), result);
3096 if (result != fs) { 2751 if (result != fs) {
3097 set_fcsr_bit(kFCSRInexactFlagBit, true); 2752 set_fcsr_bit(kFCSRInexactFlagBit, true);
3098 } 2753 }
3099 break; 2754 break;
3100 } 2755 }
3101 case ADD_S: 2756 case ADD_S:
3102 set_fpu_register_float(fd_reg, fs + ft); 2757 set_fpu_register_float(fd_reg(), fs + ft);
3103 break; 2758 break;
3104 case SUB_S: 2759 case SUB_S:
3105 set_fpu_register_float(fd_reg, fs - ft); 2760 set_fpu_register_float(fd_reg(), fs - ft);
3106 break; 2761 break;
3107 case MUL_S: 2762 case MUL_S:
3108 set_fpu_register_float(fd_reg, fs * ft); 2763 set_fpu_register_float(fd_reg(), fs * ft);
3109 break; 2764 break;
3110 case DIV_S: 2765 case DIV_S:
3111 set_fpu_register_float(fd_reg, fs / ft); 2766 set_fpu_register_float(fd_reg(), fs / ft);
3112 break; 2767 break;
3113 case ABS_S: 2768 case ABS_S:
3114 set_fpu_register_float(fd_reg, fabs(fs)); 2769 set_fpu_register_float(fd_reg(), fabs(fs));
3115 break; 2770 break;
3116 case MOV_S: 2771 case MOV_S:
3117 set_fpu_register_float(fd_reg, fs); 2772 set_fpu_register_float(fd_reg(), fs);
3118 break; 2773 break;
3119 case NEG_S: 2774 case NEG_S:
3120 set_fpu_register_float(fd_reg, -fs); 2775 set_fpu_register_float(fd_reg(), -fs);
3121 break; 2776 break;
3122 case SQRT_S: 2777 case SQRT_S:
3123 set_fpu_register_float(fd_reg, fast_sqrt(fs)); 2778 set_fpu_register_float(fd_reg(), fast_sqrt(fs));
3124 break; 2779 break;
3125 case RSQRT_S: { 2780 case RSQRT_S: {
3126 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2781 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3127 float result = 1.0 / fast_sqrt(fs); 2782 float result = 1.0 / fast_sqrt(fs);
3128 set_fpu_register_float(fd_reg, result); 2783 set_fpu_register_float(fd_reg(), result);
3129 break; 2784 break;
3130 } 2785 }
3131 case RECIP_S: { 2786 case RECIP_S: {
3132 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2787 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3133 float result = 1.0 / fs; 2788 float result = 1.0 / fs;
3134 set_fpu_register_float(fd_reg, result); 2789 set_fpu_register_float(fd_reg(), result);
3135 break; 2790 break;
3136 } 2791 }
3137 case C_F_D: 2792 case C_F_D:
3138 set_fcsr_bit(fcsr_cc, false); 2793 set_fcsr_bit(fcsr_cc, false);
3139 break; 2794 break;
3140 case C_UN_D: 2795 case C_UN_D:
3141 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft)); 2796 set_fcsr_bit(fcsr_cc, std::isnan(fs) || std::isnan(ft));
3142 break; 2797 break;
3143 case C_EQ_D: 2798 case C_EQ_D:
3144 set_fcsr_bit(fcsr_cc, (fs == ft)); 2799 set_fcsr_bit(fcsr_cc, (fs == ft));
3145 break; 2800 break;
3146 case C_UEQ_D: 2801 case C_UEQ_D:
3147 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft))); 2802 set_fcsr_bit(fcsr_cc, (fs == ft) || (std::isnan(fs) || std::isnan(ft)));
3148 break; 2803 break;
3149 case C_OLT_D: 2804 case C_OLT_D:
3150 set_fcsr_bit(fcsr_cc, (fs < ft)); 2805 set_fcsr_bit(fcsr_cc, (fs < ft));
3151 break; 2806 break;
3152 case C_ULT_D: 2807 case C_ULT_D:
3153 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft))); 2808 set_fcsr_bit(fcsr_cc, (fs < ft) || (std::isnan(fs) || std::isnan(ft)));
3154 break; 2809 break;
3155 case C_OLE_D: 2810 case C_OLE_D:
3156 set_fcsr_bit(fcsr_cc, (fs <= ft)); 2811 set_fcsr_bit(fcsr_cc, (fs <= ft));
3157 break; 2812 break;
3158 case C_ULE_D: 2813 case C_ULE_D:
3159 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft))); 2814 set_fcsr_bit(fcsr_cc, (fs <= ft) || (std::isnan(fs) || std::isnan(ft)));
3160 break; 2815 break;
3161 case CVT_D_S: 2816 case CVT_D_S:
3162 set_fpu_register_double(fd_reg, static_cast<double>(fs)); 2817 set_fpu_register_double(fd_reg(), static_cast<double>(fs));
3163 break; 2818 break;
3164 case SEL: 2819 case SEL:
3165 DCHECK(IsMipsArchVariant(kMips32r6)); 2820 DCHECK(IsMipsArchVariant(kMips32r6));
3166 set_fpu_register_float(fd_reg, (fd_int & 0x1) == 0 ? fs : ft); 2821 set_fpu_register_float(fd_reg(), (fd_int & 0x1) == 0 ? fs : ft);
3167 break; 2822 break;
3168 case CLASS_S: { // Mips32r6 instruction 2823 case CLASS_S: { // Mips32r6 instruction
3169 // Convert float input to uint32_t for easier bit manipulation 2824 // Convert float input to uint32_t for easier bit manipulation
3170 float fs = get_fpu_register_float(fs_reg); 2825 float fs = get_fpu_register_float(fs_reg());
3171 uint32_t classed = bit_cast<uint32_t>(fs); 2826 uint32_t classed = bit_cast<uint32_t>(fs);
3172 2827
3173 // Extracting sign, exponent and mantissa from the input float 2828 // Extracting sign, exponent and mantissa from the input float
3174 uint32_t sign = (classed >> 31) & 1; 2829 uint32_t sign = (classed >> 31) & 1;
3175 uint32_t exponent = (classed >> 23) & 0x000000ff; 2830 uint32_t exponent = (classed >> 23) & 0x000000ff;
3176 uint32_t mantissa = classed & 0x007fffff; 2831 uint32_t mantissa = classed & 0x007fffff;
3177 uint32_t result; 2832 uint32_t result;
3178 float fResult; 2833 float fResult;
3179 2834
3180 // Setting flags if input float is negative infinity, 2835 // Setting flags if input float is negative infinity,
(...skipping 39 matching lines...) Expand 10 before | Expand all | Expand 10 after
3220 } 2875 }
3221 2876
3222 // Calculating result according to description of CLASS.S instruction 2877 // Calculating result according to description of CLASS.S instruction
3223 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) | 2878 result = (posZero << 9) | (posSubnorm << 8) | (posNorm << 7) |
3224 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) | 2879 (posInf << 6) | (negZero << 5) | (negSubnorm << 4) |
3225 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan; 2880 (negNorm << 3) | (negInf << 2) | (quietNan << 1) | signalingNan;
3226 2881
3227 DCHECK(result != 0); 2882 DCHECK(result != 0);
3228 2883
3229 fResult = bit_cast<float>(result); 2884 fResult = bit_cast<float>(result);
3230 set_fpu_register_float(fd_reg, fResult); 2885 set_fpu_register_float(fd_reg(), fResult);
3231 2886
3232 break; 2887 break;
3233 } 2888 }
3234 case SELEQZ_C: 2889 case SELEQZ_C:
3235 DCHECK(IsMipsArchVariant(kMips32r6)); 2890 DCHECK(IsMipsArchVariant(kMips32r6));
3236 set_fpu_register_float( 2891 set_fpu_register_float(fd_reg(), (ft_int & 0x1) == 0
3237 fd_reg, (ft_int & 0x1) == 0 ? get_fpu_register_float(fs_reg) : 0.0); 2892 ? get_fpu_register_float(fs_reg())
2893 : 0.0);
3238 break; 2894 break;
3239 case SELNEZ_C: 2895 case SELNEZ_C:
3240 DCHECK(IsMipsArchVariant(kMips32r6)); 2896 DCHECK(IsMipsArchVariant(kMips32r6));
3241 set_fpu_register_float( 2897 set_fpu_register_float(fd_reg(), (ft_int & 0x1) != 0
3242 fd_reg, (ft_int & 0x1) != 0 ? get_fpu_register_float(fs_reg) : 0.0); 2898 ? get_fpu_register_float(fs_reg())
2899 : 0.0);
3243 break; 2900 break;
3244 case MOVZ_C: { 2901 case MOVZ_C: {
3245 DCHECK(IsMipsArchVariant(kMips32r2)); 2902 DCHECK(IsMipsArchVariant(kMips32r2));
3246 int32_t rt_reg = instr->RtValue(); 2903 if (rt() == 0) {
3247 int32_t rt = get_register(rt_reg); 2904 set_fpu_register_float(fd_reg(), fs);
3248 if (rt == 0) {
3249 set_fpu_register_float(fd_reg, fs);
3250 } 2905 }
3251 break; 2906 break;
3252 } 2907 }
3253 case MOVN_C: { 2908 case MOVN_C: {
3254 DCHECK(IsMipsArchVariant(kMips32r2)); 2909 DCHECK(IsMipsArchVariant(kMips32r2));
3255 int32_t rt_reg = instr->RtValue(); 2910 if (rt() != 0) {
3256 int32_t rt = get_register(rt_reg); 2911 set_fpu_register_float(fd_reg(), fs);
3257 if (rt != 0) {
3258 set_fpu_register_float(fd_reg, fs);
3259 } 2912 }
3260 break; 2913 break;
3261 } 2914 }
3262 case MOVF: { 2915 case MOVF: {
3263 // Same function field for MOVT.D and MOVF.D 2916 // Same function field for MOVT.D and MOVF.D
3264 uint32_t ft_cc = (ft_reg >> 2) & 0x7; 2917 uint32_t ft_cc = (ft_reg() >> 2) & 0x7;
3265 ft_cc = get_fcsr_condition_bit(ft_cc); 2918 ft_cc = get_fcsr_condition_bit(ft_cc);
3266 2919
3267 if (instr->Bit(16)) { // Read Tf bit. 2920 if (get_instr()->Bit(16)) { // Read Tf bit.
3268 // MOVT.D 2921 // MOVT.D
3269 if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg, fs); 2922 if (test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
3270 } else { 2923 } else {
3271 // MOVF.D 2924 // MOVF.D
3272 if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg, fs); 2925 if (!test_fcsr_bit(ft_cc)) set_fpu_register_float(fd_reg(), fs);
3273 } 2926 }
3274 break; 2927 break;
3275 } 2928 }
3276 case TRUNC_W_S: { // Truncate single to word (round towards 0). 2929 case TRUNC_W_S: { // Truncate single to word (round towards 0).
3277 float rounded = trunc(fs); 2930 float rounded = trunc(fs);
3278 int32_t result = static_cast<int32_t>(rounded); 2931 int32_t result = static_cast<int32_t>(rounded);
3279 set_fpu_register_word(fd_reg, result); 2932 set_fpu_register_word(fd_reg(), result);
3280 if (set_fcsr_round_error(fs, rounded)) { 2933 if (set_fcsr_round_error(fs, rounded)) {
3281 set_fpu_register_word(fd_reg, kFPUInvalidResult); 2934 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
3282 } 2935 }
3283 } break; 2936 } break;
3284 case TRUNC_L_S: { // Mips32r2 instruction. 2937 case TRUNC_L_S: { // Mips32r2 instruction.
3285 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2938 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3286 float rounded = trunc(fs); 2939 float rounded = trunc(fs);
3287 int64_t i64 = static_cast<int64_t>(rounded); 2940 int64_t i64 = static_cast<int64_t>(rounded);
3288 if (IsFp64Mode()) { 2941 if (IsFp64Mode()) {
3289 set_fpu_register(fd_reg, i64); 2942 set_fpu_register(fd_reg(), i64);
3290 if (set_fcsr_round64_error(fs, rounded)) { 2943 if (set_fcsr_round64_error(fs, rounded)) {
3291 set_fpu_register(fd_reg, kFPU64InvalidResult); 2944 set_fpu_register(fd_reg(), kFPU64InvalidResult);
3292 } 2945 }
3293 } else { 2946 } else {
3294 UNSUPPORTED(); 2947 UNSUPPORTED();
3295 } 2948 }
3296 break; 2949 break;
3297 } 2950 }
3298 case FLOOR_W_S: // Round double to word towards negative infinity. 2951 case FLOOR_W_S: // Round double to word towards negative infinity.
3299 { 2952 {
3300 float rounded = std::floor(fs); 2953 float rounded = std::floor(fs);
3301 int32_t result = static_cast<int32_t>(rounded); 2954 int32_t result = static_cast<int32_t>(rounded);
3302 set_fpu_register_word(fd_reg, result); 2955 set_fpu_register_word(fd_reg(), result);
3303 if (set_fcsr_round_error(fs, rounded)) { 2956 if (set_fcsr_round_error(fs, rounded)) {
3304 set_fpu_register_word(fd_reg, kFPUInvalidResult); 2957 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
3305 } 2958 }
3306 } break; 2959 } break;
3307 case FLOOR_L_S: { // Mips32r2 instruction. 2960 case FLOOR_L_S: { // Mips32r2 instruction.
3308 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2961 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3309 float rounded = std::floor(fs); 2962 float rounded = std::floor(fs);
3310 int64_t i64 = static_cast<int64_t>(rounded); 2963 int64_t i64 = static_cast<int64_t>(rounded);
3311 if (IsFp64Mode()) { 2964 if (IsFp64Mode()) {
3312 set_fpu_register(fd_reg, i64); 2965 set_fpu_register(fd_reg(), i64);
3313 if (set_fcsr_round64_error(fs, rounded)) { 2966 if (set_fcsr_round64_error(fs, rounded)) {
3314 set_fpu_register(fd_reg, kFPU64InvalidResult); 2967 set_fpu_register(fd_reg(), kFPU64InvalidResult);
3315 } 2968 }
3316 } else { 2969 } else {
3317 UNSUPPORTED(); 2970 UNSUPPORTED();
3318 } 2971 }
3319 break; 2972 break;
3320 } 2973 }
3321 case ROUND_W_S: { 2974 case ROUND_W_S: {
3322 float rounded = std::floor(fs + 0.5); 2975 float rounded = std::floor(fs + 0.5);
3323 int32_t result = static_cast<int32_t>(rounded); 2976 int32_t result = static_cast<int32_t>(rounded);
3324 if ((result & 1) != 0 && result - fs == 0.5) { 2977 if ((result & 1) != 0 && result - fs == 0.5) {
3325 // If the number is halfway between two integers, 2978 // If the number is halfway between two integers,
3326 // round to the even one. 2979 // round to the even one.
3327 result--; 2980 result--;
3328 } 2981 }
3329 set_fpu_register_word(fd_reg, result); 2982 set_fpu_register_word(fd_reg(), result);
3330 if (set_fcsr_round_error(fs, rounded)) { 2983 if (set_fcsr_round_error(fs, rounded)) {
3331 set_fpu_register_word(fd_reg, kFPUInvalidResult); 2984 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
3332 } 2985 }
3333 break; 2986 break;
3334 } 2987 }
3335 case ROUND_L_S: { // Mips32r2 instruction. 2988 case ROUND_L_S: { // Mips32r2 instruction.
3336 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 2989 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3337 float rounded = std::floor(fs + 0.5); 2990 float rounded = std::floor(fs + 0.5);
3338 int64_t result = static_cast<int64_t>(rounded); 2991 int64_t result = static_cast<int64_t>(rounded);
3339 if ((result & 1) != 0 && result - fs == 0.5) { 2992 if ((result & 1) != 0 && result - fs == 0.5) {
3340 // If the number is halfway between two integers, 2993 // If the number is halfway between two integers,
3341 // round to the even one. 2994 // round to the even one.
3342 result--; 2995 result--;
3343 } 2996 }
3344 int64_t i64 = static_cast<int64_t>(result); 2997 int64_t i64 = static_cast<int64_t>(result);
3345 if (IsFp64Mode()) { 2998 if (IsFp64Mode()) {
3346 set_fpu_register(fd_reg, i64); 2999 set_fpu_register(fd_reg(), i64);
3347 if (set_fcsr_round64_error(fs, rounded)) { 3000 if (set_fcsr_round64_error(fs, rounded)) {
3348 set_fpu_register(fd_reg, kFPU64InvalidResult); 3001 set_fpu_register(fd_reg(), kFPU64InvalidResult);
3349 } 3002 }
3350 } else { 3003 } else {
3351 UNSUPPORTED(); 3004 UNSUPPORTED();
3352 } 3005 }
3353 break; 3006 break;
3354 } 3007 }
3355 case CEIL_W_S: // Round double to word towards positive infinity. 3008 case CEIL_W_S: // Round double to word towards positive infinity.
3356 { 3009 {
3357 float rounded = std::ceil(fs); 3010 float rounded = std::ceil(fs);
3358 int32_t result = static_cast<int32_t>(rounded); 3011 int32_t result = static_cast<int32_t>(rounded);
3359 set_fpu_register_word(fd_reg, result); 3012 set_fpu_register_word(fd_reg(), result);
3360 if (set_fcsr_round_error(fs, rounded)) { 3013 if (set_fcsr_round_error(fs, rounded)) {
3361 set_fpu_register_word(fd_reg, kFPUInvalidResult); 3014 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
3362 } 3015 }
3363 } break; 3016 } break;
3364 case CEIL_L_S: { // Mips32r2 instruction. 3017 case CEIL_L_S: { // Mips32r2 instruction.
3365 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)); 3018 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
3366 float rounded = std::ceil(fs); 3019 float rounded = std::ceil(fs);
3367 int64_t i64 = static_cast<int64_t>(rounded); 3020 int64_t i64 = static_cast<int64_t>(rounded);
3368 if (IsFp64Mode()) { 3021 if (IsFp64Mode()) {
3369 set_fpu_register(fd_reg, i64); 3022 set_fpu_register(fd_reg(), i64);
3370 if (set_fcsr_round64_error(fs, rounded)) { 3023 if (set_fcsr_round64_error(fs, rounded)) {
3371 set_fpu_register(fd_reg, kFPU64InvalidResult); 3024 set_fpu_register(fd_reg(), kFPU64InvalidResult);
3372 } 3025 }
3373 } else { 3026 } else {
3374 UNSUPPORTED(); 3027 UNSUPPORTED();
3375 } 3028 }
3376 break; 3029 break;
3377 } 3030 }
3378 case MIN: 3031 case MIN:
3379 DCHECK(IsMipsArchVariant(kMips32r6)); 3032 DCHECK(IsMipsArchVariant(kMips32r6));
3380 fs = get_fpu_register_float(fs_reg); 3033 fs = get_fpu_register_float(fs_reg());
3381 if (std::isnan(fs) && std::isnan(ft)) { 3034 if (std::isnan(fs) && std::isnan(ft)) {
3382 set_fpu_register_float(fd_reg, fs); 3035 set_fpu_register_float(fd_reg(), fs);
3383 } else if (std::isnan(fs) && !std::isnan(ft)) { 3036 } else if (std::isnan(fs) && !std::isnan(ft)) {
3384 set_fpu_register_float(fd_reg, ft); 3037 set_fpu_register_float(fd_reg(), ft);
3385 } else if (!std::isnan(fs) && std::isnan(ft)) { 3038 } else if (!std::isnan(fs) && std::isnan(ft)) {
3386 set_fpu_register_float(fd_reg, fs); 3039 set_fpu_register_float(fd_reg(), fs);
3387 } else { 3040 } else {
3388 set_fpu_register_float(fd_reg, (fs >= ft) ? ft : fs); 3041 set_fpu_register_float(fd_reg(), (fs >= ft) ? ft : fs);
3389 } 3042 }
3390 break; 3043 break;
3391 case MAX: 3044 case MAX:
3392 DCHECK(IsMipsArchVariant(kMips32r6)); 3045 DCHECK(IsMipsArchVariant(kMips32r6));
3393 fs = get_fpu_register_float(fs_reg); 3046 fs = get_fpu_register_float(fs_reg());
3394 if (std::isnan(fs) && std::isnan(ft)) { 3047 if (std::isnan(fs) && std::isnan(ft)) {
3395 set_fpu_register_float(fd_reg, fs); 3048 set_fpu_register_float(fd_reg(), fs);
3396 } else if (std::isnan(fs) && !std::isnan(ft)) { 3049 } else if (std::isnan(fs) && !std::isnan(ft)) {
3397 set_fpu_register_float(fd_reg, ft); 3050 set_fpu_register_float(fd_reg(), ft);
3398 } else if (!std::isnan(fs) && std::isnan(ft)) { 3051 } else if (!std::isnan(fs) && std::isnan(ft)) {
3399 set_fpu_register_float(fd_reg, fs); 3052 set_fpu_register_float(fd_reg(), fs);
3400 } else { 3053 } else {
3401 set_fpu_register_float(fd_reg, (fs <= ft) ? ft : fs); 3054 set_fpu_register_float(fd_reg(), (fs <= ft) ? ft : fs);
3402 } 3055 }
3403 break; 3056 break;
3404 case MINA: 3057 case MINA:
3405 DCHECK(IsMipsArchVariant(kMips32r6)); 3058 DCHECK(IsMipsArchVariant(kMips32r6));
3406 fs = get_fpu_register_float(fs_reg); 3059 fs = get_fpu_register_float(fs_reg());
3407 if (std::isnan(fs) && std::isnan(ft)) { 3060 if (std::isnan(fs) && std::isnan(ft)) {
3408 set_fpu_register_float(fd_reg, fs); 3061 set_fpu_register_float(fd_reg(), fs);
3409 } else if (std::isnan(fs) && !std::isnan(ft)) { 3062 } else if (std::isnan(fs) && !std::isnan(ft)) {
3410 set_fpu_register_float(fd_reg, ft); 3063 set_fpu_register_float(fd_reg(), ft);
3411 } else if (!std::isnan(fs) && std::isnan(ft)) { 3064 } else if (!std::isnan(fs) && std::isnan(ft)) {
3412 set_fpu_register_float(fd_reg, fs); 3065 set_fpu_register_float(fd_reg(), fs);
3413 } else { 3066 } else {
3414 float result; 3067 float result;
3415 if (fabs(fs) > fabs(ft)) { 3068 if (fabs(fs) > fabs(ft)) {
3416 result = ft; 3069 result = ft;
3417 } else if (fabs(fs) < fabs(ft)) { 3070 } else if (fabs(fs) < fabs(ft)) {
3418 result = fs; 3071 result = fs;
3419 } else { 3072 } else {
3420 result = (fs > ft ? fs : ft); 3073 result = (fs > ft ? fs : ft);
3421 } 3074 }
3422 set_fpu_register_float(fd_reg, result); 3075 set_fpu_register_float(fd_reg(), result);
3423 } 3076 }
3424 break; 3077 break;
3425 case MAXA: 3078 case MAXA:
3426 DCHECK(IsMipsArchVariant(kMips32r6)); 3079 DCHECK(IsMipsArchVariant(kMips32r6));
3427 fs = get_fpu_register_float(fs_reg); 3080 fs = get_fpu_register_float(fs_reg());
3428 if (std::isnan(fs) && std::isnan(ft)) { 3081 if (std::isnan(fs) && std::isnan(ft)) {
3429 set_fpu_register_float(fd_reg, fs); 3082 set_fpu_register_float(fd_reg(), fs);
3430 } else if (std::isnan(fs) && !std::isnan(ft)) { 3083 } else if (std::isnan(fs) && !std::isnan(ft)) {
3431 set_fpu_register_float(fd_reg, ft); 3084 set_fpu_register_float(fd_reg(), ft);
3432 } else if (!std::isnan(fs) && std::isnan(ft)) { 3085 } else if (!std::isnan(fs) && std::isnan(ft)) {
3433 set_fpu_register_float(fd_reg, fs); 3086 set_fpu_register_float(fd_reg(), fs);
3434 } else { 3087 } else {
3435 float result; 3088 float result;
3436 if (fabs(fs) < fabs(ft)) { 3089 if (fabs(fs) < fabs(ft)) {
3437 result = ft; 3090 result = ft;
3438 } else if (fabs(fs) > fabs(ft)) { 3091 } else if (fabs(fs) > fabs(ft)) {
3439 result = fs; 3092 result = fs;
3440 } else { 3093 } else {
3441 result = (fs > ft ? fs : ft); 3094 result = (fs > ft ? fs : ft);
3442 } 3095 }
3443 set_fpu_register_float(fd_reg, result); 3096 set_fpu_register_float(fd_reg(), result);
3444 } 3097 }
3445 break; 3098 break;
3446 case CVT_L_S: { 3099 case CVT_L_S: {
3447 if (IsFp64Mode()) { 3100 if (IsFp64Mode()) {
3448 int64_t result; 3101 int64_t result;
3449 float rounded; 3102 float rounded;
3450 round64_according_to_fcsr(fs, rounded, result, fs); 3103 round64_according_to_fcsr(fs, rounded, result, fs);
3451 set_fpu_register(fd_reg, result); 3104 set_fpu_register(fd_reg(), result);
3452 if (set_fcsr_round64_error(fs, rounded)) { 3105 if (set_fcsr_round64_error(fs, rounded)) {
3453 set_fpu_register(fd_reg, kFPU64InvalidResult); 3106 set_fpu_register(fd_reg(), kFPU64InvalidResult);
3454 } 3107 }
3455 } else { 3108 } else {
3456 UNSUPPORTED(); 3109 UNSUPPORTED();
3457 } 3110 }
3458 break; 3111 break;
3459 } 3112 }
3460 case CVT_W_S: { 3113 case CVT_W_S: {
3461 float rounded; 3114 float rounded;
3462 int32_t result; 3115 int32_t result;
3463 round_according_to_fcsr(fs, rounded, result, fs); 3116 round_according_to_fcsr(fs, rounded, result, fs);
3464 set_fpu_register_word(fd_reg, result); 3117 set_fpu_register_word(fd_reg(), result);
3465 if (set_fcsr_round_error(fs, rounded)) { 3118 if (set_fcsr_round_error(fs, rounded)) {
3466 set_fpu_register_word(fd_reg, kFPUInvalidResult); 3119 set_fpu_register_word(fd_reg(), kFPUInvalidResult);
3467 } 3120 }
3468 break; 3121 break;
3469 } 3122 }
3470 default: 3123 default:
3471 // CVT_W_S CVT_L_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S 3124 // CVT_W_S CVT_L_S ROUND_W_S ROUND_L_S FLOOR_W_S FLOOR_L_S
3472 // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented. 3125 // CEIL_W_S CEIL_L_S CVT_PS_S are unimplemented.
3473 UNREACHABLE(); 3126 UNREACHABLE();
3474 } 3127 }
3475 } 3128 }
3476 3129
3477 3130
3478 void Simulator::DecodeTypeRegisterLRsType(Instruction* instr, 3131 void Simulator::DecodeTypeRegisterLRsType() {
3479 const int32_t& ft_reg, 3132 double fs = get_fpu_register_double(fs_reg());
3480 const int32_t& fs_reg, 3133 double ft = get_fpu_register_double(ft_reg());
3481 const int32_t& fd_reg) { 3134 switch (get_instr()->FunctionFieldRaw()) {
3482 double fs = get_fpu_register_double(fs_reg);
3483 double ft = get_fpu_register_double(ft_reg);
3484 switch (instr->FunctionFieldRaw()) {
3485 case CVT_D_L: // Mips32r2 instruction. 3135 case CVT_D_L: // Mips32r2 instruction.
3486 // Watch the signs here, we want 2 32-bit vals 3136 // Watch the signs here, we want 2 32-bit vals
3487 // to make a sign-64. 3137 // to make a sign-64.
3488 int64_t i64; 3138 int64_t i64;
3489 if (IsFp64Mode()) { 3139 if (IsFp64Mode()) {
3490 i64 = get_fpu_register(fs_reg); 3140 i64 = get_fpu_register(fs_reg());
3491 } else { 3141 } else {
3492 i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg)); 3142 i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg()));
3493 i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg + 1)) << 32; 3143 i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32;
3494 } 3144 }
3495 set_fpu_register_double(fd_reg, static_cast<double>(i64)); 3145 set_fpu_register_double(fd_reg(), static_cast<double>(i64));
3496 break; 3146 break;
3497 case CVT_S_L: 3147 case CVT_S_L:
3498 if (IsFp64Mode()) { 3148 if (IsFp64Mode()) {
3499 i64 = get_fpu_register(fs_reg); 3149 i64 = get_fpu_register(fs_reg());
3500 } else { 3150 } else {
3501 i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg)); 3151 i64 = static_cast<uint32_t>(get_fpu_register_word(fs_reg()));
3502 i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg + 1)) << 32; 3152 i64 |= static_cast<int64_t>(get_fpu_register_word(fs_reg() + 1)) << 32;
3503 } 3153 }
3504 set_fpu_register_float(fd_reg, static_cast<float>(i64)); 3154 set_fpu_register_float(fd_reg(), static_cast<float>(i64));
3505 break; 3155 break;
3506 case CMP_AF: // Mips64r6 CMP.D instructions. 3156 case CMP_AF: // Mips64r6 CMP.D instructions.
3507 set_fpu_register(fd_reg, 0); 3157 set_fpu_register(fd_reg(), 0);
3508 break; 3158 break;
3509 case CMP_UN: 3159 case CMP_UN:
3510 if (std::isnan(fs) || std::isnan(ft)) { 3160 if (std::isnan(fs) || std::isnan(ft)) {
3511 set_fpu_register(fd_reg, -1); 3161 set_fpu_register(fd_reg(), -1);
3512 } else { 3162 } else {
3513 set_fpu_register(fd_reg, 0); 3163 set_fpu_register(fd_reg(), 0);
3514 } 3164 }
3515 break; 3165 break;
3516 case CMP_EQ: 3166 case CMP_EQ:
3517 if (fs == ft) { 3167 if (fs == ft) {
3518 set_fpu_register(fd_reg, -1); 3168 set_fpu_register(fd_reg(), -1);
3519 } else { 3169 } else {
3520 set_fpu_register(fd_reg, 0); 3170 set_fpu_register(fd_reg(), 0);
3521 } 3171 }
3522 break; 3172 break;
3523 case CMP_UEQ: 3173 case CMP_UEQ:
3524 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) { 3174 if ((fs == ft) || (std::isnan(fs) || std::isnan(ft))) {
3525 set_fpu_register(fd_reg, -1); 3175 set_fpu_register(fd_reg(), -1);
3526 } else { 3176 } else {
3527 set_fpu_register(fd_reg, 0); 3177 set_fpu_register(fd_reg(), 0);
3528 } 3178 }
3529 break; 3179 break;
3530 case CMP_LT: 3180 case CMP_LT:
3531 if (fs < ft) { 3181 if (fs < ft) {
3532 set_fpu_register(fd_reg, -1); 3182 set_fpu_register(fd_reg(), -1);
3533 } else { 3183 } else {
3534 set_fpu_register(fd_reg, 0); 3184 set_fpu_register(fd_reg(), 0);
3535 } 3185 }
3536 break; 3186 break;
3537 case CMP_ULT: 3187 case CMP_ULT:
3538 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) { 3188 if ((fs < ft) || (std::isnan(fs) || std::isnan(ft))) {
3539 set_fpu_register(fd_reg, -1); 3189 set_fpu_register(fd_reg(), -1);
3540 } else { 3190 } else {
3541 set_fpu_register(fd_reg, 0); 3191 set_fpu_register(fd_reg(), 0);
3542 } 3192 }
3543 break; 3193 break;
3544 case CMP_LE: 3194 case CMP_LE:
3545 if (fs <= ft) { 3195 if (fs <= ft) {
3546 set_fpu_register(fd_reg, -1); 3196 set_fpu_register(fd_reg(), -1);
3547 } else { 3197 } else {
3548 set_fpu_register(fd_reg, 0); 3198 set_fpu_register(fd_reg(), 0);
3549 } 3199 }
3550 break; 3200 break;
3551 case CMP_ULE: 3201 case CMP_ULE:
3552 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) { 3202 if ((fs <= ft) || (std::isnan(fs) || std::isnan(ft))) {
3553 set_fpu_register(fd_reg, -1); 3203 set_fpu_register(fd_reg(), -1);
3554 } else { 3204 } else {
3555 set_fpu_register(fd_reg, 0); 3205 set_fpu_register(fd_reg(), 0);
3556 } 3206 }
3557 break; 3207 break;
3558 case CMP_OR: 3208 case CMP_OR:
3559 if (!std::isnan(fs) && !std::isnan(ft)) { 3209 if (!std::isnan(fs) && !std::isnan(ft)) {
3560 set_fpu_register(fd_reg, -1); 3210 set_fpu_register(fd_reg(), -1);
3561 } else { 3211 } else {
3562 set_fpu_register(fd_reg, 0); 3212 set_fpu_register(fd_reg(), 0);
3563 } 3213 }
3564 break; 3214 break;
3565 case CMP_UNE: 3215 case CMP_UNE:
3566 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) { 3216 if ((fs != ft) || (std::isnan(fs) || std::isnan(ft))) {
3567 set_fpu_register(fd_reg, -1); 3217 set_fpu_register(fd_reg(), -1);
3568 } else { 3218 } else {
3569 set_fpu_register(fd_reg, 0); 3219 set_fpu_register(fd_reg(), 0);
3570 } 3220 }
3571 break; 3221 break;
3572 case CMP_NE: 3222 case CMP_NE:
3573 if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) { 3223 if (fs != ft && (!std::isnan(fs) && !std::isnan(ft))) {
3574 set_fpu_register(fd_reg, -1); 3224 set_fpu_register(fd_reg(), -1);
3575 } else { 3225 } else {
3576 set_fpu_register(fd_reg, 0); 3226 set_fpu_register(fd_reg(), 0);
3577 } 3227 }
3578 break; 3228 break;
3579 default: 3229 default:
3580 UNREACHABLE(); 3230 UNREACHABLE();
3581 } 3231 }
3582 } 3232 }
3583 3233
3584 3234
3585 void Simulator::DecodeTypeRegisterCOP1( 3235 void Simulator::DecodeTypeRegisterCOP1() {
3586 Instruction* instr, const int32_t& rs_reg, const int32_t& rs, 3236 switch (get_instr()->RsFieldRaw()) {
3587 const uint32_t& rs_u, const int32_t& rt_reg, const int32_t& rt,
3588 const uint32_t& rt_u, const int32_t& rd_reg, const int32_t& fr_reg,
3589 const int32_t& fs_reg, const int32_t& ft_reg, const int32_t& fd_reg,
3590 int64_t& i64hilo, uint64_t& u64hilo, int32_t& alu_out, bool& do_interrupt,
3591 int32_t& current_pc, int32_t& next_pc, int32_t& return_addr_reg) {
3592 switch (instr->RsFieldRaw()) {
3593 case CFC1: 3237 case CFC1:
3594 set_register(rt_reg, alu_out); 3238 // At the moment only FCSR is supported.
3239 DCHECK(fs_reg() == kFCSRRegister);
3240 set_register(rt_reg(), FCSR_);
3595 break; 3241 break;
3596 case MFC1: 3242 case MFC1:
3597 set_register(rt_reg, alu_out); 3243 set_register(rt_reg(), get_fpu_register_word(fs_reg()));
3598 break; 3244 break;
3599 case MFHC1: 3245 case MFHC1:
3600 set_register(rt_reg, alu_out); 3246 set_register(rt_reg(), get_fpu_register_hi_word(fs_reg()));
3601 break; 3247 break;
3602 case CTC1: 3248 case CTC1:
3603 // At the moment only FCSR is supported. 3249 // At the moment only FCSR is supported.
3604 DCHECK(fs_reg == kFCSRRegister); 3250 DCHECK(fs_reg() == kFCSRRegister);
3605 FCSR_ = registers_[rt_reg]; 3251 FCSR_ = registers_[rt_reg()];
3606 break; 3252 break;
3607 case MTC1: 3253 case MTC1:
3608 // Hardware writes upper 32-bits to zero on mtc1. 3254 // Hardware writes upper 32-bits to zero on mtc1.
3609 set_fpu_register_hi_word(fs_reg, 0); 3255 set_fpu_register_hi_word(fs_reg(), 0);
3610 set_fpu_register_word(fs_reg, registers_[rt_reg]); 3256 set_fpu_register_word(fs_reg(), registers_[rt_reg()]);
3611 break; 3257 break;
3612 case MTHC1: 3258 case MTHC1:
3613 set_fpu_register_hi_word(fs_reg, registers_[rt_reg]); 3259 set_fpu_register_hi_word(fs_reg(), registers_[rt_reg()]);
3614 break; 3260 break;
3615 case S: { 3261 case S: {
3616 DecodeTypeRegisterSRsType(instr, ft_reg, fs_reg, fd_reg); 3262 DecodeTypeRegisterSRsType();
3617 break; 3263 break;
3618 } 3264 }
3619 case D: 3265 case D:
3620 DecodeTypeRegisterDRsType(instr, fr_reg, fs_reg, ft_reg, fd_reg); 3266 DecodeTypeRegisterDRsType();
3621 break; 3267 break;
3622 case W: 3268 case W:
3623 DecodeTypeRegisterWRsType(instr, alu_out, fd_reg, fs_reg, ft_reg); 3269 DecodeTypeRegisterWRsType();
3624 break; 3270 break;
3625 case L: 3271 case L:
3626 DecodeTypeRegisterLRsType(instr, ft_reg, fs_reg, fd_reg); 3272 DecodeTypeRegisterLRsType();
3627 break; 3273 break;
3274 case PS:
3275 // Not implemented.
3276 UNREACHABLE();
3628 default: 3277 default:
3629 UNREACHABLE(); 3278 UNREACHABLE();
3630 } 3279 }
3631 } 3280 }
3632 3281
3633 3282
3634 void Simulator::DecodeTypeRegisterCOP1X(Instruction* instr, 3283 void Simulator::DecodeTypeRegisterCOP1X() {
3635 const int32_t& fr_reg, 3284 switch (get_instr()->FunctionFieldRaw()) {
3636 const int32_t& fs_reg,
3637 const int32_t& ft_reg,
3638 const int32_t& fd_reg) {
3639 switch (instr->FunctionFieldRaw()) {
3640 case MADD_D: 3285 case MADD_D:
3641 double fr, ft, fs; 3286 double fr, ft, fs;
3642 fr = get_fpu_register_double(fr_reg); 3287 fr = get_fpu_register_double(fr_reg());
3643 fs = get_fpu_register_double(fs_reg); 3288 fs = get_fpu_register_double(fs_reg());
3644 ft = get_fpu_register_double(ft_reg); 3289 ft = get_fpu_register_double(ft_reg());
3645 set_fpu_register_double(fd_reg, fs * ft + fr); 3290 set_fpu_register_double(fd_reg(), fs * ft + fr);
3646 break; 3291 break;
3647 default: 3292 default:
3648 UNREACHABLE(); 3293 UNREACHABLE();
3649 } 3294 }
3650 } 3295 }
3651 3296
3652 3297
3653 void Simulator::DecodeTypeRegisterSPECIAL( 3298 void Simulator::DecodeTypeRegisterSPECIAL() {
3654 Instruction* instr, const int32_t& rs_reg, const int32_t& rs, 3299 int64_t alu_out = 0x12345678;
3655 const uint32_t& rs_u, const int32_t& rt_reg, const int32_t& rt, 3300 int64_t i64hilo = 0;
3656 const uint32_t& rt_u, const int32_t& rd_reg, const int32_t& fr_reg, 3301 uint64_t u64hilo = 0;
3657 const int32_t& fs_reg, const int32_t& ft_reg, const int32_t& fd_reg, 3302 bool do_interrupt = false;
3658 int64_t& i64hilo, uint64_t& u64hilo, int32_t& alu_out, bool& do_interrupt, 3303
3659 int32_t& current_pc, int32_t& next_pc, int32_t& return_addr_reg) { 3304 switch (get_instr()->FunctionFieldRaw()) {
3660 switch (instr->FunctionFieldRaw()) {
3661 case SELEQZ_S: 3305 case SELEQZ_S:
3662 DCHECK(IsMipsArchVariant(kMips32r6)); 3306 DCHECK(IsMipsArchVariant(kMips32r6));
3663 set_register(rd_reg, rt == 0 ? rs : 0); 3307 set_register(rd_reg(), rt() == 0 ? rs() : 0);
3664 break; 3308 break;
3665 case SELNEZ_S: 3309 case SELNEZ_S:
3666 DCHECK(IsMipsArchVariant(kMips32r6)); 3310 DCHECK(IsMipsArchVariant(kMips32r6));
3667 set_register(rd_reg, rt != 0 ? rs : 0); 3311 set_register(rd_reg(), rt() != 0 ? rs() : 0);
3668 break; 3312 break;
3669 case JR: { 3313 case JR: {
3670 Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( 3314 int32_t next_pc = rs();
3671 current_pc+Instruction::kInstrSize); 3315 int32_t current_pc = get_pc();
3672 BranchDelayInstructionDecode(branch_delay_instr); 3316 Instruction* branch_delay_instr =
3673 set_pc(next_pc); 3317 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
3674 pc_modified_ = true; 3318 BranchDelayInstructionDecode(branch_delay_instr);
3675 break; 3319 set_pc(next_pc);
3676 } 3320 pc_modified_ = true;
3677 case JALR: { 3321 break;
3678 Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( 3322 }
3679 current_pc+Instruction::kInstrSize); 3323 case JALR: {
3680 BranchDelayInstructionDecode(branch_delay_instr); 3324 int32_t next_pc = rs();
3681 set_register(return_addr_reg, 3325 int32_t return_addr_reg = rd_reg();
3682 current_pc + 2 * Instruction::kInstrSize); 3326 int32_t current_pc = get_pc();
3683 set_pc(next_pc); 3327 Instruction* branch_delay_instr =
3684 pc_modified_ = true; 3328 reinterpret_cast<Instruction*>(current_pc + Instruction::kInstrSize);
3685 break; 3329 BranchDelayInstructionDecode(branch_delay_instr);
3686 } 3330 set_register(return_addr_reg, current_pc + 2 * Instruction::kInstrSize);
3687 // Instructions using HI and LO registers. 3331 set_pc(next_pc);
3688 case MULT: 3332 pc_modified_ = true;
3689 if (!IsMipsArchVariant(kMips32r6)) { 3333 break;
3690 set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff)); 3334 }
3691 set_register(HI, static_cast<int32_t>(i64hilo >> 32)); 3335 case SLL:
3692 } else { 3336 alu_out = rt() << sa();
3693 switch (instr->SaValue()) { 3337 SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3694 case MUL_OP: 3338 break;
3695 set_register(rd_reg, 3339 case SRL:
3696 static_cast<int32_t>(i64hilo & 0xffffffff)); 3340 if (rs_reg() == 0) {
3697 break; 3341 // Regular logical right shift of a word by a fixed number of
3698 case MUH_OP: 3342 // bits instruction. RS field is always equal to 0.
3699 set_register(rd_reg, static_cast<int32_t>(i64hilo >> 32)); 3343 alu_out = rt_u() >> sa();
3700 break; 3344 } else {
3701 default: 3345 // Logical right-rotate of a word by a fixed number of bits. This
3702 UNIMPLEMENTED_MIPS(); 3346 // is special case of SRL instruction, added in MIPS32 Release 2.
3703 break; 3347 // RS field is equal to 00001.
3348 alu_out = base::bits::RotateRight32(rt_u(), sa());
3349 }
3350 SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3351 break;
3352 case SRA:
3353 alu_out = rt() >> sa();
3354 SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3355 break;
3356 case SLLV:
3357 alu_out = rt() << rs();
3358 SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3359 break;
3360 case SRLV:
3361 if (sa() == 0) {
3362 // Regular logical right-shift of a word by a variable number of
3363 // bits instruction. SA field is always equal to 0.
3364 alu_out = rt_u() >> rs();
3365 } else {
3366 // Logical right-rotate of a word by a variable number of bits.
3367 // This is special case od SRLV instruction, added in MIPS32
3368 // Release 2. SA field is equal to 00001.
3369 alu_out = base::bits::RotateRight32(rt_u(), rs_u());
3370 }
3371 SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3372 break;
3373 case SRAV:
3374 alu_out = rt() >> rs();
3375 SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3376 break;
3377 case MFHI: // MFHI == CLZ on R6.
3378 if (!IsMipsArchVariant(kMips32r6)) {
3379 DCHECK(sa() == 0);
3380 alu_out = get_register(HI);
3381 } else {
3382 // MIPS spec: If no bits were set in GPR rs, the result written to
3383 // GPR rd is 32.
3384 DCHECK(sa() == 1);
3385 alu_out = base::bits::CountLeadingZeros32(rs_u());
3386 }
3387 SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3388 break;
3389 case MFLO:
3390 alu_out = get_register(LO);
3391 SetResult(rd_reg(), static_cast<int32_t>(alu_out));
3392 break;
3393 // Instructions using HI and LO registers.
3394 case MULT:
3395 i64hilo = static_cast<int64_t>(rs()) * static_cast<int64_t>(rt());
3396 if (!IsMipsArchVariant(kMips32r6)) {
3397 set_register(LO, static_cast<int32_t>(i64hilo & 0xffffffff));
3398 set_register(HI, static_cast<int32_t>(i64hilo >> 32));
3399 } else {
3400 switch (sa()) {
3401 case MUL_OP:
3402 set_register(rd_reg(), static_cast<int32_t>(i64hilo & 0xffffffff));
3403 break;
3404 case MUH_OP:
3405 set_register(rd_reg(), static_cast<int32_t>(i64hilo >> 32));
3406 break;
3407 default:
3408 UNIMPLEMENTED_MIPS();
3409 break;
3410 }
3411 }
3412 break;
3413 case MULTU:
3414 u64hilo = static_cast<uint64_t>(rs_u()) * static_cast<uint64_t>(rt_u());
3415 if (!IsMipsArchVariant(kMips32r6)) {
3416 set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff));
3417 set_register(HI, static_cast<int32_t>(u64hilo >> 32));
3418 } else {
3419 switch (sa()) {
3420 case MUL_OP:
3421 set_register(rd_reg(), static_cast<int32_t>(u64hilo & 0xffffffff));
3422 break;
3423 case MUH_OP:
3424 set_register(rd_reg(), static_cast<int32_t>(u64hilo >> 32));
3425 break;
3426 default:
3427 UNIMPLEMENTED_MIPS();
3428 break;
3429 }
3430 }
3431 break;
3432 case DIV:
3433 if (IsMipsArchVariant(kMips32r6)) {
3434 switch (get_instr()->SaValue()) {
3435 case DIV_OP:
3436 if (rs() == INT_MIN && rt() == -1) {
3437 set_register(rd_reg(), INT_MIN);
3438 } else if (rt() != 0) {
3439 set_register(rd_reg(), rs() / rt());
3704 } 3440 }
3705 } 3441 break;
3706 break; 3442 case MOD_OP:
3707 case MULTU: 3443 if (rs() == INT_MIN && rt() == -1) {
3708 if (!IsMipsArchVariant(kMips32r6)) { 3444 set_register(rd_reg(), 0);
3709 set_register(LO, static_cast<int32_t>(u64hilo & 0xffffffff)); 3445 } else if (rt() != 0) {
3710 set_register(HI, static_cast<int32_t>(u64hilo >> 32)); 3446 set_register(rd_reg(), rs() % rt());
3711 } else {
3712 switch (instr->SaValue()) {
3713 case MUL_OP:
3714 set_register(rd_reg,
3715 static_cast<int32_t>(u64hilo & 0xffffffff));
3716 break;
3717 case MUH_OP:
3718 set_register(rd_reg, static_cast<int32_t>(u64hilo >> 32));
3719 break;
3720 default:
3721 UNIMPLEMENTED_MIPS();
3722 break;
3723 } 3447 }
3724 } 3448 break;
3725 break; 3449 default:
3726 case DIV: 3450 UNIMPLEMENTED_MIPS();
3727 if (IsMipsArchVariant(kMips32r6)) { 3451 break;
3728 switch (instr->SaValue()) { 3452 }
3729 case DIV_OP: 3453 } else {
3730 if (rs == INT_MIN && rt == -1) { 3454 // Divide by zero and overflow was not checked in the
3731 set_register(rd_reg, INT_MIN); 3455 // configuration step - div and divu do not raise exceptions. On
3732 } else if (rt != 0) { 3456 // division by 0 the result will be UNPREDICTABLE. On overflow
3733 set_register(rd_reg, rs / rt); 3457 // (INT_MIN/-1), return INT_MIN which is what the hardware does.
3734 } 3458 if (rs() == INT_MIN && rt() == -1) {
3735 break; 3459 set_register(LO, INT_MIN);
3736 case MOD_OP: 3460 set_register(HI, 0);
3737 if (rs == INT_MIN && rt == -1) { 3461 } else if (rt() != 0) {
3738 set_register(rd_reg, 0); 3462 set_register(LO, rs() / rt());
3739 } else if (rt != 0) { 3463 set_register(HI, rs() % rt());
3740 set_register(rd_reg, rs % rt); 3464 }
3741 } 3465 }
3742 break; 3466 break;
3743 default: 3467 case DIVU:
3744 UNIMPLEMENTED_MIPS(); 3468 if (IsMipsArchVariant(kMips32r6)) {
3745 break; 3469 switch (get_instr()->SaValue()) {
3470 case DIV_OP:
3471 if (rt_u() != 0) {
3472 set_register(rd_reg(), rs_u() / rt_u());
3746 } 3473 }
3747 } else { 3474 break;
3748 // Divide by zero and overflow was not checked in the 3475 case MOD_OP:
3749 // configuration step - div and divu do not raise exceptions. On 3476 if (rt_u() != 0) {
3750 // division by 0 the result will be UNPREDICTABLE. On overflow 3477 set_register(rd_reg(), rs_u() % rt_u());
3751 // (INT_MIN/-1), return INT_MIN which is what the hardware does.
3752 if (rs == INT_MIN && rt == -1) {
3753 set_register(LO, INT_MIN);
3754 set_register(HI, 0);
3755 } else if (rt != 0) {
3756 set_register(LO, rs / rt);
3757 set_register(HI, rs % rt);
3758 } 3478 }
3759 } 3479 break;
3760 break; 3480 default:
3761 case DIVU: 3481 UNIMPLEMENTED_MIPS();
3762 if (IsMipsArchVariant(kMips32r6)) { 3482 break;
3763 switch (instr->SaValue()) { 3483 }
3764 case DIV_OP: 3484 } else {
3765 if (rt_u != 0) { 3485 if (rt_u() != 0) {
3766 set_register(rd_reg, rs_u / rt_u); 3486 set_register(LO, rs_u() / rt_u());
3767 } 3487 set_register(HI, rs_u() % rt_u());
3768 break; 3488 }
3769 case MOD_OP: 3489 }
3770 if (rt_u != 0) { 3490 break;
3771 set_register(rd_reg, rs_u % rt_u); 3491 case ADD:
3772 } 3492 if (HaveSameSign(rs(), rt())) {
3773 break; 3493 if (rs() > 0) {
3774 default: 3494 if (rs() <= (Registers::kMaxValue - rt())) {
3775 UNIMPLEMENTED_MIPS(); 3495 SignalException(kIntegerOverflow);
3776 break; 3496 }
3777 } 3497 } else if (rs() < 0) {
3778 } else { 3498 if (rs() >= (Registers::kMinValue - rt())) {
3779 if (rt_u != 0) { 3499 SignalException(kIntegerUnderflow);
3780 set_register(LO, rs_u / rt_u); 3500 }
3781 set_register(HI, rs_u % rt_u); 3501 }
3782 } 3502 }
3783 } 3503 SetResult(rd_reg(), rs() + rt());
3784 break; 3504 break;
3785 // Break and trap instructions. 3505 case ADDU:
3786 case BREAK: 3506 SetResult(rd_reg(), rs() + rt());
3787 case TGE: 3507 break;
3788 case TGEU: 3508 case SUB:
3789 case TLT: 3509 if (!HaveSameSign(rs(), rt())) {
3790 case TLTU: 3510 if (rs() > 0) {
3791 case TEQ: 3511 if (rs() <= (Registers::kMaxValue + rt())) {
3792 case TNE: 3512 SignalException(kIntegerOverflow);
3793 if (do_interrupt) { 3513 }
3794 SoftwareInterrupt(instr); 3514 } else if (rs() < 0) {
3795 } 3515 if (rs() >= (Registers::kMinValue + rt())) {
3796 break; 3516 SignalException(kIntegerUnderflow);
3797 // Conditional moves. 3517 }
3798 case MOVN: 3518 }
3799 if (rt) { 3519 }
3800 set_register(rd_reg, rs); 3520 SetResult(rd_reg(), rs() - rt());
3801 TraceRegWr(rs); 3521 break;
3802 } 3522 case SUBU:
3803 break; 3523 SetResult(rd_reg(), rs() - rt());
3804 case MOVCI: { 3524 break;
3805 uint32_t cc = instr->FBccValue(); 3525 case AND:
3806 uint32_t fcsr_cc = get_fcsr_condition_bit(cc); 3526 SetResult(rd_reg(), rs() & rt());
3807 if (instr->Bit(16)) { // Read Tf bit. 3527 break;
3808 if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); 3528 case OR:
3809 } else { 3529 SetResult(rd_reg(), rs() | rt());
3810 if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg, rs); 3530 break;
3811 } 3531 case XOR:
3812 break; 3532 SetResult(rd_reg(), rs() ^ rt());
3813 } 3533 break;
3814 case MOVZ: 3534 case NOR:
3815 if (!rt) { 3535 SetResult(rd_reg(), ~(rs() | rt()));
3816 set_register(rd_reg, rs); 3536 break;
3817 TraceRegWr(rs); 3537 case SLT:
3818 } 3538 SetResult(rd_reg(), rs() < rt() ? 1 : 0);
3819 break; 3539 break;
3820 default: // For other special opcodes we do the default operation. 3540 case SLTU:
3821 set_register(rd_reg, alu_out); 3541 SetResult(rd_reg(), rs_u() < rt_u() ? 1 : 0);
3822 TraceRegWr(alu_out); 3542 break;
3823 } 3543 // Break and trap instructions.
3544 case BREAK:
3545 do_interrupt = true;
3546 break;
3547 case TGE:
3548 do_interrupt = rs() >= rt();
3549 break;
3550 case TGEU:
3551 do_interrupt = rs_u() >= rt_u();
3552 break;
3553 case TLT:
3554 do_interrupt = rs() < rt();
3555 break;
3556 case TLTU:
3557 do_interrupt = rs_u() < rt_u();
3558 break;
3559 case TEQ:
3560 do_interrupt = rs() == rt();
3561 break;
3562 case TNE:
3563 do_interrupt = rs() != rt();
3564 break;
3565 // Conditional moves.
3566 case MOVN:
3567 if (rt()) {
3568 set_register(rd_reg(), rs());
3569 TraceRegWr(rs());
3570 }
3571 break;
3572 case MOVCI: {
3573 uint32_t cc = get_instr()->FBccValue();
3574 uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
3575 if (get_instr()->Bit(16)) { // Read Tf bit.
3576 if (test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
3577 } else {
3578 if (!test_fcsr_bit(fcsr_cc)) set_register(rd_reg(), rs());
3579 }
3580 break;
3581 }
3582 case MOVZ:
3583 if (!rt()) {
3584 set_register(rd_reg(), rs());
3585 TraceRegWr(rs());
3586 }
3587 break;
3588 default:
3589 UNREACHABLE();
3590 }
3591 if (do_interrupt) {
3592 SoftwareInterrupt(get_instr());
3593 }
3824 } 3594 }
3825 3595
3826 3596
3827 void Simulator::DecodeTypeRegisterSPECIAL2(Instruction* instr, 3597 void Simulator::DecodeTypeRegisterSPECIAL2() {
3828 const int32_t& rd_reg, 3598 int32_t alu_out;
3829 int32_t& alu_out) { 3599 switch (get_instr()->FunctionFieldRaw()) {
3830 switch (instr->FunctionFieldRaw()) {
3831 case MUL: 3600 case MUL:
3832 set_register(rd_reg, alu_out); 3601 // Only the lower 32 bits are kept.
3833 TraceRegWr(alu_out); 3602 alu_out = rs_u() * rt_u();
3834 // HI and LO are UNPREDICTABLE after the operation. 3603 // HI and LO are UNPREDICTABLE after the operation.
3835 set_register(LO, Unpredictable); 3604 set_register(LO, Unpredictable);
3836 set_register(HI, Unpredictable); 3605 set_register(HI, Unpredictable);
3837 break; 3606 break;
3838 default: // For other special2 opcodes we do the default operation. 3607 case CLZ:
3839 set_register(rd_reg, alu_out); 3608 // MIPS32 spec: If no bits were set in GPR rs, the result written to
3840 TraceRegWr(alu_out); 3609 // GPR rd is 32.
3610 alu_out = base::bits::CountLeadingZeros32(rs_u());
3611 break;
3612 default:
3613 alu_out = 0x12345678;
3614 UNREACHABLE();
3841 } 3615 }
3616 SetResult(rd_reg(), alu_out);
3842 } 3617 }
3843 3618
3844 3619
3845 void Simulator::DecodeTypeRegisterSPECIAL3(Instruction* instr, 3620 void Simulator::DecodeTypeRegisterSPECIAL3() {
3846 const int32_t& rt_reg, 3621 int32_t alu_out;
3847 const int32_t& rd_reg, 3622 switch (get_instr()->FunctionFieldRaw()) {
3848 int32_t& alu_out) { 3623 case INS: { // Mips32r2 instruction.
3849 switch (instr->FunctionFieldRaw()) { 3624 // Interpret rd field as 5-bit msb of insert.
3850 case INS: 3625 uint16_t msb = rd_reg();
3626 // Interpret sa field as 5-bit lsb of insert.
3627 uint16_t lsb = sa();
3628 uint16_t size = msb - lsb + 1;
3629 uint32_t mask = (1 << size) - 1;
3630 alu_out = (rt_u() & ~(mask << lsb)) | ((rs_u() & mask) << lsb);
3851 // Ins instr leaves result in Rt, rather than Rd. 3631 // Ins instr leaves result in Rt, rather than Rd.
3852 set_register(rt_reg, alu_out); 3632 SetResult(rt_reg(), alu_out);
3853 TraceRegWr(alu_out); 3633 break;
3854 break; 3634 }
3855 case EXT: 3635 case EXT: { // Mips32r2 instruction.
3856 set_register(rt_reg, alu_out); 3636 // Interpret rd field as 5-bit msb of extract.
3857 TraceRegWr(alu_out); 3637 uint16_t msb = rd_reg();
3858 break; 3638 // Interpret sa field as 5-bit lsb of extract.
3859 case BSHFL: 3639 uint16_t lsb = sa();
3860 set_register(rd_reg, alu_out); 3640 uint16_t size = msb + 1;
3861 TraceRegWr(alu_out); 3641 uint32_t mask = (1 << size) - 1;
3862 break; 3642 alu_out = (rs_u() & (mask << lsb)) >> lsb;
3643 SetResult(rt_reg(), alu_out);
3644 break;
3645 }
3646 case BSHFL: {
3647 int sa = get_instr()->SaFieldRaw() >> kSaShift;
3648 switch (sa) {
3649 case BITSWAP: {
3650 uint32_t input = static_cast<uint32_t>(rt());
3651 uint32_t output = 0;
3652 uint8_t i_byte, o_byte;
3653
3654 // Reverse the bit in byte for each individual byte
3655 for (int i = 0; i < 4; i++) {
3656 output = output >> 8;
3657 i_byte = input & 0xff;
3658
3659 // Fast way to reverse bits in byte
3660 // Devised by Sean Anderson, July 13, 2001
3661 o_byte = static_cast<uint8_t>(((i_byte * 0x0802LU & 0x22110LU) |
3662 (i_byte * 0x8020LU & 0x88440LU)) *
3663 0x10101LU >>
3664 16);
3665
3666 output = output | (static_cast<uint32_t>(o_byte << 24));
3667 input = input >> 8;
3668 }
3669
3670 alu_out = static_cast<int32_t>(output);
3671 break;
3672 }
3673 case SEB:
3674 case SEH:
3675 case WSBH:
3676 alu_out = 0x12345678;
3677 UNREACHABLE();
3678 break;
3679 default: {
3680 const uint8_t bp = get_instr()->Bp2Value();
3681 sa >>= kBp2Bits;
3682 switch (sa) {
3683 case ALIGN: {
3684 if (bp == 0) {
3685 alu_out = static_cast<int32_t>(rt());
3686 } else {
3687 uint32_t rt_hi = rt() << (8 * bp);
3688 uint32_t rs_lo = rs() >> (8 * (4 - bp));
3689 alu_out = static_cast<int32_t>(rt_hi | rs_lo);
3690 }
3691 break;
3692 }
3693 default:
3694 alu_out = 0x12345678;
3695 UNREACHABLE();
3696 break;
3697 }
3698 }
3699 }
3700 SetResult(rd_reg(), alu_out);
3701 break;
3702 }
3863 default: 3703 default:
3864 UNREACHABLE(); 3704 UNREACHABLE();
3865 } 3705 }
3866 } 3706 }
3867 3707
3868 3708
3869 void Simulator::DecodeTypeRegister(Instruction* instr) { 3709 void Simulator::DecodeTypeRegister(Instruction* instr) {
3870 // Instruction fields.
3871 const Opcode op = instr->OpcodeFieldRaw(); 3710 const Opcode op = instr->OpcodeFieldRaw();
3872 const int32_t rs_reg = instr->RsValue();
3873 const int32_t rs = get_register(rs_reg);
3874 const uint32_t rs_u = static_cast<uint32_t>(rs);
3875 const int32_t rt_reg = instr->RtValue();
3876 const int32_t rt = get_register(rt_reg);
3877 const uint32_t rt_u = static_cast<uint32_t>(rt);
3878 const int32_t rd_reg = instr->RdValue();
3879
3880 const int32_t fr_reg = instr->FrValue();
3881 const int32_t fs_reg = instr->FsValue();
3882 const int32_t ft_reg = instr->FtValue();
3883 const int32_t fd_reg = instr->FdValue();
3884 int64_t i64hilo = 0;
3885 uint64_t u64hilo = 0;
3886
3887 // ALU output.
3888 // It should not be used as is. Instructions using it should always
3889 // initialize it first.
3890 int32_t alu_out = 0x12345678;
3891
3892 // For break and trap instructions.
3893 bool do_interrupt = false;
3894
3895 // For jr and jalr.
3896 // Get current pc.
3897 int32_t current_pc = get_pc();
3898 // Next pc
3899 int32_t next_pc = 0;
3900 int32_t return_addr_reg = 31;
3901 3711
3902 // Set up the variables if needed before executing the instruction. 3712 // Set up the variables if needed before executing the instruction.
3903 ConfigureTypeRegister(instr, &alu_out, &i64hilo, &u64hilo, &next_pc, 3713 // ConfigureTypeRegister(instr);
3904 &return_addr_reg, &do_interrupt); 3714 set_instr(instr);
3905
3906 // ---------- Raise exceptions triggered.
3907 SignalExceptions();
3908 3715
3909 // ---------- Execution. 3716 // ---------- Execution.
3910 switch (op) { 3717 switch (op) {
3911 case COP1: 3718 case COP1:
3912 DecodeTypeRegisterCOP1(instr, rs_reg, rs, rs_u, rt_reg, rt, rt_u, rd_reg, 3719 DecodeTypeRegisterCOP1();
3913 fr_reg, fs_reg, ft_reg, fd_reg, i64hilo, u64hilo,
3914 alu_out, do_interrupt, current_pc, next_pc,
3915 return_addr_reg);
3916 break; 3720 break;
3917 case COP1X: 3721 case COP1X:
3918 DecodeTypeRegisterCOP1X(instr, fr_reg, fs_reg, ft_reg, fd_reg); 3722 DecodeTypeRegisterCOP1X();
3919 break; 3723 break;
3920 case SPECIAL: 3724 case SPECIAL:
3921 DecodeTypeRegisterSPECIAL(instr, rs_reg, rs, rs_u, rt_reg, rt, rt_u, 3725 DecodeTypeRegisterSPECIAL();
3922 rd_reg, fr_reg, fs_reg, ft_reg, fd_reg, i64hilo,
3923 u64hilo, alu_out, do_interrupt, current_pc,
3924 next_pc, return_addr_reg);
3925 break; 3726 break;
3926 case SPECIAL2: 3727 case SPECIAL2:
3927 DecodeTypeRegisterSPECIAL2(instr, rd_reg, alu_out); 3728 DecodeTypeRegisterSPECIAL2();
3928 break; 3729 break;
3929 case SPECIAL3: 3730 case SPECIAL3:
3930 DecodeTypeRegisterSPECIAL3(instr, rt_reg, rd_reg, alu_out); 3731 DecodeTypeRegisterSPECIAL3();
3931 break; 3732 break;
3932 // Unimplemented opcodes raised an error in the configuration step before,
3933 // so we can use the default here to set the destination register in common
3934 // cases.
3935 default: 3733 default:
3936 set_register(rd_reg, alu_out); 3734 UNREACHABLE();
3937 } 3735 }
3938 } 3736 }
3939 3737
3940 3738
3739 // Branch instructions common part.
3740 #define BranchAndLinkHelper(do_branch) \
3741 execute_branch_delay_instruction = true; \
3742 if (do_branch) { \
3743 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; \
3744 set_register(31, current_pc + 2 * Instruction::kInstrSize); \
3745 } else { \
3746 next_pc = current_pc + 2 * Instruction::kInstrSize; \
3747 }
3748
3749 #define BranchHelper(do_branch) \
3750 execute_branch_delay_instruction = true; \
3751 if (do_branch) { \
3752 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; \
3753 } else { \
3754 next_pc = current_pc + 2 * Instruction::kInstrSize; \
3755 }
3756
3757
3941 // Type 2: instructions using a 16 bytes immediate. (e.g. addi, beq). 3758 // Type 2: instructions using a 16 bytes immediate. (e.g. addi, beq).
3942 void Simulator::DecodeTypeImmediate(Instruction* instr) { 3759 void Simulator::DecodeTypeImmediate(Instruction* instr) {
3943 // Instruction fields. 3760 // Instruction fields.
3944 Opcode op = instr->OpcodeFieldRaw(); 3761 Opcode op = instr->OpcodeFieldRaw();
3945 int32_t rs_reg = instr->RsValue(); 3762 int32_t rs_reg = instr->RsValue();
3946 int32_t rs = get_register(instr->RsValue()); 3763 int32_t rs = get_register(instr->RsValue());
3947 uint32_t rs_u = static_cast<uint32_t>(rs); 3764 uint32_t rs_u = static_cast<uint32_t>(rs);
3948 int32_t rt_reg = instr->RtValue(); // Destination register. 3765 int32_t rt_reg = instr->RtValue(); // Destination register.
3949 int32_t rt = get_register(rt_reg); 3766 int32_t rt = get_register(rt_reg);
3950 int16_t imm16 = instr->Imm16Value(); 3767 int16_t imm16 = instr->Imm16Value();
3951 int32_t imm19 = instr->Imm19Value();
3952 int32_t imm21 = instr->Imm21Value(); 3768 int32_t imm21 = instr->Imm21Value();
3953 int32_t imm26 = instr->Imm26Value(); 3769 int32_t imm26 = instr->Imm26Value();
3954 3770
3955 int32_t ft_reg = instr->FtValue(); // Destination register. 3771 int32_t ft_reg = instr->FtValue(); // Destination register.
3956 int64_t ft; 3772 int64_t ft;
3957 3773
3958 // Zero extended immediate. 3774 // Zero extended immediate.
3959 uint32_t oe_imm16 = 0xffff & imm16; 3775 uint32_t oe_imm16 = 0xffff & imm16;
3960 // Sign extended immediate. 3776 // Sign extended immediate.
3961 int32_t se_imm16 = imm16; 3777 int32_t se_imm16 = imm16;
3962 int32_t se_imm19 = imm19 | ((imm19 & 0x40000) ? 0xfff80000 : 0);
3963 int32_t se_imm26 = imm26 | ((imm26 & 0x2000000) ? 0xfc000000 : 0); 3778 int32_t se_imm26 = imm26 | ((imm26 & 0x2000000) ? 0xfc000000 : 0);
3964 3779
3965
3966 // Get current pc. 3780 // Get current pc.
3967 int32_t current_pc = get_pc(); 3781 int32_t current_pc = get_pc();
3968 // Next pc. 3782 // Next pc.
3969 int32_t next_pc = bad_ra; 3783 int32_t next_pc = bad_ra;
3970 // pc increment
3971 int16_t pc_increment;
3972 3784
3973 // Used for conditional branch instructions. 3785 // Used for conditional branch instructions.
3974 bool do_branch = false;
3975 bool execute_branch_delay_instruction = false; 3786 bool execute_branch_delay_instruction = false;
3976 3787
3977 // Used for arithmetic instructions. 3788 // Used for arithmetic instructions.
3978 int32_t alu_out = 0; 3789 int32_t alu_out = 0;
3979 // Floating point.
3980 double fp_out = 0.0;
3981 uint32_t cc, cc_value, fcsr_cc;
3982 3790
3983 // Used for memory instructions. 3791 // Used for memory instructions.
3984 int32_t addr = 0x0; 3792 int32_t addr = 0x0;
3985 // Value to be written in memory.
3986 uint32_t mem_value = 0x0;
3987 3793
3988 // ---------- Configuration (and execution for REGIMM). 3794 // ---------- Configuration (and execution for REGIMM).
3989 switch (op) { 3795 switch (op) {
3990 // ------------- COP1. Coprocessor instructions. 3796 // ------------- COP1. Coprocessor instructions.
3991 case COP1: 3797 case COP1:
3992 switch (instr->RsFieldRaw()) { 3798 switch (instr->RsFieldRaw()) {
3993 case BC1: // Branch on coprocessor condition. 3799 case BC1: { // Branch on coprocessor condition.
3994 cc = instr->FBccValue(); 3800 // Floating point.
3995 fcsr_cc = get_fcsr_condition_bit(cc); 3801 uint32_t cc = instr->FBccValue();
3996 cc_value = test_fcsr_bit(fcsr_cc); 3802 uint32_t fcsr_cc = get_fcsr_condition_bit(cc);
3997 do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value; 3803 uint32_t cc_value = test_fcsr_bit(fcsr_cc);
3804 bool do_branch = (instr->FBtrueValue()) ? cc_value : !cc_value;
3998 execute_branch_delay_instruction = true; 3805 execute_branch_delay_instruction = true;
3999 // Set next_pc. 3806 // Set next_pc.
4000 if (do_branch) { 3807 if (do_branch) {
4001 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; 3808 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4002 } else { 3809 } else {
4003 next_pc = current_pc + kBranchReturnOffset; 3810 next_pc = current_pc + kBranchReturnOffset;
4004 } 3811 }
4005 break; 3812 break;
3813 }
4006 case BC1EQZ: 3814 case BC1EQZ:
4007 ft = get_fpu_register(ft_reg); 3815 ft = get_fpu_register(ft_reg);
4008 do_branch = (ft & 0x1) ? false : true;
4009 execute_branch_delay_instruction = true; 3816 execute_branch_delay_instruction = true;
4010 // Set next_pc. 3817 // Set next_pc.
4011 if (do_branch) { 3818 if (!(ft & 0x1)) {
4012 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; 3819 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4013 } else { 3820 } else {
4014 next_pc = current_pc + kBranchReturnOffset; 3821 next_pc = current_pc + kBranchReturnOffset;
4015 } 3822 }
4016 break; 3823 break;
4017 case BC1NEZ: 3824 case BC1NEZ:
4018 ft = get_fpu_register(ft_reg); 3825 ft = get_fpu_register(ft_reg);
4019 do_branch = (ft & 0x1) ? true : false;
4020 execute_branch_delay_instruction = true; 3826 execute_branch_delay_instruction = true;
4021 // Set next_pc. 3827 // Set next_pc.
4022 if (do_branch) { 3828 if (ft & 0x1) {
4023 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize; 3829 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4024 } else { 3830 } else {
4025 next_pc = current_pc + kBranchReturnOffset; 3831 next_pc = current_pc + kBranchReturnOffset;
4026 } 3832 }
4027 break; 3833 break;
4028 default: 3834 default:
4029 UNREACHABLE(); 3835 UNREACHABLE();
4030 } 3836 }
4031 break; 3837 break;
4032 // ------------- REGIMM class. 3838 // ------------- REGIMM class.
4033 case REGIMM: 3839 case REGIMM:
4034 switch (instr->RtFieldRaw()) { 3840 switch (instr->RtFieldRaw()) {
4035 case BLTZ: 3841 case BLTZ:
4036 do_branch = (rs < 0); 3842 BranchHelper(rs < 0);
3843 break;
3844 case BGEZ:
3845 BranchHelper(rs >= 0);
4037 break; 3846 break;
4038 case BLTZAL: 3847 case BLTZAL:
4039 do_branch = rs < 0; 3848 BranchAndLinkHelper(rs < 0);
4040 break;
4041 case BGEZ:
4042 do_branch = rs >= 0;
4043 break; 3849 break;
4044 case BGEZAL: 3850 case BGEZAL:
4045 do_branch = rs >= 0; 3851 BranchAndLinkHelper(rs >= 0);
4046 break; 3852 break;
4047 default: 3853 default:
4048 UNREACHABLE(); 3854 UNREACHABLE();
4049 } 3855 }
4050 switch (instr->RtFieldRaw()) { 3856 break; // case REGIMM.
4051 case BLTZ:
4052 case BLTZAL:
4053 case BGEZ:
4054 case BGEZAL:
4055 // Branch instructions common part.
4056 execute_branch_delay_instruction = true;
4057 // Set next_pc.
4058 if (do_branch) {
4059 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4060 if (instr->IsLinkingInstruction()) {
4061 set_register(31, current_pc + kBranchReturnOffset);
4062 }
4063 } else {
4064 next_pc = current_pc + kBranchReturnOffset;
4065 }
4066 default:
4067 break;
4068 }
4069 break; // case REGIMM.
4070 // ------------- Branch instructions. 3857 // ------------- Branch instructions.
4071 // When comparing to zero, the encoding of rt field is always 0, so we don't 3858 // When comparing to zero, the encoding of rt field is always 0, so we don't
4072 // need to replace rt with zero. 3859 // need to replace rt with zero.
4073 case BEQ: 3860 case BEQ:
4074 do_branch = (rs == rt); 3861 BranchHelper(rs == rt);
4075 break; 3862 break;
4076 case BNE: 3863 case BNE:
4077 do_branch = rs != rt; 3864 BranchHelper(rs != rt);
4078 break; 3865 break;
4079 case BLEZ: 3866 case BLEZ:
4080 do_branch = rs <= 0; 3867 BranchHelper(rs <= 0);
4081 break; 3868 break;
4082 case BGTZ: 3869 case BGTZ:
4083 do_branch = rs > 0; 3870 BranchHelper(rs > 0);
4084 break; 3871 break;
4085 case POP66: { 3872 case POP66: {
4086 if (rs_reg) { // BEQZC 3873 if (rs_reg) { // BEQZC
4087 int32_t se_imm21 = 3874 int32_t se_imm21 =
4088 static_cast<int32_t>(imm21 << (kOpcodeBits + kRsBits)); 3875 static_cast<int32_t>(imm21 << (kOpcodeBits + kRsBits));
4089 se_imm21 = se_imm21 >> (kOpcodeBits + kRsBits); 3876 se_imm21 = se_imm21 >> (kOpcodeBits + kRsBits);
4090 if (rs == 0) 3877 if (rs == 0)
4091 next_pc = current_pc + 4 + (se_imm21 << 2); 3878 next_pc = current_pc + 4 + (se_imm21 << 2);
4092 else 3879 else
4093 next_pc = current_pc + 4; 3880 next_pc = current_pc + 4;
(...skipping 12 matching lines...) Expand all
4106 set_register(31, current_pc + 4); 3893 set_register(31, current_pc + 4);
4107 next_pc = current_pc + 4 + (se_imm26 << 2); 3894 next_pc = current_pc + 4 + (se_imm26 << 2);
4108 set_pc(next_pc); 3895 set_pc(next_pc);
4109 pc_modified_ = true; 3896 pc_modified_ = true;
4110 break; 3897 break;
4111 } 3898 }
4112 // ------------- Arithmetic instructions. 3899 // ------------- Arithmetic instructions.
4113 case ADDI: 3900 case ADDI:
4114 if (HaveSameSign(rs, se_imm16)) { 3901 if (HaveSameSign(rs, se_imm16)) {
4115 if (rs > 0) { 3902 if (rs > 0) {
4116 exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16); 3903 if (rs <= (Registers::kMaxValue - se_imm16)) {
3904 SignalException(kIntegerOverflow);
3905 }
4117 } else if (rs < 0) { 3906 } else if (rs < 0) {
4118 exceptions[kIntegerUnderflow] = 3907 if (rs >= (Registers::kMinValue - se_imm16)) {
4119 rs < (Registers::kMinValue - se_imm16); 3908 SignalException(kIntegerUnderflow);
3909 }
4120 } 3910 }
4121 } 3911 }
4122 alu_out = rs + se_imm16; 3912 SetResult(rt_reg, rs + se_imm16);
4123 break; 3913 break;
4124 case ADDIU: 3914 case ADDIU:
4125 alu_out = rs + se_imm16; 3915 SetResult(rt_reg, rs + se_imm16);
4126 break; 3916 break;
4127 case SLTI: 3917 case SLTI:
4128 alu_out = (rs < se_imm16) ? 1 : 0; 3918 SetResult(rt_reg, rs < se_imm16 ? 1 : 0);
4129 break; 3919 break;
4130 case SLTIU: 3920 case SLTIU:
4131 alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0; 3921 SetResult(rt_reg, rs_u < static_cast<uint32_t>(se_imm16) ? 1 : 0);
4132 break; 3922 break;
4133 case ANDI: 3923 case ANDI:
4134 alu_out = rs & oe_imm16; 3924 SetResult(rt_reg, rs & oe_imm16);
4135 break; 3925 break;
4136 case ORI: 3926 case ORI:
4137 alu_out = rs | oe_imm16; 3927 SetResult(rt_reg, rs | oe_imm16);
4138 break; 3928 break;
4139 case XORI: 3929 case XORI:
4140 alu_out = rs ^ oe_imm16; 3930 SetResult(rt_reg, rs ^ oe_imm16);
4141 break; 3931 break;
4142 case LUI: 3932 case LUI:
4143 alu_out = (oe_imm16 << 16); 3933 SetResult(rt_reg, oe_imm16 << 16);
4144 break; 3934 break;
4145 // ------------- Memory instructions. 3935 // ------------- Memory instructions.
4146 case LB: 3936 case LB:
4147 addr = rs + se_imm16; 3937 set_register(rt_reg, ReadB(rs + se_imm16));
4148 alu_out = ReadB(addr);
4149 break; 3938 break;
4150 case LH: 3939 case LH:
4151 addr = rs + se_imm16; 3940 set_register(rt_reg, ReadH(rs + se_imm16, instr));
4152 alu_out = ReadH(addr, instr);
4153 break; 3941 break;
4154 case LWL: { 3942 case LWL: {
4155 // al_offset is offset of the effective address within an aligned word. 3943 // al_offset is offset of the effective address within an aligned word.
4156 uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; 3944 uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
4157 uint8_t byte_shift = kPointerAlignmentMask - al_offset; 3945 uint8_t byte_shift = kPointerAlignmentMask - al_offset;
4158 uint32_t mask = (1 << byte_shift * 8) - 1; 3946 uint32_t mask = (1 << byte_shift * 8) - 1;
4159 addr = rs + se_imm16 - al_offset; 3947 addr = rs + se_imm16 - al_offset;
4160 alu_out = ReadW(addr, instr); 3948 alu_out = ReadW(addr, instr);
4161 alu_out <<= byte_shift * 8; 3949 alu_out <<= byte_shift * 8;
4162 alu_out |= rt & mask; 3950 alu_out |= rt & mask;
3951 set_register(rt_reg, alu_out);
4163 break; 3952 break;
4164 } 3953 }
4165 case LW: 3954 case LW:
4166 addr = rs + se_imm16; 3955 set_register(rt_reg, ReadW(rs + se_imm16, instr));
4167 alu_out = ReadW(addr, instr);
4168 break; 3956 break;
4169 case LBU: 3957 case LBU:
4170 addr = rs + se_imm16; 3958 set_register(rt_reg, ReadBU(rs + se_imm16));
4171 alu_out = ReadBU(addr);
4172 break; 3959 break;
4173 case LHU: 3960 case LHU:
4174 addr = rs + se_imm16; 3961 set_register(rt_reg, ReadHU(rs + se_imm16, instr));
4175 alu_out = ReadHU(addr, instr);
4176 break; 3962 break;
4177 case LWR: { 3963 case LWR: {
4178 // al_offset is offset of the effective address within an aligned word. 3964 // al_offset is offset of the effective address within an aligned word.
4179 uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; 3965 uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
4180 uint8_t byte_shift = kPointerAlignmentMask - al_offset; 3966 uint8_t byte_shift = kPointerAlignmentMask - al_offset;
4181 uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0; 3967 uint32_t mask = al_offset ? (~0 << (byte_shift + 1) * 8) : 0;
4182 addr = rs + se_imm16 - al_offset; 3968 addr = rs + se_imm16 - al_offset;
4183 alu_out = ReadW(addr, instr); 3969 alu_out = ReadW(addr, instr);
4184 alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8; 3970 alu_out = static_cast<uint32_t> (alu_out) >> al_offset * 8;
4185 alu_out |= rt & mask; 3971 alu_out |= rt & mask;
3972 set_register(rt_reg, alu_out);
4186 break; 3973 break;
4187 } 3974 }
4188 case SB: 3975 case SB:
4189 addr = rs + se_imm16; 3976 WriteB(rs + se_imm16, static_cast<int8_t>(rt));
4190 break; 3977 break;
4191 case SH: 3978 case SH:
4192 addr = rs + se_imm16; 3979 WriteH(rs + se_imm16, static_cast<uint16_t>(rt), instr);
4193 break; 3980 break;
4194 case SWL: { 3981 case SWL: {
4195 uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; 3982 uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
4196 uint8_t byte_shift = kPointerAlignmentMask - al_offset; 3983 uint8_t byte_shift = kPointerAlignmentMask - al_offset;
4197 uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0; 3984 uint32_t mask = byte_shift ? (~0 << (al_offset + 1) * 8) : 0;
4198 addr = rs + se_imm16 - al_offset; 3985 addr = rs + se_imm16 - al_offset;
4199 mem_value = ReadW(addr, instr) & mask; 3986 // Value to be written in memory.
3987 uint32_t mem_value = ReadW(addr, instr) & mask;
4200 mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8; 3988 mem_value |= static_cast<uint32_t>(rt) >> byte_shift * 8;
3989 WriteW(addr, mem_value, instr);
4201 break; 3990 break;
4202 } 3991 }
4203 case SW: 3992 case SW:
4204 addr = rs + se_imm16; 3993 WriteW(rs + se_imm16, rt, instr);
4205 break; 3994 break;
4206 case SWR: { 3995 case SWR: {
4207 uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask; 3996 uint8_t al_offset = (rs + se_imm16) & kPointerAlignmentMask;
4208 uint32_t mask = (1 << al_offset * 8) - 1; 3997 uint32_t mask = (1 << al_offset * 8) - 1;
4209 addr = rs + se_imm16 - al_offset; 3998 addr = rs + se_imm16 - al_offset;
4210 mem_value = ReadW(addr, instr); 3999 uint32_t mem_value = ReadW(addr, instr);
4211 mem_value = (rt << al_offset * 8) | (mem_value & mask); 4000 mem_value = (rt << al_offset * 8) | (mem_value & mask);
4001 WriteW(addr, mem_value, instr);
4212 break; 4002 break;
4213 } 4003 }
4214 case LWC1: 4004 case LWC1:
4215 addr = rs + se_imm16; 4005 set_fpu_register_hi_word(ft_reg, 0);
4216 alu_out = ReadW(addr, instr); 4006 set_fpu_register_word(ft_reg, ReadW(rs + se_imm16, instr));
4217 break; 4007 break;
4218 case LDC1: 4008 case LDC1:
4219 addr = rs + se_imm16; 4009 set_fpu_register_double(ft_reg, ReadD(rs + se_imm16, instr));
4220 fp_out = ReadD(addr, instr);
4221 break; 4010 break;
4222 case SWC1: 4011 case SWC1:
4012 WriteW(rs + se_imm16, get_fpu_register_word(ft_reg), instr);
4013 break;
4223 case SDC1: 4014 case SDC1:
4224 addr = rs + se_imm16; 4015 WriteD(rs + se_imm16, get_fpu_register_double(ft_reg), instr);
4225 break; 4016 break;
4226 // ------------- JIALC and BNEZC instructions. 4017 // ------------- JIALC and BNEZC instructions.
4227 case POP76: 4018 case POP76: {
4228 // Next pc. 4019 // Next pc.
4229 next_pc = rt + se_imm16; 4020 next_pc = rt + se_imm16;
4230 // The instruction after the jump is NOT executed. 4021 // The instruction after the jump is NOT executed.
4231 pc_increment = Instruction::kInstrSize; 4022 int16_t pc_increment = Instruction::kInstrSize;
4232 if (instr->IsLinkingInstruction()) { 4023 if (instr->IsLinkingInstruction()) {
4233 set_register(31, current_pc + pc_increment); 4024 set_register(31, current_pc + pc_increment);
4234 } 4025 }
4235 set_pc(next_pc); 4026 set_pc(next_pc);
4236 pc_modified_ = true; 4027 pc_modified_ = true;
4237 break; 4028 break;
4029 }
4238 // ------------- PC-Relative instructions. 4030 // ------------- PC-Relative instructions.
4239 case PCREL: { 4031 case PCREL: {
4240 // rt field: checking 5-bits. 4032 // rt field: checking 5-bits.
4241 uint8_t rt = (imm21 >> kImm16Bits); 4033 uint8_t rt = (imm21 >> kImm16Bits);
4242 switch (rt) { 4034 switch (rt) {
4243 case ALUIPC: 4035 case ALUIPC:
4244 addr = current_pc + (se_imm16 << 16); 4036 addr = current_pc + (se_imm16 << 16);
4245 alu_out = static_cast<int64_t>(~0x0FFFF) & addr; 4037 alu_out = static_cast<int64_t>(~0x0FFFF) & addr;
4246 break; 4038 break;
4247 case AUIPC: 4039 case AUIPC:
4248 alu_out = current_pc + (se_imm16 << 16); 4040 alu_out = current_pc + (se_imm16 << 16);
4249 break; 4041 break;
4250 default: { 4042 default: {
4043 int32_t imm19 = instr->Imm19Value();
4251 // rt field: checking the most significant 2-bits. 4044 // rt field: checking the most significant 2-bits.
4252 rt = (imm21 >> kImm19Bits); 4045 rt = (imm21 >> kImm19Bits);
4253 switch (rt) { 4046 switch (rt) {
4254 case LWPC: { 4047 case LWPC: {
4255 int32_t offset = imm19;
4256 // Set sign. 4048 // Set sign.
4257 offset <<= (kOpcodeBits + kRsBits + 2); 4049 imm19 <<= (kOpcodeBits + kRsBits + 2);
4258 offset >>= (kOpcodeBits + kRsBits + 2); 4050 imm19 >>= (kOpcodeBits + kRsBits + 2);
4259 addr = current_pc + (offset << 2); 4051 addr = current_pc + (imm19 << 2);
4260 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); 4052 uint32_t* ptr = reinterpret_cast<uint32_t*>(addr);
4261 alu_out = *ptr; 4053 alu_out = *ptr;
4262 break; 4054 break;
4263 } 4055 }
4264 case ADDIUPC: 4056 case ADDIUPC: {
4057 int32_t se_imm19 = imm19 | ((imm19 & 0x40000) ? 0xfff80000 : 0);
4265 alu_out = current_pc + (se_imm19 << 2); 4058 alu_out = current_pc + (se_imm19 << 2);
4266 break; 4059 break;
4060 }
4267 default: 4061 default:
4268 UNREACHABLE(); 4062 UNREACHABLE();
4269 break; 4063 break;
4270 } 4064 }
4271 } 4065 }
4272 } 4066 }
4067 set_register(rs_reg, alu_out);
4273 break; 4068 break;
4274 } 4069 }
4275 default: 4070 default:
4276 UNREACHABLE(); 4071 UNREACHABLE();
4277 } 4072 }
4278 4073
4279 // ---------- Raise exceptions triggered.
4280 SignalExceptions();
4281
4282 // ---------- Execution.
4283 switch (op) {
4284 // ------------- Branch instructions.
4285 case BEQ:
4286 case BNE:
4287 case BLEZ:
4288 case BGTZ:
4289 // Branch instructions common part.
4290 execute_branch_delay_instruction = true;
4291 // Set next_pc.
4292 if (do_branch) {
4293 next_pc = current_pc + (imm16 << 2) + Instruction::kInstrSize;
4294 if (instr->IsLinkingInstruction()) {
4295 set_register(31, current_pc + 2* Instruction::kInstrSize);
4296 }
4297 } else {
4298 next_pc = current_pc + 2 * Instruction::kInstrSize;
4299 }
4300 break;
4301 // ------------- Arithmetic instructions.
4302 case ADDI:
4303 case ADDIU:
4304 case SLTI:
4305 case SLTIU:
4306 case ANDI:
4307 case ORI:
4308 case XORI:
4309 case LUI:
4310 set_register(rt_reg, alu_out);
4311 TraceRegWr(alu_out);
4312 break;
4313 // ------------- Memory instructions.
4314 case LB:
4315 case LH:
4316 case LWL:
4317 case LW:
4318 case LBU:
4319 case LHU:
4320 case LWR:
4321 set_register(rt_reg, alu_out);
4322 break;
4323 case SB:
4324 WriteB(addr, static_cast<int8_t>(rt));
4325 break;
4326 case SH:
4327 WriteH(addr, static_cast<uint16_t>(rt), instr);
4328 break;
4329 case SWL:
4330 WriteW(addr, mem_value, instr);
4331 break;
4332 case SW:
4333 WriteW(addr, rt, instr);
4334 break;
4335 case SWR:
4336 WriteW(addr, mem_value, instr);
4337 break;
4338 case LWC1:
4339 set_fpu_register_hi_word(ft_reg, 0);
4340 set_fpu_register_word(ft_reg, alu_out);
4341 break;
4342 case LDC1:
4343 set_fpu_register_double(ft_reg, fp_out);
4344 break;
4345 case SWC1:
4346 addr = rs + se_imm16;
4347 WriteW(addr, get_fpu_register_word(ft_reg), instr);
4348 break;
4349 case SDC1:
4350 addr = rs + se_imm16;
4351 WriteD(addr, get_fpu_register_double(ft_reg), instr);
4352 break;
4353 case PCREL:
4354 set_register(rs_reg, alu_out);
4355 default:
4356 break;
4357 }
4358
4359
4360 if (execute_branch_delay_instruction) { 4074 if (execute_branch_delay_instruction) {
4361 // Execute branch delay slot 4075 // Execute branch delay slot
4362 // We don't check for end_sim_pc. First it should not be met as the current 4076 // We don't check for end_sim_pc. First it should not be met as the current
4363 // pc is valid. Secondly a jump should always execute its branch delay slot. 4077 // pc is valid. Secondly a jump should always execute its branch delay slot.
4364 Instruction* branch_delay_instr = 4078 Instruction* branch_delay_instr =
4365 reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize); 4079 reinterpret_cast<Instruction*>(current_pc+Instruction::kInstrSize);
4366 BranchDelayInstructionDecode(branch_delay_instr); 4080 BranchDelayInstructionDecode(branch_delay_instr);
4367 } 4081 }
4368 4082
4369 // If needed update pc after the branch delay execution. 4083 // If needed update pc after the branch delay execution.
4370 if (next_pc != bad_ra) { 4084 if (next_pc != bad_ra) {
4371 set_pc(next_pc); 4085 set_pc(next_pc);
4372 } 4086 }
4373 } 4087 }
4374 4088
4089 #undef BranchHelper
4090 #undef BranchAndLinkHelper
4091
4375 4092
4376 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal). 4093 // Type 3: instructions using a 26 bytes immediate. (e.g. j, jal).
4377 void Simulator::DecodeTypeJump(Instruction* instr) { 4094 void Simulator::DecodeTypeJump(Instruction* instr) {
4378 // Get current pc. 4095 // Get current pc.
4379 int32_t current_pc = get_pc(); 4096 int32_t current_pc = get_pc();
4380 // Get unchanged bits of pc. 4097 // Get unchanged bits of pc.
4381 int32_t pc_high_bits = current_pc & 0xf0000000; 4098 int32_t pc_high_bits = current_pc & 0xf0000000;
4382 // Next pc. 4099 // Next pc.
4383 int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2); 4100 int32_t next_pc = pc_high_bits | (instr->Imm26Value() << 2);
4384 4101
(...skipping 21 matching lines...) Expand all
4406 } 4123 }
4407 pc_modified_ = false; 4124 pc_modified_ = false;
4408 v8::internal::EmbeddedVector<char, 256> buffer; 4125 v8::internal::EmbeddedVector<char, 256> buffer;
4409 if (::v8::internal::FLAG_trace_sim) { 4126 if (::v8::internal::FLAG_trace_sim) {
4410 SNPrintF(trace_buf_, "%s", ""); 4127 SNPrintF(trace_buf_, "%s", "");
4411 disasm::NameConverter converter; 4128 disasm::NameConverter converter;
4412 disasm::Disassembler dasm(converter); 4129 disasm::Disassembler dasm(converter);
4413 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr)); 4130 dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
4414 } 4131 }
4415 4132
4416 switch (instr->InstructionType()) { 4133 switch (instr->InstructionType(Instruction::TypeChecks::EXTRA)) {
4417 case Instruction::kRegisterType: 4134 case Instruction::kRegisterType:
4418 DecodeTypeRegister(instr); 4135 DecodeTypeRegister(instr);
4419 break; 4136 break;
4420 case Instruction::kImmediateType: 4137 case Instruction::kImmediateType:
4421 DecodeTypeImmediate(instr); 4138 DecodeTypeImmediate(instr);
4422 break; 4139 break;
4423 case Instruction::kJumpType: 4140 case Instruction::kJumpType:
4424 DecodeTypeJump(instr); 4141 DecodeTypeJump(instr);
4425 break; 4142 break;
4426 default: 4143 default:
(...skipping 191 matching lines...) Expand 10 before | Expand all | Expand 10 after
4618 4335
4619 4336
4620 #undef UNSUPPORTED 4337 #undef UNSUPPORTED
4621 4338
4622 } // namespace internal 4339 } // namespace internal
4623 } // namespace v8 4340 } // namespace v8
4624 4341
4625 #endif // USE_SIMULATOR 4342 #endif // USE_SIMULATOR
4626 4343
4627 #endif // V8_TARGET_ARCH_MIPS 4344 #endif // V8_TARGET_ARCH_MIPS
OLDNEW
« no previous file with comments | « src/mips/simulator-mips.h ('k') | no next file » | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698