Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1201)

Unified Diff: src/pathops/SkOpAngle.cpp

Issue 13094010: Add implementation of path ops (Closed) Base URL: http://skia.googlecode.com/svn/trunk/
Patch Set: Created 7 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/pathops/SkOpAngle.h ('k') | src/pathops/SkOpContour.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/pathops/SkOpAngle.cpp
===================================================================
--- src/pathops/SkOpAngle.cpp (revision 0)
+++ src/pathops/SkOpAngle.cpp (revision 0)
@@ -0,0 +1,256 @@
+/*
+ * Copyright 2012 Google Inc.
+ *
+ * Use of this source code is governed by a BSD-style license that can be
+ * found in the LICENSE file.
+ */
+#include "SkIntersections.h"
+#include "SkOpAngle.h"
+#include "SkPathOpsCurve.h"
+
+// FIXME: this is bogus for quads and cubics
+// if the quads and cubics' line from end pt to ctrl pt are coincident,
+// there's no obvious way to determine the curve ordering from the
+// derivatives alone. In particular, if one quadratic's coincident tangent
+// is longer than the other curve, the final control point can place the
+// longer curve on either side of the shorter one.
+// Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
+// may provide some help, but nothing has been figured out yet.
+
+/*(
+for quads and cubics, set up a parameterized line (e.g. LineParameters )
+for points [0] to [1]. See if point [2] is on that line, or on one side
+or the other. If it both quads' end points are on the same side, choose
+the shorter tangent. If the tangents are equal, choose the better second
+tangent angle
+
+maybe I could set up LineParameters lazily
+*/
+bool SkOpAngle::operator<(const SkOpAngle& rh) const {
+ double y = dy();
+ double ry = rh.dy();
+ if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ?
+ return y < 0;
+ }
+ double x = dx();
+ double rx = rh.dx();
+ if (y == 0 && ry == 0 && x * rx < 0) {
+ return x < rx;
+ }
+ double x_ry = x * ry;
+ double rx_y = rx * y;
+ double cmp = x_ry - rx_y;
+ if (!approximately_zero(cmp)) {
+ return cmp < 0;
+ }
+ if (approximately_zero(x_ry) && approximately_zero(rx_y)
+ && !approximately_zero_squared(cmp)) {
+ return cmp < 0;
+ }
+ // at this point, the initial tangent line is coincident
+ // see if edges curl away from each other
+ if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide)
+ || !approximately_zero(rh.fSide))) {
+ // FIXME: running demo will trigger this assertion
+ // (don't know if commenting out will trigger further assertion or not)
+ // commenting it out allows demo to run in release, though
+ // SkASSERT(fSide != rh.fSide);
+ return fSide < rh.fSide;
+ }
+ // see if either curve can be lengthened and try the tangent compare again
+ if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical
+ && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting
+ SkOpAngle longer = *this;
+ SkOpAngle rhLonger = rh;
+ if (longer.lengthen() | rhLonger.lengthen()) {
+ return longer < rhLonger;
+ }
+ }
+ if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximately_zero(y))
+ || (rh.fVerb == SkPath::kLine_Verb
+ && approximately_zero(rx) && approximately_zero(ry))) {
+ // See general unsortable comment below. This case can happen when
+ // one line has a non-zero change in t but no change in x and y.
+ fUnsortable = true;
+ rh.fUnsortable = true;
+ return this < &rh; // even with no solution, return a stable sort
+ }
+ if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny
+ || (*fSpans)[SkMin32(fStart, fEnd)].fTiny) {
+ fUnsortable = true;
+ rh.fUnsortable = true;
+ return this < &rh; // even with no solution, return a stable sort
+ }
+ SkASSERT(fVerb >= SkPath::kQuad_Verb);
+ SkASSERT(rh.fVerb >= SkPath::kQuad_Verb);
+ // FIXME: until I can think of something better, project a ray from the
+ // end of the shorter tangent to midway between the end points
+ // through both curves and use the resulting angle to sort
+ // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive
+ double len = fTangent1.normalSquared();
+ double rlen = rh.fTangent1.normalSquared();
+ SkDLine ray;
+ SkIntersections i, ri;
+ int roots, rroots;
+ bool flip = false;
+ do {
+ bool useThis = (len < rlen) ^ flip;
+ const SkDCubic& part = useThis ? fCurvePart : rh.fCurvePart;
+ SkPath::Verb partVerb = useThis ? fVerb : rh.fVerb;
+ ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ?
+ part[2] : part[1];
+ ray[1].fX = (part[0].fX + part[partVerb].fX) / 2;
+ ray[1].fY = (part[0].fY + part[partVerb].fY) / 2;
+ SkASSERT(ray[0] != ray[1]);
+ roots = (i.*CurveRay[fVerb])(fPts, ray);
+ rroots = (ri.*CurveRay[rh.fVerb])(rh.fPts, ray);
+ } while ((roots == 0 || rroots == 0) && (flip ^= true));
+ if (roots == 0 || rroots == 0) {
+ // FIXME: we don't have a solution in this case. The interim solution
+ // is to mark the edges as unsortable, exclude them from this and
+ // future computations, and allow the returned path to be fragmented
+ fUnsortable = true;
+ rh.fUnsortable = true;
+ return this < &rh; // even with no solution, return a stable sort
+ }
+ SkDPoint loc;
+ double best = SK_ScalarInfinity;
+ SkDVector dxy;
+ double dist;
+ int index;
+ for (index = 0; index < roots; ++index) {
+ loc = (*CurveDPointAtT[fVerb])(fPts, i[0][index]);
+ dxy = loc - ray[0];
+ dist = dxy.lengthSquared();
+ if (best > dist) {
+ best = dist;
+ }
+ }
+ for (index = 0; index < rroots; ++index) {
+ loc = (*CurveDPointAtT[rh.fVerb])(rh.fPts, ri[0][index]);
+ dxy = loc - ray[0];
+ dist = dxy.lengthSquared();
+ if (best > dist) {
+ return fSide < 0;
+ }
+ }
+ return fSide > 0;
+}
+
+bool SkOpAngle::lengthen() {
+ int newEnd = fEnd;
+ if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) {
+ fEnd = newEnd;
+ setSpans();
+ return true;
+ }
+ return false;
+}
+
+bool SkOpAngle::reverseLengthen() {
+ if (fReversed) {
+ return false;
+ }
+ int newEnd = fStart;
+ if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) {
+ fEnd = newEnd;
+ fReversed = true;
+ setSpans();
+ return true;
+ }
+ return false;
+}
+
+void SkOpAngle::set(const SkPoint* orig, SkPath::Verb verb, const SkOpSegment* segment,
+ int start, int end, const SkTDArray<SkOpSpan>& spans) {
+ fSegment = segment;
+ fStart = start;
+ fEnd = end;
+ fPts = orig;
+ fVerb = verb;
+ fSpans = &spans;
+ fReversed = false;
+ fUnsortable = false;
+ setSpans();
+}
+
+
+void SkOpAngle::setSpans() {
+ double startT = (*fSpans)[fStart].fT;
+ double endT = (*fSpans)[fEnd].fT;
+ switch (fVerb) {
+ case SkPath::kLine_Verb: {
+ SkDLine l = SkDLine::SubDivide(fPts, startT, endT);
+ // OPTIMIZATION: for pure line compares, we never need fTangent1.c
+ fTangent1.lineEndPoints(l);
+ fSide = 0;
+ } break;
+ case SkPath::kQuad_Verb: {
+ SkDQuad& quad = (SkDQuad&)fCurvePart;
+ quad = SkDQuad::SubDivide(fPts, startT, endT);
+ fTangent1.quadEndPoints(quad, 0, 1);
+ if (dx() == 0 && dy() == 0) {
+ fTangent1.quadEndPoints(quad);
+ }
+ fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only
+ } break;
+ case SkPath::kCubic_Verb: {
+ int nextC = 2;
+ fCurvePart = SkDCubic::SubDivide(fPts, startT, endT);
+ fTangent1.cubicEndPoints(fCurvePart, 0, 1);
+ if (dx() == 0 && dy() == 0) {
+ fTangent1.cubicEndPoints(fCurvePart, 0, 2);
+ nextC = 3;
+ if (dx() == 0 && dy() == 0) {
+ fTangent1.cubicEndPoints(fCurvePart, 0, 3);
+ }
+ }
+ fSide = -fTangent1.pointDistance(fCurvePart[nextC]); // compare sign only
+ if (nextC == 2 && approximately_zero(fSide)) {
+ fSide = -fTangent1.pointDistance(fCurvePart[3]);
+ }
+ } break;
+ default:
+ SkASSERT(0);
+ }
+ fUnsortable = dx() == 0 && dy() == 0;
+ if (fUnsortable) {
+ return;
+ }
+ SkASSERT(fStart != fEnd);
+ int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro?
+ for (int index = fStart; index != fEnd; index += step) {
+#if 1
+ const SkOpSpan& thisSpan = (*fSpans)[index];
+ const SkOpSpan& nextSpan = (*fSpans)[index + step];
+ if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) {
+ continue;
+ }
+ fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd;
+#if DEBUG_UNSORTABLE
+ if (fUnsortable) {
+ SkPoint iPt = (*CurvePointAtT[fVerb])(fPts, thisSpan.fT);
+ SkPoint ePt = (*CurvePointAtT[fVerb])(fPts, nextSpan.fT);
+ SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
+ index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
+ }
+#endif
+ return;
+#else
+ if ((*fSpans)[index].fUnsortableStart) {
+ fUnsortable = true;
+ return;
+ }
+#endif
+ }
+#if 1
+#if DEBUG_UNSORTABLE
+ SkPoint iPt = (*CurvePointAtT[fVerb])(fPts, startT);
+ SkPoint ePt = (*CurvePointAtT[fVerb])(fPts, endT);
+ SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
+ fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
+#endif
+ fUnsortable = true;
+#endif
+}
+
« no previous file with comments | « src/pathops/SkOpAngle.h ('k') | src/pathops/SkOpContour.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698