| Index: src/pathops/SkPathOpsCommon.cpp
|
| ===================================================================
|
| --- src/pathops/SkPathOpsCommon.cpp (revision 0)
|
| +++ src/pathops/SkPathOpsCommon.cpp (revision 0)
|
| @@ -0,0 +1,573 @@
|
| +/*
|
| + * Copyright 2012 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +#include "SkOpEdgeBuilder.h"
|
| +#include "SkPathOpsCommon.h"
|
| +#include "SkPathWriter.h"
|
| +#include "TSearch.h"
|
| +
|
| +static int contourRangeCheckY(SkTDArray<SkOpContour*>& contourList, SkOpSegment*& current,
|
| + int& index, int& endIndex, double& bestHit, SkScalar& bestDx,
|
| + bool& tryAgain, double& mid, bool opp) {
|
| + double tAtMid = current->tAtMid(index, endIndex, mid);
|
| + SkPoint basePt = current->xyAtT(tAtMid);
|
| + int contourCount = contourList.count();
|
| + SkScalar bestY = SK_ScalarMin;
|
| + SkOpSegment* bestSeg = NULL;
|
| + int bestTIndex;
|
| + bool bestOpp;
|
| + bool hitSomething = false;
|
| + for (int cTest = 0; cTest < contourCount; ++cTest) {
|
| + SkOpContour* contour = contourList[cTest];
|
| + bool testOpp = contour->operand() ^ current->operand() ^ opp;
|
| + if (basePt.fY < contour->bounds().fTop) {
|
| + continue;
|
| + }
|
| + if (bestY > contour->bounds().fBottom) {
|
| + continue;
|
| + }
|
| + int segmentCount = contour->segments().count();
|
| + for (int test = 0; test < segmentCount; ++test) {
|
| + SkOpSegment* testSeg = &contour->segments()[test];
|
| + SkScalar testY = bestY;
|
| + double testHit;
|
| + int testTIndex = testSeg->crossedSpanY(basePt, testY, testHit, hitSomething, tAtMid,
|
| + testOpp, testSeg == current);
|
| + if (testTIndex < 0) {
|
| + if (testTIndex == SK_MinS32) {
|
| + hitSomething = true;
|
| + bestSeg = NULL;
|
| + goto abortContours; // vertical encountered, return and try different point
|
| + }
|
| + continue;
|
| + }
|
| + if (testSeg == current && current->betweenTs(index, testHit, endIndex)) {
|
| + double baseT = current->t(index);
|
| + double endT = current->t(endIndex);
|
| + double newMid = (testHit - baseT) / (endT - baseT);
|
| +#if DEBUG_WINDING
|
| + double midT = current->tAtMid(index, endIndex, mid);
|
| + SkPoint midXY = current->xyAtT(midT);
|
| + double newMidT = current->tAtMid(index, endIndex, newMid);
|
| + SkPoint newXY = current->xyAtT(newMidT);
|
| + SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)"
|
| + " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__,
|
| + current->debugID(), mid, newMid,
|
| + baseT, current->xAtT(index), current->yAtT(index),
|
| + baseT + mid * (endT - baseT), midXY.fX, midXY.fY,
|
| + baseT + newMid * (endT - baseT), newXY.fX, newXY.fY,
|
| + endT, current->xAtT(endIndex), current->yAtT(endIndex));
|
| +#endif
|
| + mid = newMid * 2; // calling loop with divide by 2 before continuing
|
| + return SK_MinS32;
|
| + }
|
| + bestSeg = testSeg;
|
| + bestHit = testHit;
|
| + bestOpp = testOpp;
|
| + bestTIndex = testTIndex;
|
| + bestY = testY;
|
| + }
|
| + }
|
| +abortContours:
|
| + int result;
|
| + if (!bestSeg) {
|
| + result = hitSomething ? SK_MinS32 : 0;
|
| + } else {
|
| + if (bestSeg->windSum(bestTIndex) == SK_MinS32) {
|
| + current = bestSeg;
|
| + index = bestTIndex;
|
| + endIndex = bestSeg->nextSpan(bestTIndex, 1);
|
| + SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
|
| + tryAgain = true;
|
| + return 0;
|
| + }
|
| + result = bestSeg->windingAtT(bestHit, bestTIndex, bestOpp, bestDx);
|
| + SkASSERT(bestDx);
|
| + }
|
| + double baseT = current->t(index);
|
| + double endT = current->t(endIndex);
|
| + bestHit = baseT + mid * (endT - baseT);
|
| + return result;
|
| +}
|
| +
|
| +SkOpSegment* FindUndone(SkTDArray<SkOpContour*>& contourList, int& start, int& end) {
|
| + int contourCount = contourList.count();
|
| + SkOpSegment* result;
|
| + for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
| + SkOpContour* contour = contourList[cIndex];
|
| + result = contour->undoneSegment(start, end);
|
| + if (result) {
|
| + return result;
|
| + }
|
| + }
|
| + return NULL;
|
| +}
|
| +
|
| +SkOpSegment* FindChase(SkTDArray<SkOpSpan*>& chase, int& tIndex, int& endIndex) {
|
| + while (chase.count()) {
|
| + SkOpSpan* span;
|
| + chase.pop(&span);
|
| + const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex);
|
| + SkOpSegment* segment = backPtr.fOther;
|
| + tIndex = backPtr.fOtherIndex;
|
| + SkTDArray<SkOpAngle> angles;
|
| + int done = 0;
|
| + if (segment->activeAngle(tIndex, done, angles)) {
|
| + SkOpAngle* last = angles.end() - 1;
|
| + tIndex = last->start();
|
| + endIndex = last->end();
|
| + #if TRY_ROTATE
|
| + *chase.insert(0) = span;
|
| + #else
|
| + *chase.append() = span;
|
| + #endif
|
| + return last->segment();
|
| + }
|
| + if (done == angles.count()) {
|
| + continue;
|
| + }
|
| + SkTDArray<SkOpAngle*> sorted;
|
| + bool sortable = SkOpSegment::SortAngles(angles, sorted);
|
| + int angleCount = sorted.count();
|
| +#if DEBUG_SORT
|
| + sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
|
| +#endif
|
| + if (!sortable) {
|
| + continue;
|
| + }
|
| + // find first angle, initialize winding to computed fWindSum
|
| + int firstIndex = -1;
|
| + const SkOpAngle* angle;
|
| + int winding;
|
| + do {
|
| + angle = sorted[++firstIndex];
|
| + segment = angle->segment();
|
| + winding = segment->windSum(angle);
|
| + } while (winding == SK_MinS32);
|
| + int spanWinding = segment->spanSign(angle->start(), angle->end());
|
| + #if DEBUG_WINDING
|
| + SkDebugf("%s winding=%d spanWinding=%d\n",
|
| + __FUNCTION__, winding, spanWinding);
|
| + #endif
|
| + // turn span winding into contour winding
|
| + if (spanWinding * winding < 0) {
|
| + winding += spanWinding;
|
| + }
|
| + #if DEBUG_SORT
|
| + segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0);
|
| + #endif
|
| + // we care about first sign and whether wind sum indicates this
|
| + // edge is inside or outside. Maybe need to pass span winding
|
| + // or first winding or something into this function?
|
| + // advance to first undone angle, then return it and winding
|
| + // (to set whether edges are active or not)
|
| + int nextIndex = firstIndex + 1;
|
| + int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
| + angle = sorted[firstIndex];
|
| + winding -= angle->segment()->spanSign(angle);
|
| + do {
|
| + SkASSERT(nextIndex != firstIndex);
|
| + if (nextIndex == angleCount) {
|
| + nextIndex = 0;
|
| + }
|
| + angle = sorted[nextIndex];
|
| + segment = angle->segment();
|
| + int maxWinding = winding;
|
| + winding -= segment->spanSign(angle);
|
| + #if DEBUG_SORT
|
| + SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__,
|
| + segment->debugID(), maxWinding, winding, angle->sign());
|
| + #endif
|
| + tIndex = angle->start();
|
| + endIndex = angle->end();
|
| + int lesser = SkMin32(tIndex, endIndex);
|
| + const SkOpSpan& nextSpan = segment->span(lesser);
|
| + if (!nextSpan.fDone) {
|
| + // FIXME: this be wrong? assign startWinding if edge is in
|
| + // same direction. If the direction is opposite, winding to
|
| + // assign is flipped sign or +/- 1?
|
| + if (SkOpSegment::UseInnerWinding(maxWinding, winding)) {
|
| + maxWinding = winding;
|
| + }
|
| + segment->markAndChaseWinding(angle, maxWinding, 0);
|
| + break;
|
| + }
|
| + } while (++nextIndex != lastIndex);
|
| + *chase.insert(0) = span;
|
| + return segment;
|
| + }
|
| + return NULL;
|
| +}
|
| +
|
| +#if DEBUG_ACTIVE_SPANS
|
| +void DebugShowActiveSpans(SkTDArray<SkOpContour*>& contourList) {
|
| + int index;
|
| + for (index = 0; index < contourList.count(); ++ index) {
|
| + contourList[index]->debugShowActiveSpans();
|
| + }
|
| + for (index = 0; index < contourList.count(); ++ index) {
|
| + contourList[index]->validateActiveSpans();
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +static SkOpSegment* findSortableTop(SkTDArray<SkOpContour*>& contourList, int& index, int& endIndex,
|
| + SkPoint& topLeft, bool& unsortable, bool& done, bool onlySortable) {
|
| + SkOpSegment* result;
|
| + do {
|
| + SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax};
|
| + int contourCount = contourList.count();
|
| + SkOpSegment* topStart = NULL;
|
| + done = true;
|
| + for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
| + SkOpContour* contour = contourList[cIndex];
|
| + if (contour->done()) {
|
| + continue;
|
| + }
|
| + const SkPathOpsBounds& bounds = contour->bounds();
|
| + if (bounds.fBottom < topLeft.fY) {
|
| + done = false;
|
| + continue;
|
| + }
|
| + if (bounds.fBottom == topLeft.fY && bounds.fRight < topLeft.fX) {
|
| + done = false;
|
| + continue;
|
| + }
|
| + contour->topSortableSegment(topLeft, bestXY, topStart);
|
| + if (!contour->done()) {
|
| + done = false;
|
| + }
|
| + }
|
| + if (!topStart) {
|
| + return NULL;
|
| + }
|
| + topLeft = bestXY;
|
| + result = topStart->findTop(index, endIndex, unsortable, onlySortable);
|
| + } while (!result);
|
| + return result;
|
| +}
|
| +
|
| +static int rightAngleWinding(SkTDArray<SkOpContour*>& contourList,
|
| + SkOpSegment*& current, int& index, int& endIndex, double& tHit, SkScalar& hitDx, bool& tryAgain,
|
| + bool opp) {
|
| + double test = 0.9;
|
| + int contourWinding;
|
| + do {
|
| + contourWinding = contourRangeCheckY(contourList, current, index, endIndex, tHit, hitDx,
|
| + tryAgain, test, opp);
|
| + if (contourWinding != SK_MinS32 || tryAgain) {
|
| + return contourWinding;
|
| + }
|
| + test /= 2;
|
| + } while (!approximately_negative(test));
|
| + SkASSERT(0); // should be OK to comment out, but interested when this hits
|
| + return contourWinding;
|
| +}
|
| +
|
| +static void skipVertical(SkTDArray<SkOpContour*>& contourList,
|
| + SkOpSegment*& current, int& index, int& endIndex) {
|
| + if (!current->isVertical(index, endIndex)) {
|
| + return;
|
| + }
|
| + int contourCount = contourList.count();
|
| + for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
|
| + SkOpContour* contour = contourList[cIndex];
|
| + if (contour->done()) {
|
| + continue;
|
| + }
|
| + current = contour->nonVerticalSegment(index, endIndex);
|
| + if (current) {
|
| + return;
|
| + }
|
| + }
|
| +}
|
| +
|
| +SkOpSegment* FindSortableTop(SkTDArray<SkOpContour*>& contourList, bool& firstContour, int& index,
|
| + int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done,
|
| + bool binary) {
|
| + SkOpSegment* current = findSortableTop(contourList, index, endIndex, topLeft, unsortable, done,
|
| + true);
|
| + if (!current) {
|
| + return NULL;
|
| + }
|
| + if (firstContour) {
|
| + current->initWinding(index, endIndex);
|
| + firstContour = false;
|
| + return current;
|
| + }
|
| + int minIndex = SkMin32(index, endIndex);
|
| + int sumWinding = current->windSum(minIndex);
|
| + if (sumWinding != SK_MinS32) {
|
| + return current;
|
| + }
|
| + sumWinding = current->computeSum(index, endIndex, binary);
|
| + if (sumWinding != SK_MinS32) {
|
| + return current;
|
| + }
|
| + int contourWinding;
|
| + int oppContourWinding = 0;
|
| + // the simple upward projection of the unresolved points hit unsortable angles
|
| + // shoot rays at right angles to the segment to find its winding, ignoring angle cases
|
| + bool tryAgain;
|
| + double tHit;
|
| + SkScalar hitDx = 0;
|
| + SkScalar hitOppDx = 0;
|
| + do {
|
| + // if current is vertical, find another candidate which is not
|
| + // if only remaining candidates are vertical, then they can be marked done
|
| + SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
|
| + skipVertical(contourList, current, index, endIndex);
|
| + SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
|
| + tryAgain = false;
|
| + contourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitDx,
|
| + tryAgain, false);
|
| + if (tryAgain) {
|
| + continue;
|
| + }
|
| + if (!binary) {
|
| + break;
|
| + }
|
| + oppContourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitOppDx,
|
| + tryAgain, true);
|
| + } while (tryAgain);
|
| +
|
| + current->initWinding(index, endIndex, tHit, contourWinding, hitDx, oppContourWinding, hitOppDx);
|
| + return current;
|
| +}
|
| +
|
| +void FixOtherTIndex(SkTDArray<SkOpContour*>& contourList) {
|
| + int contourCount = contourList.count();
|
| + for (int cTest = 0; cTest < contourCount; ++cTest) {
|
| + SkOpContour* contour = contourList[cTest];
|
| + contour->fixOtherTIndex();
|
| + }
|
| +}
|
| +
|
| +void SortSegments(SkTDArray<SkOpContour*>& contourList) {
|
| + int contourCount = contourList.count();
|
| + for (int cTest = 0; cTest < contourCount; ++cTest) {
|
| + SkOpContour* contour = contourList[cTest];
|
| + contour->sortSegments();
|
| + }
|
| +}
|
| +
|
| +void MakeContourList(SkTArray<SkOpContour>& contours, SkTDArray<SkOpContour*>& list,
|
| + bool evenOdd, bool oppEvenOdd) {
|
| + int count = contours.count();
|
| + if (count == 0) {
|
| + return;
|
| + }
|
| + for (int index = 0; index < count; ++index) {
|
| + SkOpContour& contour = contours[index];
|
| + contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd);
|
| + *list.append() = &contour;
|
| + }
|
| + QSort<SkOpContour>(list.begin(), list.end() - 1);
|
| +}
|
| +
|
| +static bool approximatelyEqual(const SkPoint& a, const SkPoint& b) {
|
| + return AlmostEqualUlps(a.fX, b.fX) && AlmostEqualUlps(a.fY, b.fY);
|
| +}
|
| +
|
| +static bool lessThan(SkTDArray<double>& distances, const int one, const int two) {
|
| + return distances[one] < distances[two];
|
| +}
|
| + /*
|
| + check start and end of each contour
|
| + if not the same, record them
|
| + match them up
|
| + connect closest
|
| + reassemble contour pieces into new path
|
| + */
|
| +void Assemble(const SkPathWriter& path, SkPathWriter& simple) {
|
| +#if DEBUG_PATH_CONSTRUCTION
|
| + SkDebugf("%s\n", __FUNCTION__);
|
| +#endif
|
| + SkTArray<SkOpContour> contours;
|
| + SkOpEdgeBuilder builder(path, contours);
|
| + builder.finish();
|
| + int count = contours.count();
|
| + int outer;
|
| + SkTDArray<int> runs; // indices of partial contours
|
| + for (outer = 0; outer < count; ++outer) {
|
| + const SkOpContour& eContour = contours[outer];
|
| + const SkPoint& eStart = eContour.start();
|
| + const SkPoint& eEnd = eContour.end();
|
| +#if DEBUG_ASSEMBLE
|
| + SkDebugf("%s contour", __FUNCTION__);
|
| + if (!approximatelyEqual(eStart, eEnd)) {
|
| + SkDebugf("[%d]", runs.count());
|
| + } else {
|
| + SkDebugf(" ");
|
| + }
|
| + SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n",
|
| + eStart.fX, eStart.fY, eEnd.fX, eEnd.fY);
|
| +#endif
|
| + if (approximatelyEqual(eStart, eEnd)) {
|
| + eContour.toPath(simple);
|
| + continue;
|
| + }
|
| + *runs.append() = outer;
|
| + }
|
| + count = runs.count();
|
| + if (count == 0) {
|
| + return;
|
| + }
|
| + SkTDArray<int> sLink, eLink;
|
| + sLink.setCount(count);
|
| + eLink.setCount(count);
|
| + int rIndex, iIndex;
|
| + for (rIndex = 0; rIndex < count; ++rIndex) {
|
| + sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
|
| + }
|
| + SkTDArray<double> distances;
|
| + const int ends = count * 2; // all starts and ends
|
| + const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2
|
| + distances.setCount(entries);
|
| + for (rIndex = 0; rIndex < ends - 1; ++rIndex) {
|
| + outer = runs[rIndex >> 1];
|
| + const SkOpContour& oContour = contours[outer];
|
| + const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start();
|
| + const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2)
|
| + * ends - rIndex - 1;
|
| + for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) {
|
| + int inner = runs[iIndex >> 1];
|
| + const SkOpContour& iContour = contours[inner];
|
| + const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start();
|
| + double dx = iPt.fX - oPt.fX;
|
| + double dy = iPt.fY - oPt.fY;
|
| + double dist = dx * dx + dy * dy;
|
| + distances[row + iIndex] = dist; // oStart distance from iStart
|
| + }
|
| + }
|
| + SkTDArray<int> sortedDist;
|
| + sortedDist.setCount(entries);
|
| + for (rIndex = 0; rIndex < entries; ++rIndex) {
|
| + sortedDist[rIndex] = rIndex;
|
| + }
|
| + QSort<SkTDArray<double>, int>(distances, sortedDist.begin(), sortedDist.end() - 1, lessThan);
|
| + int remaining = count; // number of start/end pairs
|
| + for (rIndex = 0; rIndex < entries; ++rIndex) {
|
| + int pair = sortedDist[rIndex];
|
| + int row = pair / ends;
|
| + int col = pair - row * ends;
|
| + int thingOne = row < col ? row : ends - row - 2;
|
| + int ndxOne = thingOne >> 1;
|
| + bool endOne = thingOne & 1;
|
| + int* linkOne = endOne ? eLink.begin() : sLink.begin();
|
| + if (linkOne[ndxOne] != SK_MaxS32) {
|
| + continue;
|
| + }
|
| + int thingTwo = row < col ? col : ends - row + col - 1;
|
| + int ndxTwo = thingTwo >> 1;
|
| + bool endTwo = thingTwo & 1;
|
| + int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
|
| + if (linkTwo[ndxTwo] != SK_MaxS32) {
|
| + continue;
|
| + }
|
| + SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
|
| + bool flip = endOne == endTwo;
|
| + linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
|
| + linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
|
| + if (!--remaining) {
|
| + break;
|
| + }
|
| + }
|
| + SkASSERT(!remaining);
|
| +#if DEBUG_ASSEMBLE
|
| + for (rIndex = 0; rIndex < count; ++rIndex) {
|
| + int s = sLink[rIndex];
|
| + int e = eLink[rIndex];
|
| + SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
|
| + s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
|
| + }
|
| +#endif
|
| + rIndex = 0;
|
| + do {
|
| + bool forward = true;
|
| + bool first = true;
|
| + int sIndex = sLink[rIndex];
|
| + SkASSERT(sIndex != SK_MaxS32);
|
| + sLink[rIndex] = SK_MaxS32;
|
| + int eIndex;
|
| + if (sIndex < 0) {
|
| + eIndex = sLink[~sIndex];
|
| + sLink[~sIndex] = SK_MaxS32;
|
| + } else {
|
| + eIndex = eLink[sIndex];
|
| + eLink[sIndex] = SK_MaxS32;
|
| + }
|
| + SkASSERT(eIndex != SK_MaxS32);
|
| +#if DEBUG_ASSEMBLE
|
| + SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
|
| + sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
|
| + eIndex < 0 ? ~eIndex : eIndex);
|
| +#endif
|
| + do {
|
| + outer = runs[rIndex];
|
| + const SkOpContour& contour = contours[outer];
|
| + if (first) {
|
| + first = false;
|
| + const SkPoint* startPtr = &contour.start();
|
| + simple.deferredMove(startPtr[0]);
|
| + }
|
| + if (forward) {
|
| + contour.toPartialForward(simple);
|
| + } else {
|
| + contour.toPartialBackward(simple);
|
| + }
|
| +#if DEBUG_ASSEMBLE
|
| + SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
|
| + eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
|
| + sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
|
| +#endif
|
| + if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
|
| + simple.close();
|
| + break;
|
| + }
|
| + if (forward) {
|
| + eIndex = eLink[rIndex];
|
| + SkASSERT(eIndex != SK_MaxS32);
|
| + eLink[rIndex] = SK_MaxS32;
|
| + if (eIndex >= 0) {
|
| + SkASSERT(sLink[eIndex] == rIndex);
|
| + sLink[eIndex] = SK_MaxS32;
|
| + } else {
|
| + SkASSERT(eLink[~eIndex] == ~rIndex);
|
| + eLink[~eIndex] = SK_MaxS32;
|
| + }
|
| + } else {
|
| + eIndex = sLink[rIndex];
|
| + SkASSERT(eIndex != SK_MaxS32);
|
| + sLink[rIndex] = SK_MaxS32;
|
| + if (eIndex >= 0) {
|
| + SkASSERT(eLink[eIndex] == rIndex);
|
| + eLink[eIndex] = SK_MaxS32;
|
| + } else {
|
| + SkASSERT(sLink[~eIndex] == ~rIndex);
|
| + sLink[~eIndex] = SK_MaxS32;
|
| + }
|
| + }
|
| + rIndex = eIndex;
|
| + if (rIndex < 0) {
|
| + forward ^= 1;
|
| + rIndex = ~rIndex;
|
| + }
|
| + } while (true);
|
| + for (rIndex = 0; rIndex < count; ++rIndex) {
|
| + if (sLink[rIndex] != SK_MaxS32) {
|
| + break;
|
| + }
|
| + }
|
| + } while (rIndex < count);
|
| +#if DEBUG_ASSEMBLE
|
| + for (rIndex = 0; rIndex < count; ++rIndex) {
|
| + SkASSERT(sLink[rIndex] == SK_MaxS32);
|
| + SkASSERT(eLink[rIndex] == SK_MaxS32);
|
| + }
|
| +#endif
|
| +}
|
| +
|
|
|