Index: src/pathops/SkPathOpsCommon.cpp |
=================================================================== |
--- src/pathops/SkPathOpsCommon.cpp (revision 0) |
+++ src/pathops/SkPathOpsCommon.cpp (revision 0) |
@@ -0,0 +1,573 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkOpEdgeBuilder.h" |
+#include "SkPathOpsCommon.h" |
+#include "SkPathWriter.h" |
+#include "TSearch.h" |
+ |
+static int contourRangeCheckY(SkTDArray<SkOpContour*>& contourList, SkOpSegment*& current, |
+ int& index, int& endIndex, double& bestHit, SkScalar& bestDx, |
+ bool& tryAgain, double& mid, bool opp) { |
+ double tAtMid = current->tAtMid(index, endIndex, mid); |
+ SkPoint basePt = current->xyAtT(tAtMid); |
+ int contourCount = contourList.count(); |
+ SkScalar bestY = SK_ScalarMin; |
+ SkOpSegment* bestSeg = NULL; |
+ int bestTIndex; |
+ bool bestOpp; |
+ bool hitSomething = false; |
+ for (int cTest = 0; cTest < contourCount; ++cTest) { |
+ SkOpContour* contour = contourList[cTest]; |
+ bool testOpp = contour->operand() ^ current->operand() ^ opp; |
+ if (basePt.fY < contour->bounds().fTop) { |
+ continue; |
+ } |
+ if (bestY > contour->bounds().fBottom) { |
+ continue; |
+ } |
+ int segmentCount = contour->segments().count(); |
+ for (int test = 0; test < segmentCount; ++test) { |
+ SkOpSegment* testSeg = &contour->segments()[test]; |
+ SkScalar testY = bestY; |
+ double testHit; |
+ int testTIndex = testSeg->crossedSpanY(basePt, testY, testHit, hitSomething, tAtMid, |
+ testOpp, testSeg == current); |
+ if (testTIndex < 0) { |
+ if (testTIndex == SK_MinS32) { |
+ hitSomething = true; |
+ bestSeg = NULL; |
+ goto abortContours; // vertical encountered, return and try different point |
+ } |
+ continue; |
+ } |
+ if (testSeg == current && current->betweenTs(index, testHit, endIndex)) { |
+ double baseT = current->t(index); |
+ double endT = current->t(endIndex); |
+ double newMid = (testHit - baseT) / (endT - baseT); |
+#if DEBUG_WINDING |
+ double midT = current->tAtMid(index, endIndex, mid); |
+ SkPoint midXY = current->xyAtT(midT); |
+ double newMidT = current->tAtMid(index, endIndex, newMid); |
+ SkPoint newXY = current->xyAtT(newMidT); |
+ SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)" |
+ " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, |
+ current->debugID(), mid, newMid, |
+ baseT, current->xAtT(index), current->yAtT(index), |
+ baseT + mid * (endT - baseT), midXY.fX, midXY.fY, |
+ baseT + newMid * (endT - baseT), newXY.fX, newXY.fY, |
+ endT, current->xAtT(endIndex), current->yAtT(endIndex)); |
+#endif |
+ mid = newMid * 2; // calling loop with divide by 2 before continuing |
+ return SK_MinS32; |
+ } |
+ bestSeg = testSeg; |
+ bestHit = testHit; |
+ bestOpp = testOpp; |
+ bestTIndex = testTIndex; |
+ bestY = testY; |
+ } |
+ } |
+abortContours: |
+ int result; |
+ if (!bestSeg) { |
+ result = hitSomething ? SK_MinS32 : 0; |
+ } else { |
+ if (bestSeg->windSum(bestTIndex) == SK_MinS32) { |
+ current = bestSeg; |
+ index = bestTIndex; |
+ endIndex = bestSeg->nextSpan(bestTIndex, 1); |
+ SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); |
+ tryAgain = true; |
+ return 0; |
+ } |
+ result = bestSeg->windingAtT(bestHit, bestTIndex, bestOpp, bestDx); |
+ SkASSERT(bestDx); |
+ } |
+ double baseT = current->t(index); |
+ double endT = current->t(endIndex); |
+ bestHit = baseT + mid * (endT - baseT); |
+ return result; |
+} |
+ |
+SkOpSegment* FindUndone(SkTDArray<SkOpContour*>& contourList, int& start, int& end) { |
+ int contourCount = contourList.count(); |
+ SkOpSegment* result; |
+ for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
+ SkOpContour* contour = contourList[cIndex]; |
+ result = contour->undoneSegment(start, end); |
+ if (result) { |
+ return result; |
+ } |
+ } |
+ return NULL; |
+} |
+ |
+SkOpSegment* FindChase(SkTDArray<SkOpSpan*>& chase, int& tIndex, int& endIndex) { |
+ while (chase.count()) { |
+ SkOpSpan* span; |
+ chase.pop(&span); |
+ const SkOpSpan& backPtr = span->fOther->span(span->fOtherIndex); |
+ SkOpSegment* segment = backPtr.fOther; |
+ tIndex = backPtr.fOtherIndex; |
+ SkTDArray<SkOpAngle> angles; |
+ int done = 0; |
+ if (segment->activeAngle(tIndex, done, angles)) { |
+ SkOpAngle* last = angles.end() - 1; |
+ tIndex = last->start(); |
+ endIndex = last->end(); |
+ #if TRY_ROTATE |
+ *chase.insert(0) = span; |
+ #else |
+ *chase.append() = span; |
+ #endif |
+ return last->segment(); |
+ } |
+ if (done == angles.count()) { |
+ continue; |
+ } |
+ SkTDArray<SkOpAngle*> sorted; |
+ bool sortable = SkOpSegment::SortAngles(angles, sorted); |
+ int angleCount = sorted.count(); |
+#if DEBUG_SORT |
+ sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); |
+#endif |
+ if (!sortable) { |
+ continue; |
+ } |
+ // find first angle, initialize winding to computed fWindSum |
+ int firstIndex = -1; |
+ const SkOpAngle* angle; |
+ int winding; |
+ do { |
+ angle = sorted[++firstIndex]; |
+ segment = angle->segment(); |
+ winding = segment->windSum(angle); |
+ } while (winding == SK_MinS32); |
+ int spanWinding = segment->spanSign(angle->start(), angle->end()); |
+ #if DEBUG_WINDING |
+ SkDebugf("%s winding=%d spanWinding=%d\n", |
+ __FUNCTION__, winding, spanWinding); |
+ #endif |
+ // turn span winding into contour winding |
+ if (spanWinding * winding < 0) { |
+ winding += spanWinding; |
+ } |
+ #if DEBUG_SORT |
+ segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0); |
+ #endif |
+ // we care about first sign and whether wind sum indicates this |
+ // edge is inside or outside. Maybe need to pass span winding |
+ // or first winding or something into this function? |
+ // advance to first undone angle, then return it and winding |
+ // (to set whether edges are active or not) |
+ int nextIndex = firstIndex + 1; |
+ int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
+ angle = sorted[firstIndex]; |
+ winding -= angle->segment()->spanSign(angle); |
+ do { |
+ SkASSERT(nextIndex != firstIndex); |
+ if (nextIndex == angleCount) { |
+ nextIndex = 0; |
+ } |
+ angle = sorted[nextIndex]; |
+ segment = angle->segment(); |
+ int maxWinding = winding; |
+ winding -= segment->spanSign(angle); |
+ #if DEBUG_SORT |
+ SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__, |
+ segment->debugID(), maxWinding, winding, angle->sign()); |
+ #endif |
+ tIndex = angle->start(); |
+ endIndex = angle->end(); |
+ int lesser = SkMin32(tIndex, endIndex); |
+ const SkOpSpan& nextSpan = segment->span(lesser); |
+ if (!nextSpan.fDone) { |
+ // FIXME: this be wrong? assign startWinding if edge is in |
+ // same direction. If the direction is opposite, winding to |
+ // assign is flipped sign or +/- 1? |
+ if (SkOpSegment::UseInnerWinding(maxWinding, winding)) { |
+ maxWinding = winding; |
+ } |
+ segment->markAndChaseWinding(angle, maxWinding, 0); |
+ break; |
+ } |
+ } while (++nextIndex != lastIndex); |
+ *chase.insert(0) = span; |
+ return segment; |
+ } |
+ return NULL; |
+} |
+ |
+#if DEBUG_ACTIVE_SPANS |
+void DebugShowActiveSpans(SkTDArray<SkOpContour*>& contourList) { |
+ int index; |
+ for (index = 0; index < contourList.count(); ++ index) { |
+ contourList[index]->debugShowActiveSpans(); |
+ } |
+ for (index = 0; index < contourList.count(); ++ index) { |
+ contourList[index]->validateActiveSpans(); |
+ } |
+} |
+#endif |
+ |
+static SkOpSegment* findSortableTop(SkTDArray<SkOpContour*>& contourList, int& index, int& endIndex, |
+ SkPoint& topLeft, bool& unsortable, bool& done, bool onlySortable) { |
+ SkOpSegment* result; |
+ do { |
+ SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax}; |
+ int contourCount = contourList.count(); |
+ SkOpSegment* topStart = NULL; |
+ done = true; |
+ for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
+ SkOpContour* contour = contourList[cIndex]; |
+ if (contour->done()) { |
+ continue; |
+ } |
+ const SkPathOpsBounds& bounds = contour->bounds(); |
+ if (bounds.fBottom < topLeft.fY) { |
+ done = false; |
+ continue; |
+ } |
+ if (bounds.fBottom == topLeft.fY && bounds.fRight < topLeft.fX) { |
+ done = false; |
+ continue; |
+ } |
+ contour->topSortableSegment(topLeft, bestXY, topStart); |
+ if (!contour->done()) { |
+ done = false; |
+ } |
+ } |
+ if (!topStart) { |
+ return NULL; |
+ } |
+ topLeft = bestXY; |
+ result = topStart->findTop(index, endIndex, unsortable, onlySortable); |
+ } while (!result); |
+ return result; |
+} |
+ |
+static int rightAngleWinding(SkTDArray<SkOpContour*>& contourList, |
+ SkOpSegment*& current, int& index, int& endIndex, double& tHit, SkScalar& hitDx, bool& tryAgain, |
+ bool opp) { |
+ double test = 0.9; |
+ int contourWinding; |
+ do { |
+ contourWinding = contourRangeCheckY(contourList, current, index, endIndex, tHit, hitDx, |
+ tryAgain, test, opp); |
+ if (contourWinding != SK_MinS32 || tryAgain) { |
+ return contourWinding; |
+ } |
+ test /= 2; |
+ } while (!approximately_negative(test)); |
+ SkASSERT(0); // should be OK to comment out, but interested when this hits |
+ return contourWinding; |
+} |
+ |
+static void skipVertical(SkTDArray<SkOpContour*>& contourList, |
+ SkOpSegment*& current, int& index, int& endIndex) { |
+ if (!current->isVertical(index, endIndex)) { |
+ return; |
+ } |
+ int contourCount = contourList.count(); |
+ for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
+ SkOpContour* contour = contourList[cIndex]; |
+ if (contour->done()) { |
+ continue; |
+ } |
+ current = contour->nonVerticalSegment(index, endIndex); |
+ if (current) { |
+ return; |
+ } |
+ } |
+} |
+ |
+SkOpSegment* FindSortableTop(SkTDArray<SkOpContour*>& contourList, bool& firstContour, int& index, |
+ int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, |
+ bool binary) { |
+ SkOpSegment* current = findSortableTop(contourList, index, endIndex, topLeft, unsortable, done, |
+ true); |
+ if (!current) { |
+ return NULL; |
+ } |
+ if (firstContour) { |
+ current->initWinding(index, endIndex); |
+ firstContour = false; |
+ return current; |
+ } |
+ int minIndex = SkMin32(index, endIndex); |
+ int sumWinding = current->windSum(minIndex); |
+ if (sumWinding != SK_MinS32) { |
+ return current; |
+ } |
+ sumWinding = current->computeSum(index, endIndex, binary); |
+ if (sumWinding != SK_MinS32) { |
+ return current; |
+ } |
+ int contourWinding; |
+ int oppContourWinding = 0; |
+ // the simple upward projection of the unresolved points hit unsortable angles |
+ // shoot rays at right angles to the segment to find its winding, ignoring angle cases |
+ bool tryAgain; |
+ double tHit; |
+ SkScalar hitDx = 0; |
+ SkScalar hitOppDx = 0; |
+ do { |
+ // if current is vertical, find another candidate which is not |
+ // if only remaining candidates are vertical, then they can be marked done |
+ SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); |
+ skipVertical(contourList, current, index, endIndex); |
+ SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); |
+ tryAgain = false; |
+ contourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitDx, |
+ tryAgain, false); |
+ if (tryAgain) { |
+ continue; |
+ } |
+ if (!binary) { |
+ break; |
+ } |
+ oppContourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitOppDx, |
+ tryAgain, true); |
+ } while (tryAgain); |
+ |
+ current->initWinding(index, endIndex, tHit, contourWinding, hitDx, oppContourWinding, hitOppDx); |
+ return current; |
+} |
+ |
+void FixOtherTIndex(SkTDArray<SkOpContour*>& contourList) { |
+ int contourCount = contourList.count(); |
+ for (int cTest = 0; cTest < contourCount; ++cTest) { |
+ SkOpContour* contour = contourList[cTest]; |
+ contour->fixOtherTIndex(); |
+ } |
+} |
+ |
+void SortSegments(SkTDArray<SkOpContour*>& contourList) { |
+ int contourCount = contourList.count(); |
+ for (int cTest = 0; cTest < contourCount; ++cTest) { |
+ SkOpContour* contour = contourList[cTest]; |
+ contour->sortSegments(); |
+ } |
+} |
+ |
+void MakeContourList(SkTArray<SkOpContour>& contours, SkTDArray<SkOpContour*>& list, |
+ bool evenOdd, bool oppEvenOdd) { |
+ int count = contours.count(); |
+ if (count == 0) { |
+ return; |
+ } |
+ for (int index = 0; index < count; ++index) { |
+ SkOpContour& contour = contours[index]; |
+ contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd); |
+ *list.append() = &contour; |
+ } |
+ QSort<SkOpContour>(list.begin(), list.end() - 1); |
+} |
+ |
+static bool approximatelyEqual(const SkPoint& a, const SkPoint& b) { |
+ return AlmostEqualUlps(a.fX, b.fX) && AlmostEqualUlps(a.fY, b.fY); |
+} |
+ |
+static bool lessThan(SkTDArray<double>& distances, const int one, const int two) { |
+ return distances[one] < distances[two]; |
+} |
+ /* |
+ check start and end of each contour |
+ if not the same, record them |
+ match them up |
+ connect closest |
+ reassemble contour pieces into new path |
+ */ |
+void Assemble(const SkPathWriter& path, SkPathWriter& simple) { |
+#if DEBUG_PATH_CONSTRUCTION |
+ SkDebugf("%s\n", __FUNCTION__); |
+#endif |
+ SkTArray<SkOpContour> contours; |
+ SkOpEdgeBuilder builder(path, contours); |
+ builder.finish(); |
+ int count = contours.count(); |
+ int outer; |
+ SkTDArray<int> runs; // indices of partial contours |
+ for (outer = 0; outer < count; ++outer) { |
+ const SkOpContour& eContour = contours[outer]; |
+ const SkPoint& eStart = eContour.start(); |
+ const SkPoint& eEnd = eContour.end(); |
+#if DEBUG_ASSEMBLE |
+ SkDebugf("%s contour", __FUNCTION__); |
+ if (!approximatelyEqual(eStart, eEnd)) { |
+ SkDebugf("[%d]", runs.count()); |
+ } else { |
+ SkDebugf(" "); |
+ } |
+ SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", |
+ eStart.fX, eStart.fY, eEnd.fX, eEnd.fY); |
+#endif |
+ if (approximatelyEqual(eStart, eEnd)) { |
+ eContour.toPath(simple); |
+ continue; |
+ } |
+ *runs.append() = outer; |
+ } |
+ count = runs.count(); |
+ if (count == 0) { |
+ return; |
+ } |
+ SkTDArray<int> sLink, eLink; |
+ sLink.setCount(count); |
+ eLink.setCount(count); |
+ int rIndex, iIndex; |
+ for (rIndex = 0; rIndex < count; ++rIndex) { |
+ sLink[rIndex] = eLink[rIndex] = SK_MaxS32; |
+ } |
+ SkTDArray<double> distances; |
+ const int ends = count * 2; // all starts and ends |
+ const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2 |
+ distances.setCount(entries); |
+ for (rIndex = 0; rIndex < ends - 1; ++rIndex) { |
+ outer = runs[rIndex >> 1]; |
+ const SkOpContour& oContour = contours[outer]; |
+ const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start(); |
+ const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2) |
+ * ends - rIndex - 1; |
+ for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) { |
+ int inner = runs[iIndex >> 1]; |
+ const SkOpContour& iContour = contours[inner]; |
+ const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start(); |
+ double dx = iPt.fX - oPt.fX; |
+ double dy = iPt.fY - oPt.fY; |
+ double dist = dx * dx + dy * dy; |
+ distances[row + iIndex] = dist; // oStart distance from iStart |
+ } |
+ } |
+ SkTDArray<int> sortedDist; |
+ sortedDist.setCount(entries); |
+ for (rIndex = 0; rIndex < entries; ++rIndex) { |
+ sortedDist[rIndex] = rIndex; |
+ } |
+ QSort<SkTDArray<double>, int>(distances, sortedDist.begin(), sortedDist.end() - 1, lessThan); |
+ int remaining = count; // number of start/end pairs |
+ for (rIndex = 0; rIndex < entries; ++rIndex) { |
+ int pair = sortedDist[rIndex]; |
+ int row = pair / ends; |
+ int col = pair - row * ends; |
+ int thingOne = row < col ? row : ends - row - 2; |
+ int ndxOne = thingOne >> 1; |
+ bool endOne = thingOne & 1; |
+ int* linkOne = endOne ? eLink.begin() : sLink.begin(); |
+ if (linkOne[ndxOne] != SK_MaxS32) { |
+ continue; |
+ } |
+ int thingTwo = row < col ? col : ends - row + col - 1; |
+ int ndxTwo = thingTwo >> 1; |
+ bool endTwo = thingTwo & 1; |
+ int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); |
+ if (linkTwo[ndxTwo] != SK_MaxS32) { |
+ continue; |
+ } |
+ SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); |
+ bool flip = endOne == endTwo; |
+ linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; |
+ linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; |
+ if (!--remaining) { |
+ break; |
+ } |
+ } |
+ SkASSERT(!remaining); |
+#if DEBUG_ASSEMBLE |
+ for (rIndex = 0; rIndex < count; ++rIndex) { |
+ int s = sLink[rIndex]; |
+ int e = eLink[rIndex]; |
+ SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', |
+ s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); |
+ } |
+#endif |
+ rIndex = 0; |
+ do { |
+ bool forward = true; |
+ bool first = true; |
+ int sIndex = sLink[rIndex]; |
+ SkASSERT(sIndex != SK_MaxS32); |
+ sLink[rIndex] = SK_MaxS32; |
+ int eIndex; |
+ if (sIndex < 0) { |
+ eIndex = sLink[~sIndex]; |
+ sLink[~sIndex] = SK_MaxS32; |
+ } else { |
+ eIndex = eLink[sIndex]; |
+ eLink[sIndex] = SK_MaxS32; |
+ } |
+ SkASSERT(eIndex != SK_MaxS32); |
+#if DEBUG_ASSEMBLE |
+ SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', |
+ sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', |
+ eIndex < 0 ? ~eIndex : eIndex); |
+#endif |
+ do { |
+ outer = runs[rIndex]; |
+ const SkOpContour& contour = contours[outer]; |
+ if (first) { |
+ first = false; |
+ const SkPoint* startPtr = &contour.start(); |
+ simple.deferredMove(startPtr[0]); |
+ } |
+ if (forward) { |
+ contour.toPartialForward(simple); |
+ } else { |
+ contour.toPartialBackward(simple); |
+ } |
+#if DEBUG_ASSEMBLE |
+ SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, |
+ eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, |
+ sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); |
+#endif |
+ if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { |
+ simple.close(); |
+ break; |
+ } |
+ if (forward) { |
+ eIndex = eLink[rIndex]; |
+ SkASSERT(eIndex != SK_MaxS32); |
+ eLink[rIndex] = SK_MaxS32; |
+ if (eIndex >= 0) { |
+ SkASSERT(sLink[eIndex] == rIndex); |
+ sLink[eIndex] = SK_MaxS32; |
+ } else { |
+ SkASSERT(eLink[~eIndex] == ~rIndex); |
+ eLink[~eIndex] = SK_MaxS32; |
+ } |
+ } else { |
+ eIndex = sLink[rIndex]; |
+ SkASSERT(eIndex != SK_MaxS32); |
+ sLink[rIndex] = SK_MaxS32; |
+ if (eIndex >= 0) { |
+ SkASSERT(eLink[eIndex] == rIndex); |
+ eLink[eIndex] = SK_MaxS32; |
+ } else { |
+ SkASSERT(sLink[~eIndex] == ~rIndex); |
+ sLink[~eIndex] = SK_MaxS32; |
+ } |
+ } |
+ rIndex = eIndex; |
+ if (rIndex < 0) { |
+ forward ^= 1; |
+ rIndex = ~rIndex; |
+ } |
+ } while (true); |
+ for (rIndex = 0; rIndex < count; ++rIndex) { |
+ if (sLink[rIndex] != SK_MaxS32) { |
+ break; |
+ } |
+ } |
+ } while (rIndex < count); |
+#if DEBUG_ASSEMBLE |
+ for (rIndex = 0; rIndex < count; ++rIndex) { |
+ SkASSERT(sLink[rIndex] == SK_MaxS32); |
+ SkASSERT(eLink[rIndex] == SK_MaxS32); |
+ } |
+#endif |
+} |
+ |