Index: src/pathops/SkOpSegment.cpp |
=================================================================== |
--- src/pathops/SkOpSegment.cpp (revision 0) |
+++ src/pathops/SkOpSegment.cpp (revision 0) |
@@ -0,0 +1,2939 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkIntersections.h" |
+#include "SkOpSegment.h" |
+#include "SkPathWriter.h" |
+#include "TSearch.h" |
+ |
+#define F (false) // discard the edge |
+#define T (true) // keep the edge |
+ |
+static const bool gUnaryActiveEdge[2][2] = { |
+// from=0 from=1 |
+// to=0,1 to=0,1 |
+ {F, T}, {T, F}, |
+}; |
+ |
+// FIXME: add support for kReverseDifference_Op |
+static const bool gActiveEdge[kXOR_PathOp + 1][2][2][2][2] = { |
+// miFrom=0 miFrom=1 |
+// miTo=0 miTo=1 miTo=0 miTo=1 |
+// suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1 |
+// suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 |
+ {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su |
+ {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su |
+ {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su |
+ {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su |
+}; |
+ |
+#undef F |
+#undef T |
+ |
+// OPTIMIZATION: does the following also work, and is it any faster? |
+// return outerWinding * innerWinding > 0 |
+// || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0))) |
+bool SkOpSegment::UseInnerWinding(int outerWinding, int innerWinding) { |
+ SkASSERT(outerWinding != SK_MaxS32); |
+ SkASSERT(innerWinding != SK_MaxS32); |
+ int absOut = abs(outerWinding); |
+ int absIn = abs(innerWinding); |
+ bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn; |
+ return result; |
+} |
+ |
+bool SkOpSegment::activeAngle(int index, int& done, SkTDArray<SkOpAngle>& angles) { |
+ if (activeAngleInner(index, done, angles)) { |
+ return true; |
+ } |
+ int lesser = index; |
+ while (--lesser >= 0 && equalPoints(index, lesser)) { |
+ if (activeAngleOther(lesser, done, angles)) { |
+ return true; |
+ } |
+ } |
+ lesser = index; |
+ do { |
+ if (activeAngleOther(index, done, angles)) { |
+ return true; |
+ } |
+ } while (++index < fTs.count() && equalPoints(index, lesser)); |
+ return false; |
+} |
+ |
+bool SkOpSegment::activeAngleOther(int index, int& done, SkTDArray<SkOpAngle>& angles) { |
+ SkOpSpan* span = &fTs[index]; |
+ SkOpSegment* other = span->fOther; |
+ int oIndex = span->fOtherIndex; |
+ return other->activeAngleInner(oIndex, done, angles); |
+} |
+ |
+bool SkOpSegment::activeAngleInner(int index, int& done, SkTDArray<SkOpAngle>& angles) { |
+ int next = nextExactSpan(index, 1); |
+ if (next > 0) { |
+ SkOpSpan& upSpan = fTs[index]; |
+ if (upSpan.fWindValue || upSpan.fOppValue) { |
+ addAngle(angles, index, next); |
+ if (upSpan.fDone || upSpan.fUnsortableEnd) { |
+ done++; |
+ } else if (upSpan.fWindSum != SK_MinS32) { |
+ return true; |
+ } |
+ } else if (!upSpan.fDone) { |
+ upSpan.fDone = true; |
+ fDoneSpans++; |
+ } |
+ } |
+ int prev = nextExactSpan(index, -1); |
+ // edge leading into junction |
+ if (prev >= 0) { |
+ SkOpSpan& downSpan = fTs[prev]; |
+ if (downSpan.fWindValue || downSpan.fOppValue) { |
+ addAngle(angles, index, prev); |
+ if (downSpan.fDone) { |
+ done++; |
+ } else if (downSpan.fWindSum != SK_MinS32) { |
+ return true; |
+ } |
+ } else if (!downSpan.fDone) { |
+ downSpan.fDone = true; |
+ fDoneSpans++; |
+ } |
+ } |
+ return false; |
+} |
+ |
+SkPoint SkOpSegment::activeLeftTop(bool onlySortable, int* firstT) const { |
+ SkASSERT(!done()); |
+ SkPoint topPt = {SK_ScalarMax, SK_ScalarMax}; |
+ int count = fTs.count(); |
+ // see if either end is not done since we want smaller Y of the pair |
+ bool lastDone = true; |
+ bool lastUnsortable = false; |
+ double lastT = -1; |
+ for (int index = 0; index < count; ++index) { |
+ const SkOpSpan& span = fTs[index]; |
+ if (onlySortable && (span.fUnsortableStart || lastUnsortable)) { |
+ goto next; |
+ } |
+ if (span.fDone && lastDone) { |
+ goto next; |
+ } |
+ if (approximately_negative(span.fT - lastT)) { |
+ goto next; |
+ } |
+ { |
+ const SkPoint& xy = xyAtT(&span); |
+ if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX)) { |
+ topPt = xy; |
+ if (firstT) { |
+ *firstT = index; |
+ } |
+ } |
+ if (fVerb != SkPath::kLine_Verb && !lastDone) { |
+ SkPoint curveTop = (*CurveTop[fVerb])(fPts, lastT, span.fT); |
+ if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY |
+ && topPt.fX > curveTop.fX)) { |
+ topPt = curveTop; |
+ if (firstT) { |
+ *firstT = index; |
+ } |
+ } |
+ } |
+ lastT = span.fT; |
+ } |
+next: |
+ lastDone = span.fDone; |
+ lastUnsortable = span.fUnsortableEnd; |
+ } |
+ return topPt; |
+} |
+ |
+bool SkOpSegment::activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, SkPathOp op) { |
+ int sumMiWinding = updateWinding(endIndex, index); |
+ int sumSuWinding = updateOppWinding(endIndex, index); |
+ if (fOperand) { |
+ SkTSwap<int>(sumMiWinding, sumSuWinding); |
+ } |
+ int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; |
+ return activeOp(xorMiMask, xorSuMask, index, endIndex, op, sumMiWinding, sumSuWinding, |
+ maxWinding, sumWinding, oppMaxWinding, oppSumWinding); |
+} |
+ |
+bool SkOpSegment::activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, SkPathOp op, |
+ int& sumMiWinding, int& sumSuWinding, |
+ int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) { |
+ setUpWindings(index, endIndex, sumMiWinding, sumSuWinding, |
+ maxWinding, sumWinding, oppMaxWinding, oppSumWinding); |
+ bool miFrom; |
+ bool miTo; |
+ bool suFrom; |
+ bool suTo; |
+ if (operand()) { |
+ miFrom = (oppMaxWinding & xorMiMask) != 0; |
+ miTo = (oppSumWinding & xorMiMask) != 0; |
+ suFrom = (maxWinding & xorSuMask) != 0; |
+ suTo = (sumWinding & xorSuMask) != 0; |
+ } else { |
+ miFrom = (maxWinding & xorMiMask) != 0; |
+ miTo = (sumWinding & xorMiMask) != 0; |
+ suFrom = (oppMaxWinding & xorSuMask) != 0; |
+ suTo = (oppSumWinding & xorSuMask) != 0; |
+ } |
+ bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo]; |
+#if DEBUG_ACTIVE_OP |
+ SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __FUNCTION__, |
+ kPathOpStr[op], miFrom, miTo, suFrom, suTo, result); |
+#endif |
+ SkASSERT(result != -1); |
+ return result; |
+} |
+ |
+bool SkOpSegment::activeWinding(int index, int endIndex) { |
+ int sumWinding = updateWinding(endIndex, index); |
+ int maxWinding; |
+ return activeWinding(index, endIndex, maxWinding, sumWinding); |
+} |
+ |
+bool SkOpSegment::activeWinding(int index, int endIndex, int& maxWinding, int& sumWinding) { |
+ setUpWinding(index, endIndex, maxWinding, sumWinding); |
+ bool from = maxWinding != 0; |
+ bool to = sumWinding != 0; |
+ bool result = gUnaryActiveEdge[from][to]; |
+ SkASSERT(result != -1); |
+ return result; |
+} |
+ |
+void SkOpSegment::addAngle(SkTDArray<SkOpAngle>& angles, int start, int end) const { |
+ SkASSERT(start != end); |
+ SkOpAngle* angle = angles.append(); |
+#if DEBUG_ANGLE |
+ if (angles.count() > 1 && !fTs[start].fTiny) { |
+ SkPoint angle0Pt = (*CurvePointAtT[angles[0].verb()])(angles[0].pts(), |
+ (*angles[0].spans())[angles[0].start()].fT); |
+ SkPoint newPt = (*CurvePointAtT[fVerb])(fPts, fTs[start].fT); |
+ SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX)); |
+ SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY)); |
+ } |
+#endif |
+ angle->set(fPts, fVerb, this, start, end, fTs); |
+} |
+ |
+void SkOpSegment::addCancelOutsides(double tStart, double oStart, SkOpSegment& other, double oEnd) { |
+ int tIndex = -1; |
+ int tCount = fTs.count(); |
+ int oIndex = -1; |
+ int oCount = other.fTs.count(); |
+ do { |
+ ++tIndex; |
+ } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount); |
+ int tIndexStart = tIndex; |
+ do { |
+ ++oIndex; |
+ } while (!approximately_negative(oStart - other.fTs[oIndex].fT) && oIndex < oCount); |
+ int oIndexStart = oIndex; |
+ double nextT; |
+ do { |
+ nextT = fTs[++tIndex].fT; |
+ } while (nextT < 1 && approximately_negative(nextT - tStart)); |
+ double oNextT; |
+ do { |
+ oNextT = other.fTs[++oIndex].fT; |
+ } while (oNextT < 1 && approximately_negative(oNextT - oStart)); |
+ // at this point, spans before and after are at: |
+ // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex] |
+ // if tIndexStart == 0, no prior span |
+ // if nextT == 1, no following span |
+ |
+ // advance the span with zero winding |
+ // if the following span exists (not past the end, non-zero winding) |
+ // connect the two edges |
+ if (!fTs[tIndexStart].fWindValue) { |
+ if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) { |
+#if DEBUG_CONCIDENT |
+ SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
+ __FUNCTION__, fID, other.fID, tIndexStart - 1, |
+ fTs[tIndexStart].fT, xyAtT(tIndexStart).fX, |
+ xyAtT(tIndexStart).fY); |
+#endif |
+ addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT, false, |
+ fTs[tIndexStart].fPt); |
+ } |
+ if (nextT < 1 && fTs[tIndex].fWindValue) { |
+#if DEBUG_CONCIDENT |
+ SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
+ __FUNCTION__, fID, other.fID, tIndex, |
+ fTs[tIndex].fT, xyAtT(tIndex).fX, |
+ xyAtT(tIndex).fY); |
+#endif |
+ addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT, false, fTs[tIndex].fPt); |
+ } |
+ } else { |
+ SkASSERT(!other.fTs[oIndexStart].fWindValue); |
+ if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) { |
+#if DEBUG_CONCIDENT |
+ SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
+ __FUNCTION__, fID, other.fID, oIndexStart - 1, |
+ other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX, |
+ other.xyAtT(oIndexStart).fY); |
+ other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex].fT); |
+#endif |
+ } |
+ if (oNextT < 1 && other.fTs[oIndex].fWindValue) { |
+#if DEBUG_CONCIDENT |
+ SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
+ __FUNCTION__, fID, other.fID, oIndex, |
+ other.fTs[oIndex].fT, other.xyAtT(oIndex).fX, |
+ other.xyAtT(oIndex).fY); |
+ other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart].fT); |
+#endif |
+ } |
+ } |
+} |
+ |
+void SkOpSegment::addCoinOutsides(const SkTDArray<double>& outsideTs, SkOpSegment& other, |
+ double oEnd) { |
+ // walk this to outsideTs[0] |
+ // walk other to outsideTs[1] |
+ // if either is > 0, add a pointer to the other, copying adjacent winding |
+ int tIndex = -1; |
+ int oIndex = -1; |
+ double tStart = outsideTs[0]; |
+ double oStart = outsideTs[1]; |
+ do { |
+ ++tIndex; |
+ } while (!approximately_negative(tStart - fTs[tIndex].fT)); |
+ SkPoint ptStart = fTs[tIndex].fPt; |
+ do { |
+ ++oIndex; |
+ } while (!approximately_negative(oStart - other.fTs[oIndex].fT)); |
+ if (tIndex > 0 || oIndex > 0 || fOperand != other.fOperand) { |
+ addTPair(tStart, other, oStart, false, ptStart); |
+ } |
+ tStart = fTs[tIndex].fT; |
+ oStart = other.fTs[oIndex].fT; |
+ do { |
+ double nextT; |
+ do { |
+ nextT = fTs[++tIndex].fT; |
+ } while (approximately_negative(nextT - tStart)); |
+ tStart = nextT; |
+ ptStart = fTs[tIndex].fPt; |
+ do { |
+ nextT = other.fTs[++oIndex].fT; |
+ } while (approximately_negative(nextT - oStart)); |
+ oStart = nextT; |
+ if (tStart == 1 && oStart == 1 && fOperand == other.fOperand) { |
+ break; |
+ } |
+ addTPair(tStart, other, oStart, false, ptStart); |
+ } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart)); |
+} |
+ |
+void SkOpSegment::addCubic(const SkPoint pts[4], bool operand, bool evenOdd) { |
+ init(pts, SkPath::kCubic_Verb, operand, evenOdd); |
+ fBounds.setCubicBounds(pts); |
+} |
+ |
+void SkOpSegment::addCurveTo(int start, int end, SkPathWriter& path, bool active) const { |
+ SkPoint edge[4]; |
+ const SkPoint* ePtr; |
+ int lastT = fTs.count() - 1; |
+ if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) { |
+ ePtr = fPts; |
+ } else { |
+ // OPTIMIZE? if not active, skip remainder and return xyAtT(end) |
+ subDivide(start, end, edge); |
+ ePtr = edge; |
+ } |
+ if (active) { |
+ bool reverse = ePtr == fPts && start != 0; |
+ if (reverse) { |
+ path.deferredMoveLine(ePtr[fVerb]); |
+ switch (fVerb) { |
+ case SkPath::kLine_Verb: |
+ path.deferredLine(ePtr[0]); |
+ break; |
+ case SkPath::kQuad_Verb: |
+ path.quadTo(ePtr[1], ePtr[0]); |
+ break; |
+ case SkPath::kCubic_Verb: |
+ path.cubicTo(ePtr[2], ePtr[1], ePtr[0]); |
+ break; |
+ default: |
+ SkASSERT(0); |
+ } |
+ // return ePtr[0]; |
+ } else { |
+ path.deferredMoveLine(ePtr[0]); |
+ switch (fVerb) { |
+ case SkPath::kLine_Verb: |
+ path.deferredLine(ePtr[1]); |
+ break; |
+ case SkPath::kQuad_Verb: |
+ path.quadTo(ePtr[1], ePtr[2]); |
+ break; |
+ case SkPath::kCubic_Verb: |
+ path.cubicTo(ePtr[1], ePtr[2], ePtr[3]); |
+ break; |
+ default: |
+ SkASSERT(0); |
+ } |
+ } |
+ } |
+ // return ePtr[fVerb]; |
+} |
+ |
+void SkOpSegment::addLine(const SkPoint pts[2], bool operand, bool evenOdd) { |
+ init(pts, SkPath::kLine_Verb, operand, evenOdd); |
+ fBounds.set(pts, 2); |
+} |
+ |
+// add 2 to edge or out of range values to get T extremes |
+void SkOpSegment::addOtherT(int index, double otherT, int otherIndex) { |
+ SkOpSpan& span = fTs[index]; |
+#if PIN_ADD_T |
+ if (precisely_less_than_zero(otherT)) { |
+ otherT = 0; |
+ } else if (precisely_greater_than_one(otherT)) { |
+ otherT = 1; |
+ } |
+#endif |
+ span.fOtherT = otherT; |
+ span.fOtherIndex = otherIndex; |
+} |
+ |
+void SkOpSegment::addQuad(const SkPoint pts[3], bool operand, bool evenOdd) { |
+ init(pts, SkPath::kQuad_Verb, operand, evenOdd); |
+ fBounds.setQuadBounds(pts); |
+} |
+ |
+ // Defer all coincident edge processing until |
+ // after normal intersections have been computed |
+ |
+// no need to be tricky; insert in normal T order |
+// resolve overlapping ts when considering coincidence later |
+ |
+ // add non-coincident intersection. Resulting edges are sorted in T. |
+int SkOpSegment::addT(SkOpSegment* other, const SkPoint& pt, double newT) { |
+ // FIXME: in the pathological case where there is a ton of intercepts, |
+ // binary search? |
+ int insertedAt = -1; |
+ size_t tCount = fTs.count(); |
+ for (size_t index = 0; index < tCount; ++index) { |
+ // OPTIMIZATION: if there are three or more identical Ts, then |
+ // the fourth and following could be further insertion-sorted so |
+ // that all the edges are clockwise or counterclockwise. |
+ // This could later limit segment tests to the two adjacent |
+ // neighbors, although it doesn't help with determining which |
+ // circular direction to go in. |
+ if (newT < fTs[index].fT) { |
+ insertedAt = index; |
+ break; |
+ } |
+ } |
+ SkOpSpan* span; |
+ if (insertedAt >= 0) { |
+ span = fTs.insert(insertedAt); |
+ } else { |
+ insertedAt = tCount; |
+ span = fTs.append(); |
+ } |
+ span->fT = newT; |
+ span->fOther = other; |
+ span->fPt = pt; |
+ span->fWindSum = SK_MinS32; |
+ span->fOppSum = SK_MinS32; |
+ span->fWindValue = 1; |
+ span->fOppValue = 0; |
+ span->fTiny = false; |
+ span->fLoop = false; |
+ if ((span->fDone = newT == 1)) { |
+ ++fDoneSpans; |
+ } |
+ span->fUnsortableStart = false; |
+ span->fUnsortableEnd = false; |
+ int less = -1; |
+ while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(span)) { |
+ if (span[less].fDone) { |
+ break; |
+ } |
+ double tInterval = newT - span[less].fT; |
+ if (precisely_negative(tInterval)) { |
+ break; |
+ } |
+ if (fVerb == SkPath::kCubic_Verb) { |
+ double tMid = newT - tInterval / 2; |
+ SkDPoint midPt = dcubic_xy_at_t(fPts, tMid); |
+ if (!midPt.approximatelyEqual(xyAtT(span))) { |
+ break; |
+ } |
+ } |
+ span[less].fTiny = true; |
+ span[less].fDone = true; |
+ if (approximately_negative(newT - span[less].fT)) { |
+ if (approximately_greater_than_one(newT)) { |
+ span[less].fUnsortableStart = true; |
+ span[less - 1].fUnsortableEnd = true; |
+ } |
+ if (approximately_less_than_zero(span[less].fT)) { |
+ span[less + 1].fUnsortableStart = true; |
+ span[less].fUnsortableEnd = true; |
+ } |
+ } |
+ ++fDoneSpans; |
+ --less; |
+ } |
+ int more = 1; |
+ while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(span)) { |
+ if (span[more - 1].fDone) { |
+ break; |
+ } |
+ double tEndInterval = span[more].fT - newT; |
+ if (precisely_negative(tEndInterval)) { |
+ break; |
+ } |
+ if (fVerb == SkPath::kCubic_Verb) { |
+ double tMid = newT - tEndInterval / 2; |
+ SkDPoint midEndPt = dcubic_xy_at_t(fPts, tMid); |
+ if (!midEndPt.approximatelyEqual(xyAtT(span))) { |
+ break; |
+ } |
+ } |
+ span[more - 1].fTiny = true; |
+ span[more - 1].fDone = true; |
+ if (approximately_negative(span[more].fT - newT)) { |
+ if (approximately_greater_than_one(span[more].fT)) { |
+ span[more + 1].fUnsortableStart = true; |
+ span[more].fUnsortableEnd = true; |
+ } |
+ if (approximately_less_than_zero(newT)) { |
+ span[more].fUnsortableStart = true; |
+ span[more - 1].fUnsortableEnd = true; |
+ } |
+ } |
+ ++fDoneSpans; |
+ ++more; |
+ } |
+ return insertedAt; |
+} |
+ |
+// set spans from start to end to decrement by one |
+// note this walks other backwards |
+// FIMXE: there's probably an edge case that can be constructed where |
+// two span in one segment are separated by float epsilon on one span but |
+// not the other, if one segment is very small. For this |
+// case the counts asserted below may or may not be enough to separate the |
+// spans. Even if the counts work out, what if the spans aren't correctly |
+// sorted? It feels better in such a case to match the span's other span |
+// pointer since both coincident segments must contain the same spans. |
+void SkOpSegment::addTCancel(double startT, double endT, SkOpSegment& other, |
+ double oStartT, double oEndT) { |
+ SkASSERT(!approximately_negative(endT - startT)); |
+ SkASSERT(!approximately_negative(oEndT - oStartT)); |
+ bool binary = fOperand != other.fOperand; |
+ int index = 0; |
+ while (!approximately_negative(startT - fTs[index].fT)) { |
+ ++index; |
+ } |
+ int oIndex = other.fTs.count(); |
+ while (approximately_positive(other.fTs[--oIndex].fT - oEndT)) |
+ ; |
+ double tRatio = (oEndT - oStartT) / (endT - startT); |
+ SkOpSpan* test = &fTs[index]; |
+ SkOpSpan* oTest = &other.fTs[oIndex]; |
+ SkTDArray<double> outsideTs; |
+ SkTDArray<double> oOutsideTs; |
+ do { |
+ bool decrement = test->fWindValue && oTest->fWindValue && !binary; |
+ bool track = test->fWindValue || oTest->fWindValue; |
+ double testT = test->fT; |
+ double oTestT = oTest->fT; |
+ SkOpSpan* span = test; |
+ do { |
+ if (decrement) { |
+ decrementSpan(span); |
+ } else if (track && span->fT < 1 && oTestT < 1) { |
+ TrackOutside(outsideTs, span->fT, oTestT); |
+ } |
+ span = &fTs[++index]; |
+ } while (approximately_negative(span->fT - testT)); |
+ SkOpSpan* oSpan = oTest; |
+ double otherTMatchStart = oEndT - (span->fT - startT) * tRatio; |
+ double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio; |
+ SkDEBUGCODE(int originalWindValue = oSpan->fWindValue); |
+ while (approximately_negative(otherTMatchStart - oSpan->fT) |
+ && !approximately_negative(otherTMatchEnd - oSpan->fT)) { |
+ #ifdef SK_DEBUG |
+ SkASSERT(originalWindValue == oSpan->fWindValue); |
+ #endif |
+ if (decrement) { |
+ other.decrementSpan(oSpan); |
+ } else if (track && oSpan->fT < 1 && testT < 1) { |
+ TrackOutside(oOutsideTs, oSpan->fT, testT); |
+ } |
+ if (!oIndex) { |
+ break; |
+ } |
+ oSpan = &other.fTs[--oIndex]; |
+ } |
+ test = span; |
+ oTest = oSpan; |
+ } while (!approximately_negative(endT - test->fT)); |
+ SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT)); |
+ // FIXME: determine if canceled edges need outside ts added |
+ if (!done() && outsideTs.count()) { |
+ double tStart = outsideTs[0]; |
+ double oStart = outsideTs[1]; |
+ addCancelOutsides(tStart, oStart, other, oEndT); |
+ int count = outsideTs.count(); |
+ if (count > 2) { |
+ double tStart = outsideTs[count - 2]; |
+ double oStart = outsideTs[count - 1]; |
+ addCancelOutsides(tStart, oStart, other, oEndT); |
+ } |
+ } |
+ if (!other.done() && oOutsideTs.count()) { |
+ double tStart = oOutsideTs[0]; |
+ double oStart = oOutsideTs[1]; |
+ other.addCancelOutsides(tStart, oStart, *this, endT); |
+ } |
+} |
+ |
+int SkOpSegment::addSelfT(SkOpSegment* other, const SkPoint& pt, double newT) { |
+ int result = addT(other, pt, newT); |
+ SkOpSpan* span = &fTs[result]; |
+ span->fLoop = true; |
+ return result; |
+} |
+ |
+int SkOpSegment::addUnsortableT(SkOpSegment* other, bool start, const SkPoint& pt, double newT) { |
+ int result = addT(other, pt, newT); |
+ SkOpSpan* span = &fTs[result]; |
+ if (start) { |
+ if (result > 0) { |
+ span[result - 1].fUnsortableEnd = true; |
+ } |
+ span[result].fUnsortableStart = true; |
+ } else { |
+ span[result].fUnsortableEnd = true; |
+ if (result + 1 < fTs.count()) { |
+ span[result + 1].fUnsortableStart = true; |
+ } |
+ } |
+ return result; |
+} |
+ |
+int SkOpSegment::bumpCoincidentThis(const SkOpSpan* oTest, bool opp, int index, |
+ SkTDArray<double>& outsideTs) { |
+ int oWindValue = oTest->fWindValue; |
+ int oOppValue = oTest->fOppValue; |
+ if (opp) { |
+ SkTSwap<int>(oWindValue, oOppValue); |
+ } |
+ SkOpSpan* const test = &fTs[index]; |
+ SkOpSpan* end = test; |
+ const double oStartT = oTest->fT; |
+ do { |
+ if (bumpSpan(end, oWindValue, oOppValue)) { |
+ TrackOutside(outsideTs, end->fT, oStartT); |
+ } |
+ end = &fTs[++index]; |
+ } while (approximately_negative(end->fT - test->fT)); |
+ return index; |
+} |
+ |
+// because of the order in which coincidences are resolved, this and other |
+// may not have the same intermediate points. Compute the corresponding |
+// intermediate T values (using this as the master, other as the follower) |
+// and walk other conditionally -- hoping that it catches up in the end |
+int SkOpSegment::bumpCoincidentOther(const SkOpSpan* test, double oEndT, int& oIndex, |
+ SkTDArray<double>& oOutsideTs) { |
+ SkOpSpan* const oTest = &fTs[oIndex]; |
+ SkOpSpan* oEnd = oTest; |
+ const double startT = test->fT; |
+ const double oStartT = oTest->fT; |
+ while (!approximately_negative(oEndT - oEnd->fT) |
+ && approximately_negative(oEnd->fT - oStartT)) { |
+ zeroSpan(oEnd); |
+ TrackOutside(oOutsideTs, oEnd->fT, startT); |
+ oEnd = &fTs[++oIndex]; |
+ } |
+ return oIndex; |
+} |
+ |
+// FIXME: need to test this case: |
+// contourA has two segments that are coincident |
+// contourB has two segments that are coincident in the same place |
+// each ends up with +2/0 pairs for winding count |
+// since logic below doesn't transfer count (only increments/decrements) can this be |
+// resolved to +4/0 ? |
+ |
+// set spans from start to end to increment the greater by one and decrement |
+// the lesser |
+void SkOpSegment::addTCoincident(double startT, double endT, SkOpSegment& other, double oStartT, |
+ double oEndT) { |
+ SkASSERT(!approximately_negative(endT - startT)); |
+ SkASSERT(!approximately_negative(oEndT - oStartT)); |
+ bool opp = fOperand ^ other.fOperand; |
+ int index = 0; |
+ while (!approximately_negative(startT - fTs[index].fT)) { |
+ ++index; |
+ } |
+ int oIndex = 0; |
+ while (!approximately_negative(oStartT - other.fTs[oIndex].fT)) { |
+ ++oIndex; |
+ } |
+ SkOpSpan* test = &fTs[index]; |
+ SkOpSpan* oTest = &other.fTs[oIndex]; |
+ SkTDArray<double> outsideTs; |
+ SkTDArray<double> oOutsideTs; |
+ do { |
+ // if either span has an opposite value and the operands don't match, resolve first |
+ // SkASSERT(!test->fDone || !oTest->fDone); |
+ if (test->fDone || oTest->fDone) { |
+ index = advanceCoincidentThis(oTest, opp, index); |
+ oIndex = other.advanceCoincidentOther(test, oEndT, oIndex); |
+ } else { |
+ index = bumpCoincidentThis(oTest, opp, index, outsideTs); |
+ oIndex = other.bumpCoincidentOther(test, oEndT, oIndex, oOutsideTs); |
+ } |
+ test = &fTs[index]; |
+ oTest = &other.fTs[oIndex]; |
+ } while (!approximately_negative(endT - test->fT)); |
+ SkASSERT(approximately_negative(oTest->fT - oEndT)); |
+ SkASSERT(approximately_negative(oEndT - oTest->fT)); |
+ if (!done() && outsideTs.count()) { |
+ addCoinOutsides(outsideTs, other, oEndT); |
+ } |
+ if (!other.done() && oOutsideTs.count()) { |
+ other.addCoinOutsides(oOutsideTs, *this, endT); |
+ } |
+} |
+ |
+// FIXME: this doesn't prevent the same span from being added twice |
+// fix in caller, SkASSERT here? |
+void SkOpSegment::addTPair(double t, SkOpSegment& other, double otherT, bool borrowWind, |
+ const SkPoint& pt) { |
+ int tCount = fTs.count(); |
+ for (int tIndex = 0; tIndex < tCount; ++tIndex) { |
+ const SkOpSpan& span = fTs[tIndex]; |
+ if (!approximately_negative(span.fT - t)) { |
+ break; |
+ } |
+ if (approximately_negative(span.fT - t) && span.fOther == &other |
+ && approximately_equal(span.fOtherT, otherT)) { |
+#if DEBUG_ADD_T_PAIR |
+ SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n", |
+ __FUNCTION__, fID, t, other.fID, otherT); |
+#endif |
+ return; |
+ } |
+ } |
+#if DEBUG_ADD_T_PAIR |
+ SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n", |
+ __FUNCTION__, fID, t, other.fID, otherT); |
+#endif |
+ int insertedAt = addT(&other, pt, t); |
+ int otherInsertedAt = other.addT(this, pt, otherT); |
+ addOtherT(insertedAt, otherT, otherInsertedAt); |
+ other.addOtherT(otherInsertedAt, t, insertedAt); |
+ matchWindingValue(insertedAt, t, borrowWind); |
+ other.matchWindingValue(otherInsertedAt, otherT, borrowWind); |
+} |
+ |
+void SkOpSegment::addTwoAngles(int start, int end, SkTDArray<SkOpAngle>& angles) const { |
+ // add edge leading into junction |
+ int min = SkMin32(end, start); |
+ if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) { |
+ addAngle(angles, end, start); |
+ } |
+ // add edge leading away from junction |
+ int step = SkSign32(end - start); |
+ int tIndex = nextExactSpan(end, step); |
+ min = SkMin32(end, tIndex); |
+ if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) { |
+ addAngle(angles, end, tIndex); |
+ } |
+} |
+ |
+int SkOpSegment::advanceCoincidentThis(const SkOpSpan* oTest, bool opp, int index) { |
+ SkOpSpan* const test = &fTs[index]; |
+ SkOpSpan* end; |
+ do { |
+ end = &fTs[++index]; |
+ } while (approximately_negative(end->fT - test->fT)); |
+ return index; |
+} |
+ |
+int SkOpSegment::advanceCoincidentOther(const SkOpSpan* test, double oEndT, int& oIndex) { |
+ SkOpSpan* const oTest = &fTs[oIndex]; |
+ SkOpSpan* oEnd = oTest; |
+ const double oStartT = oTest->fT; |
+ while (!approximately_negative(oEndT - oEnd->fT) |
+ && approximately_negative(oEnd->fT - oStartT)) { |
+ oEnd = &fTs[++oIndex]; |
+ } |
+ return oIndex; |
+} |
+ |
+bool SkOpSegment::betweenTs(int lesser, double testT, int greater) { |
+ if (lesser > greater) { |
+ SkTSwap<int>(lesser, greater); |
+ } |
+ return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT); |
+} |
+ |
+void SkOpSegment::buildAngles(int index, SkTDArray<SkOpAngle>& angles, bool includeOpp) const { |
+ double referenceT = fTs[index].fT; |
+ int lesser = index; |
+ while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand) |
+ && precisely_negative(referenceT - fTs[lesser].fT)) { |
+ buildAnglesInner(lesser, angles); |
+ } |
+ do { |
+ buildAnglesInner(index, angles); |
+ } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand) |
+ && precisely_negative(fTs[index].fT - referenceT)); |
+} |
+ |
+void SkOpSegment::buildAnglesInner(int index, SkTDArray<SkOpAngle>& angles) const { |
+ const SkOpSpan* span = &fTs[index]; |
+ SkOpSegment* other = span->fOther; |
+// if there is only one live crossing, and no coincidence, continue |
+// in the same direction |
+// if there is coincidence, the only choice may be to reverse direction |
+ // find edge on either side of intersection |
+ int oIndex = span->fOtherIndex; |
+ // if done == -1, prior span has already been processed |
+ int step = 1; |
+ int next = other->nextExactSpan(oIndex, step); |
+ if (next < 0) { |
+ step = -step; |
+ next = other->nextExactSpan(oIndex, step); |
+ } |
+ // add candidate into and away from junction |
+ other->addTwoAngles(next, oIndex, angles); |
+} |
+ |
+int SkOpSegment::computeSum(int startIndex, int endIndex, bool binary) { |
+ SkTDArray<SkOpAngle> angles; |
+ addTwoAngles(startIndex, endIndex, angles); |
+ buildAngles(endIndex, angles, false); |
+ // OPTIMIZATION: check all angles to see if any have computed wind sum |
+ // before sorting (early exit if none) |
+ SkTDArray<SkOpAngle*> sorted; |
+ bool sortable = SortAngles(angles, sorted); |
+#if DEBUG_SORT |
+ sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); |
+#endif |
+ if (!sortable) { |
+ return SK_MinS32; |
+ } |
+ int angleCount = angles.count(); |
+ const SkOpAngle* angle; |
+ const SkOpSegment* base; |
+ int winding; |
+ int oWinding; |
+ int firstIndex = 0; |
+ do { |
+ angle = sorted[firstIndex]; |
+ base = angle->segment(); |
+ winding = base->windSum(angle); |
+ if (winding != SK_MinS32) { |
+ oWinding = base->oppSum(angle); |
+ break; |
+ } |
+ if (++firstIndex == angleCount) { |
+ return SK_MinS32; |
+ } |
+ } while (true); |
+ // turn winding into contourWinding |
+ int spanWinding = base->spanSign(angle); |
+ bool inner = UseInnerWinding(winding + spanWinding, winding); |
+#if DEBUG_WINDING |
+ SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__, |
+ spanWinding, winding, angle->sign(), inner, |
+ inner ? winding + spanWinding : winding); |
+#endif |
+ if (inner) { |
+ winding += spanWinding; |
+ } |
+#if DEBUG_SORT |
+ base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding); |
+#endif |
+ int nextIndex = firstIndex + 1; |
+ int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
+ winding -= base->spanSign(angle); |
+ oWinding -= base->oppSign(angle); |
+ do { |
+ if (nextIndex == angleCount) { |
+ nextIndex = 0; |
+ } |
+ angle = sorted[nextIndex]; |
+ SkOpSegment* segment = angle->segment(); |
+ bool opp = base->fOperand ^ segment->fOperand; |
+ int maxWinding, oMaxWinding; |
+ int spanSign = segment->spanSign(angle); |
+ int oppoSign = segment->oppSign(angle); |
+ if (opp) { |
+ oMaxWinding = oWinding; |
+ oWinding -= spanSign; |
+ maxWinding = winding; |
+ if (oppoSign) { |
+ winding -= oppoSign; |
+ } |
+ } else { |
+ maxWinding = winding; |
+ winding -= spanSign; |
+ oMaxWinding = oWinding; |
+ if (oppoSign) { |
+ oWinding -= oppoSign; |
+ } |
+ } |
+ if (segment->windSum(angle) == SK_MinS32) { |
+ if (opp) { |
+ if (UseInnerWinding(oMaxWinding, oWinding)) { |
+ oMaxWinding = oWinding; |
+ } |
+ if (oppoSign && UseInnerWinding(maxWinding, winding)) { |
+ maxWinding = winding; |
+ } |
+ (void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding); |
+ } else { |
+ if (UseInnerWinding(maxWinding, winding)) { |
+ maxWinding = winding; |
+ } |
+ if (oppoSign && UseInnerWinding(oMaxWinding, oWinding)) { |
+ oMaxWinding = oWinding; |
+ } |
+ (void) segment->markAndChaseWinding(angle, maxWinding, |
+ binary ? oMaxWinding : 0); |
+ } |
+ } |
+ } while (++nextIndex != lastIndex); |
+ int minIndex = SkMin32(startIndex, endIndex); |
+ return windSum(minIndex); |
+} |
+ |
+int SkOpSegment::crossedSpanY(const SkPoint& basePt, SkScalar& bestY, double& hitT, |
+ bool& hitSomething, double mid, bool opp, bool current) const { |
+ SkScalar bottom = fBounds.fBottom; |
+ int bestTIndex = -1; |
+ if (bottom <= bestY) { |
+ return bestTIndex; |
+ } |
+ SkScalar top = fBounds.fTop; |
+ if (top >= basePt.fY) { |
+ return bestTIndex; |
+ } |
+ if (fBounds.fLeft > basePt.fX) { |
+ return bestTIndex; |
+ } |
+ if (fBounds.fRight < basePt.fX) { |
+ return bestTIndex; |
+ } |
+ if (fBounds.fLeft == fBounds.fRight) { |
+ // if vertical, and directly above test point, wait for another one |
+ return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex; |
+ } |
+ // intersect ray starting at basePt with edge |
+ SkIntersections intersections; |
+ // OPTIMIZE: use specialty function that intersects ray with curve, |
+ // returning t values only for curve (we don't care about t on ray) |
+ int pts = (intersections.*CurveVertical[fVerb])(fPts, top, bottom, basePt.fX, false); |
+ if (pts == 0 || (current && pts == 1)) { |
+ return bestTIndex; |
+ } |
+ if (current) { |
+ SkASSERT(pts > 1); |
+ int closestIdx = 0; |
+ double closest = fabs(intersections[0][0] - mid); |
+ for (int idx = 1; idx < pts; ++idx) { |
+ double test = fabs(intersections[0][idx] - mid); |
+ if (closest > test) { |
+ closestIdx = idx; |
+ closest = test; |
+ } |
+ } |
+ intersections.quickRemoveOne(closestIdx, --pts); |
+ } |
+ double bestT = -1; |
+ for (int index = 0; index < pts; ++index) { |
+ double foundT = intersections[0][index]; |
+ if (approximately_less_than_zero(foundT) |
+ || approximately_greater_than_one(foundT)) { |
+ continue; |
+ } |
+ SkScalar testY = (*CurvePointAtT[fVerb])(fPts, foundT).fY; |
+ if (approximately_negative(testY - bestY) |
+ || approximately_negative(basePt.fY - testY)) { |
+ continue; |
+ } |
+ if (pts > 1 && fVerb == SkPath::kLine_Verb) { |
+ return SK_MinS32; // if the intersection is edge on, wait for another one |
+ } |
+ if (fVerb > SkPath::kLine_Verb) { |
+ SkScalar dx = (*CurveSlopeAtT[fVerb])(fPts, foundT).fX; |
+ if (approximately_zero(dx)) { |
+ return SK_MinS32; // hit vertical, wait for another one |
+ } |
+ } |
+ bestY = testY; |
+ bestT = foundT; |
+ } |
+ if (bestT < 0) { |
+ return bestTIndex; |
+ } |
+ SkASSERT(bestT >= 0); |
+ SkASSERT(bestT <= 1); |
+ int start; |
+ int end = 0; |
+ do { |
+ start = end; |
+ end = nextSpan(start, 1); |
+ } while (fTs[end].fT < bestT); |
+ // FIXME: see next candidate for a better pattern to find the next start/end pair |
+ while (start + 1 < end && fTs[start].fDone) { |
+ ++start; |
+ } |
+ if (!isCanceled(start)) { |
+ hitT = bestT; |
+ bestTIndex = start; |
+ hitSomething = true; |
+ } |
+ return bestTIndex; |
+} |
+ |
+void SkOpSegment::decrementSpan(SkOpSpan* span) { |
+ SkASSERT(span->fWindValue > 0); |
+ if (--(span->fWindValue) == 0) { |
+ if (!span->fOppValue && !span->fDone) { |
+ span->fDone = true; |
+ ++fDoneSpans; |
+ } |
+ } |
+} |
+ |
+bool SkOpSegment::bumpSpan(SkOpSpan* span, int windDelta, int oppDelta) { |
+ SkASSERT(!span->fDone); |
+ span->fWindValue += windDelta; |
+ SkASSERT(span->fWindValue >= 0); |
+ span->fOppValue += oppDelta; |
+ SkASSERT(span->fOppValue >= 0); |
+ if (fXor) { |
+ span->fWindValue &= 1; |
+ } |
+ if (fOppXor) { |
+ span->fOppValue &= 1; |
+ } |
+ if (!span->fWindValue && !span->fOppValue) { |
+ span->fDone = true; |
+ ++fDoneSpans; |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+bool SkOpSegment::equalPoints(int greaterTIndex, int lesserTIndex) { |
+ SkASSERT(greaterTIndex >= lesserTIndex); |
+ double greaterT = fTs[greaterTIndex].fT; |
+ double lesserT = fTs[lesserTIndex].fT; |
+ if (greaterT == lesserT) { |
+ return true; |
+ } |
+ if (!approximately_negative(greaterT - lesserT)) { |
+ return false; |
+ } |
+ return xyAtT(greaterTIndex) == xyAtT(lesserTIndex); |
+} |
+ |
+/* |
+ The M and S variable name parts stand for the operators. |
+ Mi stands for Minuend (see wiki subtraction, analogous to difference) |
+ Su stands for Subtrahend |
+ The Opp variable name part designates that the value is for the Opposite operator. |
+ Opposite values result from combining coincident spans. |
+ */ |
+SkOpSegment* SkOpSegment::findNextOp(SkTDArray<SkOpSpan*>& chase, int& nextStart, int& nextEnd, |
+ bool& unsortable, SkPathOp op, const int xorMiMask, |
+ const int xorSuMask) { |
+ const int startIndex = nextStart; |
+ const int endIndex = nextEnd; |
+ SkASSERT(startIndex != endIndex); |
+ SkDEBUGCODE(const int count = fTs.count()); |
+ SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); |
+ const int step = SkSign32(endIndex - startIndex); |
+ const int end = nextExactSpan(startIndex, step); |
+ SkASSERT(end >= 0); |
+ SkOpSpan* endSpan = &fTs[end]; |
+ SkOpSegment* other; |
+ if (isSimple(end)) { |
+ // mark the smaller of startIndex, endIndex done, and all adjacent |
+ // spans with the same T value (but not 'other' spans) |
+#if DEBUG_WINDING |
+ SkDebugf("%s simple\n", __FUNCTION__); |
+#endif |
+ int min = SkMin32(startIndex, endIndex); |
+ if (fTs[min].fDone) { |
+ return NULL; |
+ } |
+ markDoneBinary(min); |
+ other = endSpan->fOther; |
+ nextStart = endSpan->fOtherIndex; |
+ double startT = other->fTs[nextStart].fT; |
+ nextEnd = nextStart; |
+ do { |
+ nextEnd += step; |
+ } |
+ while (precisely_zero(startT - other->fTs[nextEnd].fT)); |
+ SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); |
+ return other; |
+ } |
+ // more than one viable candidate -- measure angles to find best |
+ SkTDArray<SkOpAngle> angles; |
+ SkASSERT(startIndex - endIndex != 0); |
+ SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
+ addTwoAngles(startIndex, end, angles); |
+ buildAngles(end, angles, true); |
+ SkTDArray<SkOpAngle*> sorted; |
+ bool sortable = SortAngles(angles, sorted); |
+ int angleCount = angles.count(); |
+ int firstIndex = findStartingEdge(sorted, startIndex, end); |
+ SkASSERT(firstIndex >= 0); |
+#if DEBUG_SORT |
+ debugShowSort(__FUNCTION__, sorted, firstIndex); |
+#endif |
+ if (!sortable) { |
+ unsortable = true; |
+ return NULL; |
+ } |
+ SkASSERT(sorted[firstIndex]->segment() == this); |
+#if DEBUG_WINDING |
+ SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, |
+ sorted[firstIndex]->sign()); |
+#endif |
+ int sumMiWinding = updateWinding(endIndex, startIndex); |
+ int sumSuWinding = updateOppWinding(endIndex, startIndex); |
+ if (operand()) { |
+ SkTSwap<int>(sumMiWinding, sumSuWinding); |
+ } |
+ int nextIndex = firstIndex + 1; |
+ int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
+ const SkOpAngle* foundAngle = NULL; |
+ bool foundDone = false; |
+ // iterate through the angle, and compute everyone's winding |
+ SkOpSegment* nextSegment; |
+ int activeCount = 0; |
+ do { |
+ SkASSERT(nextIndex != firstIndex); |
+ if (nextIndex == angleCount) { |
+ nextIndex = 0; |
+ } |
+ const SkOpAngle* nextAngle = sorted[nextIndex]; |
+ nextSegment = nextAngle->segment(); |
+ int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; |
+ bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(), |
+ nextAngle->end(), op, sumMiWinding, sumSuWinding, |
+ maxWinding, sumWinding, oppMaxWinding, oppSumWinding); |
+ if (activeAngle) { |
+ ++activeCount; |
+ if (!foundAngle || (foundDone && activeCount & 1)) { |
+ if (nextSegment->tiny(nextAngle)) { |
+ unsortable = true; |
+ return NULL; |
+ } |
+ foundAngle = nextAngle; |
+ foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle); |
+ } |
+ } |
+ if (nextSegment->done()) { |
+ continue; |
+ } |
+ if (nextSegment->windSum(nextAngle) != SK_MinS32) { |
+ continue; |
+ } |
+ SkOpSpan* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding, |
+ oppSumWinding, activeAngle, nextAngle); |
+ if (last) { |
+ *chase.append() = last; |
+#if DEBUG_WINDING |
+ SkDebugf("%s chase.append id=%d\n", __FUNCTION__, |
+ last->fOther->fTs[last->fOtherIndex].fOther->debugID()); |
+#endif |
+ } |
+ } while (++nextIndex != lastIndex); |
+ markDoneBinary(SkMin32(startIndex, endIndex)); |
+ if (!foundAngle) { |
+ return NULL; |
+ } |
+ nextStart = foundAngle->start(); |
+ nextEnd = foundAngle->end(); |
+ nextSegment = foundAngle->segment(); |
+ |
+#if DEBUG_WINDING |
+ SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
+ __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); |
+ #endif |
+ return nextSegment; |
+} |
+ |
+SkOpSegment* SkOpSegment::findNextWinding(SkTDArray<SkOpSpan*>& chase, int& nextStart, |
+ int& nextEnd, bool& unsortable) { |
+ const int startIndex = nextStart; |
+ const int endIndex = nextEnd; |
+ SkASSERT(startIndex != endIndex); |
+ SkDEBUGCODE(const int count = fTs.count()); |
+ SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); |
+ const int step = SkSign32(endIndex - startIndex); |
+ const int end = nextExactSpan(startIndex, step); |
+ SkASSERT(end >= 0); |
+ SkOpSpan* endSpan = &fTs[end]; |
+ SkOpSegment* other; |
+ if (isSimple(end)) { |
+ // mark the smaller of startIndex, endIndex done, and all adjacent |
+ // spans with the same T value (but not 'other' spans) |
+#if DEBUG_WINDING |
+ SkDebugf("%s simple\n", __FUNCTION__); |
+#endif |
+ int min = SkMin32(startIndex, endIndex); |
+ if (fTs[min].fDone) { |
+ return NULL; |
+ } |
+ markDoneUnary(min); |
+ other = endSpan->fOther; |
+ nextStart = endSpan->fOtherIndex; |
+ double startT = other->fTs[nextStart].fT; |
+ nextEnd = nextStart; |
+ do { |
+ nextEnd += step; |
+ } |
+ while (precisely_zero(startT - other->fTs[nextEnd].fT)); |
+ SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); |
+ return other; |
+ } |
+ // more than one viable candidate -- measure angles to find best |
+ SkTDArray<SkOpAngle> angles; |
+ SkASSERT(startIndex - endIndex != 0); |
+ SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
+ addTwoAngles(startIndex, end, angles); |
+ buildAngles(end, angles, true); |
+ SkTDArray<SkOpAngle*> sorted; |
+ bool sortable = SortAngles(angles, sorted); |
+ int angleCount = angles.count(); |
+ int firstIndex = findStartingEdge(sorted, startIndex, end); |
+ SkASSERT(firstIndex >= 0); |
+#if DEBUG_SORT |
+ debugShowSort(__FUNCTION__, sorted, firstIndex); |
+#endif |
+ if (!sortable) { |
+ unsortable = true; |
+ return NULL; |
+ } |
+ SkASSERT(sorted[firstIndex]->segment() == this); |
+#if DEBUG_WINDING |
+ SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, |
+ sorted[firstIndex]->sign()); |
+#endif |
+ int sumWinding = updateWinding(endIndex, startIndex); |
+ int nextIndex = firstIndex + 1; |
+ int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
+ const SkOpAngle* foundAngle = NULL; |
+ bool foundDone = false; |
+ // iterate through the angle, and compute everyone's winding |
+ SkOpSegment* nextSegment; |
+ int activeCount = 0; |
+ do { |
+ SkASSERT(nextIndex != firstIndex); |
+ if (nextIndex == angleCount) { |
+ nextIndex = 0; |
+ } |
+ const SkOpAngle* nextAngle = sorted[nextIndex]; |
+ nextSegment = nextAngle->segment(); |
+ int maxWinding; |
+ bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(), |
+ maxWinding, sumWinding); |
+ if (activeAngle) { |
+ ++activeCount; |
+ if (!foundAngle || (foundDone && activeCount & 1)) { |
+ if (nextSegment->tiny(nextAngle)) { |
+ unsortable = true; |
+ return NULL; |
+ } |
+ foundAngle = nextAngle; |
+ foundDone = nextSegment->done(nextAngle); |
+ } |
+ } |
+ if (nextSegment->done()) { |
+ continue; |
+ } |
+ if (nextSegment->windSum(nextAngle) != SK_MinS32) { |
+ continue; |
+ } |
+ SkOpSpan* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle); |
+ if (last) { |
+ *chase.append() = last; |
+#if DEBUG_WINDING |
+ SkDebugf("%s chase.append id=%d\n", __FUNCTION__, |
+ last->fOther->fTs[last->fOtherIndex].fOther->debugID()); |
+#endif |
+ } |
+ } while (++nextIndex != lastIndex); |
+ markDoneUnary(SkMin32(startIndex, endIndex)); |
+ if (!foundAngle) { |
+ return NULL; |
+ } |
+ nextStart = foundAngle->start(); |
+ nextEnd = foundAngle->end(); |
+ nextSegment = foundAngle->segment(); |
+#if DEBUG_WINDING |
+ SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
+ __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); |
+ #endif |
+ return nextSegment; |
+} |
+ |
+SkOpSegment* SkOpSegment::findNextXor(int& nextStart, int& nextEnd, bool& unsortable) { |
+ const int startIndex = nextStart; |
+ const int endIndex = nextEnd; |
+ SkASSERT(startIndex != endIndex); |
+ SkDEBUGCODE(int count = fTs.count()); |
+ SkASSERT(startIndex < endIndex ? startIndex < count - 1 |
+ : startIndex > 0); |
+ int step = SkSign32(endIndex - startIndex); |
+ int end = nextExactSpan(startIndex, step); |
+ SkASSERT(end >= 0); |
+ SkOpSpan* endSpan = &fTs[end]; |
+ SkOpSegment* other; |
+ if (isSimple(end)) { |
+#if DEBUG_WINDING |
+ SkDebugf("%s simple\n", __FUNCTION__); |
+#endif |
+ int min = SkMin32(startIndex, endIndex); |
+ if (fTs[min].fDone) { |
+ return NULL; |
+ } |
+ markDone(min, 1); |
+ other = endSpan->fOther; |
+ nextStart = endSpan->fOtherIndex; |
+ double startT = other->fTs[nextStart].fT; |
+ // FIXME: I don't know why the logic here is difference from the winding case |
+ SkDEBUGCODE(bool firstLoop = true;) |
+ if ((approximately_less_than_zero(startT) && step < 0) |
+ || (approximately_greater_than_one(startT) && step > 0)) { |
+ step = -step; |
+ SkDEBUGCODE(firstLoop = false;) |
+ } |
+ do { |
+ nextEnd = nextStart; |
+ do { |
+ nextEnd += step; |
+ } |
+ while (precisely_zero(startT - other->fTs[nextEnd].fT)); |
+ if (other->fTs[SkMin32(nextStart, nextEnd)].fWindValue) { |
+ break; |
+ } |
+#ifdef SK_DEBUG |
+ SkASSERT(firstLoop); |
+#endif |
+ SkDEBUGCODE(firstLoop = false;) |
+ step = -step; |
+ } while (true); |
+ SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); |
+ return other; |
+ } |
+ SkTDArray<SkOpAngle> angles; |
+ SkASSERT(startIndex - endIndex != 0); |
+ SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
+ addTwoAngles(startIndex, end, angles); |
+ buildAngles(end, angles, false); |
+ SkTDArray<SkOpAngle*> sorted; |
+ bool sortable = SortAngles(angles, sorted); |
+ if (!sortable) { |
+ unsortable = true; |
+#if DEBUG_SORT |
+ debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0); |
+#endif |
+ return NULL; |
+ } |
+ int angleCount = angles.count(); |
+ int firstIndex = findStartingEdge(sorted, startIndex, end); |
+ SkASSERT(firstIndex >= 0); |
+#if DEBUG_SORT |
+ debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0); |
+#endif |
+ SkASSERT(sorted[firstIndex]->segment() == this); |
+ int nextIndex = firstIndex + 1; |
+ int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
+ const SkOpAngle* foundAngle = NULL; |
+ bool foundDone = false; |
+ SkOpSegment* nextSegment; |
+ int activeCount = 0; |
+ do { |
+ SkASSERT(nextIndex != firstIndex); |
+ if (nextIndex == angleCount) { |
+ nextIndex = 0; |
+ } |
+ const SkOpAngle* nextAngle = sorted[nextIndex]; |
+ nextSegment = nextAngle->segment(); |
+ ++activeCount; |
+ if (!foundAngle || (foundDone && activeCount & 1)) { |
+ if (nextSegment->tiny(nextAngle)) { |
+ unsortable = true; |
+ return NULL; |
+ } |
+ foundAngle = nextAngle; |
+ foundDone = nextSegment->done(nextAngle); |
+ } |
+ if (nextSegment->done()) { |
+ continue; |
+ } |
+ } while (++nextIndex != lastIndex); |
+ markDone(SkMin32(startIndex, endIndex), 1); |
+ if (!foundAngle) { |
+ return NULL; |
+ } |
+ nextStart = foundAngle->start(); |
+ nextEnd = foundAngle->end(); |
+ nextSegment = foundAngle->segment(); |
+#if DEBUG_WINDING |
+ SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
+ __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); |
+ #endif |
+ return nextSegment; |
+} |
+ |
+int SkOpSegment::findStartingEdge(SkTDArray<SkOpAngle*>& sorted, int start, int end) { |
+ int angleCount = sorted.count(); |
+ int firstIndex = -1; |
+ for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
+ const SkOpAngle* angle = sorted[angleIndex]; |
+ if (angle->segment() == this && angle->start() == end && |
+ angle->end() == start) { |
+ firstIndex = angleIndex; |
+ break; |
+ } |
+ } |
+ return firstIndex; |
+} |
+ |
+// FIXME: this is tricky code; needs its own unit test |
+// note that fOtherIndex isn't computed yet, so it can't be used here |
+void SkOpSegment::findTooCloseToCall() { |
+ int count = fTs.count(); |
+ if (count < 3) { // require t=0, x, 1 at minimum |
+ return; |
+ } |
+ int matchIndex = 0; |
+ int moCount; |
+ SkOpSpan* match; |
+ SkOpSegment* mOther; |
+ do { |
+ match = &fTs[matchIndex]; |
+ mOther = match->fOther; |
+ // FIXME: allow quads, cubics to be near coincident? |
+ if (mOther->fVerb == SkPath::kLine_Verb) { |
+ moCount = mOther->fTs.count(); |
+ if (moCount >= 3) { |
+ break; |
+ } |
+ } |
+ if (++matchIndex >= count) { |
+ return; |
+ } |
+ } while (true); // require t=0, x, 1 at minimum |
+ // OPTIMIZATION: defer matchPt until qualifying toCount is found? |
+ const SkPoint* matchPt = &xyAtT(match); |
+ // look for a pair of nearby T values that map to the same (x,y) value |
+ // if found, see if the pair of other segments share a common point. If |
+ // so, the span from here to there is coincident. |
+ for (int index = matchIndex + 1; index < count; ++index) { |
+ SkOpSpan* test = &fTs[index]; |
+ if (test->fDone) { |
+ continue; |
+ } |
+ SkOpSegment* tOther = test->fOther; |
+ if (tOther->fVerb != SkPath::kLine_Verb) { |
+ continue; // FIXME: allow quads, cubics to be near coincident? |
+ } |
+ int toCount = tOther->fTs.count(); |
+ if (toCount < 3) { // require t=0, x, 1 at minimum |
+ continue; |
+ } |
+ const SkPoint* testPt = &xyAtT(test); |
+ if (*matchPt != *testPt) { |
+ matchIndex = index; |
+ moCount = toCount; |
+ match = test; |
+ mOther = tOther; |
+ matchPt = testPt; |
+ continue; |
+ } |
+ int moStart = -1; |
+ int moEnd = -1; |
+ double moStartT, moEndT; |
+ for (int moIndex = 0; moIndex < moCount; ++moIndex) { |
+ SkOpSpan& moSpan = mOther->fTs[moIndex]; |
+ if (moSpan.fDone) { |
+ continue; |
+ } |
+ if (moSpan.fOther == this) { |
+ if (moSpan.fOtherT == match->fT) { |
+ moStart = moIndex; |
+ moStartT = moSpan.fT; |
+ } |
+ continue; |
+ } |
+ if (moSpan.fOther == tOther) { |
+ if (tOther->windValueAt(moSpan.fOtherT) == 0) { |
+ moStart = -1; |
+ break; |
+ } |
+ SkASSERT(moEnd == -1); |
+ moEnd = moIndex; |
+ moEndT = moSpan.fT; |
+ } |
+ } |
+ if (moStart < 0 || moEnd < 0) { |
+ continue; |
+ } |
+ // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test |
+ if (approximately_equal(moStartT, moEndT)) { |
+ continue; |
+ } |
+ int toStart = -1; |
+ int toEnd = -1; |
+ double toStartT, toEndT; |
+ for (int toIndex = 0; toIndex < toCount; ++toIndex) { |
+ SkOpSpan& toSpan = tOther->fTs[toIndex]; |
+ if (toSpan.fDone) { |
+ continue; |
+ } |
+ if (toSpan.fOther == this) { |
+ if (toSpan.fOtherT == test->fT) { |
+ toStart = toIndex; |
+ toStartT = toSpan.fT; |
+ } |
+ continue; |
+ } |
+ if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) { |
+ if (mOther->windValueAt(toSpan.fOtherT) == 0) { |
+ moStart = -1; |
+ break; |
+ } |
+ SkASSERT(toEnd == -1); |
+ toEnd = toIndex; |
+ toEndT = toSpan.fT; |
+ } |
+ } |
+ // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test |
+ if (toStart <= 0 || toEnd <= 0) { |
+ continue; |
+ } |
+ if (approximately_equal(toStartT, toEndT)) { |
+ continue; |
+ } |
+ // test to see if the segment between there and here is linear |
+ if (!mOther->isLinear(moStart, moEnd) |
+ || !tOther->isLinear(toStart, toEnd)) { |
+ continue; |
+ } |
+ bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1; |
+ if (flipped) { |
+ mOther->addTCancel(moStartT, moEndT, *tOther, toEndT, toStartT); |
+ } else { |
+ mOther->addTCoincident(moStartT, moEndT, *tOther, toStartT, toEndT); |
+ } |
+ } |
+} |
+ |
+// FIXME: either: |
+// a) mark spans with either end unsortable as done, or |
+// b) rewrite findTop / findTopSegment / findTopContour to iterate further |
+// when encountering an unsortable span |
+ |
+// OPTIMIZATION : for a pair of lines, can we compute points at T (cached) |
+// and use more concise logic like the old edge walker code? |
+// FIXME: this needs to deal with coincident edges |
+SkOpSegment* SkOpSegment::findTop(int& tIndex, int& endIndex, bool& unsortable, bool onlySortable) { |
+ // iterate through T intersections and return topmost |
+ // topmost tangent from y-min to first pt is closer to horizontal |
+ SkASSERT(!done()); |
+ int firstT = -1; |
+ /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT); |
+ if (firstT < 0) { |
+ unsortable = true; |
+ firstT = 0; |
+ while (fTs[firstT].fDone) { |
+ SkASSERT(firstT < fTs.count()); |
+ ++firstT; |
+ } |
+ tIndex = firstT; |
+ endIndex = nextExactSpan(firstT, 1); |
+ return this; |
+ } |
+ // sort the edges to find the leftmost |
+ int step = 1; |
+ int end = nextSpan(firstT, step); |
+ if (end == -1) { |
+ step = -1; |
+ end = nextSpan(firstT, step); |
+ SkASSERT(end != -1); |
+ } |
+ // if the topmost T is not on end, or is three-way or more, find left |
+ // look for left-ness from tLeft to firstT (matching y of other) |
+ SkTDArray<SkOpAngle> angles; |
+ SkASSERT(firstT - end != 0); |
+ addTwoAngles(end, firstT, angles); |
+ buildAngles(firstT, angles, true); |
+ SkTDArray<SkOpAngle*> sorted; |
+ bool sortable = SortAngles(angles, sorted); |
+ int first = SK_MaxS32; |
+ SkScalar top = SK_ScalarMax; |
+ int count = sorted.count(); |
+ for (int index = 0; index < count; ++index) { |
+ const SkOpAngle* angle = sorted[index]; |
+ SkOpSegment* next = angle->segment(); |
+ SkPathOpsBounds bounds; |
+ next->subDivideBounds(angle->end(), angle->start(), bounds); |
+ if (approximately_greater(top, bounds.fTop)) { |
+ top = bounds.fTop; |
+ first = index; |
+ } |
+ } |
+ SkASSERT(first < SK_MaxS32); |
+#if DEBUG_SORT // || DEBUG_SWAP_TOP |
+ sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0, 0); |
+#endif |
+ if (onlySortable && !sortable) { |
+ unsortable = true; |
+ return NULL; |
+ } |
+ // skip edges that have already been processed |
+ firstT = first - 1; |
+ SkOpSegment* leftSegment; |
+ do { |
+ if (++firstT == count) { |
+ firstT = 0; |
+ } |
+ const SkOpAngle* angle = sorted[firstT]; |
+ SkASSERT(!onlySortable || !angle->unsortable()); |
+ leftSegment = angle->segment(); |
+ tIndex = angle->end(); |
+ endIndex = angle->start(); |
+ } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone); |
+ if (leftSegment->verb() >= SkPath::kQuad_Verb) { |
+ if (!leftSegment->clockwise(tIndex, endIndex)) { |
+ bool swap = !leftSegment->monotonicInY(tIndex, endIndex) |
+ && !leftSegment->serpentine(tIndex, endIndex); |
+ #if DEBUG_SWAP_TOP |
+ SkDebugf("%s swap=%d serpentine=%d containedByEnds=%d monotonic=%d\n", __FUNCTION__, |
+ swap, |
+ leftSegment->serpentine(tIndex, endIndex), |
+ leftSegment->controlsContainedByEnds(tIndex, endIndex), |
+ leftSegment->monotonicInY(tIndex, endIndex)); |
+ #endif |
+ if (swap) { |
+ // FIXME: I doubt it makes sense to (necessarily) swap if the edge was not the first |
+ // sorted but merely the first not already processed (i.e., not done) |
+ SkTSwap(tIndex, endIndex); |
+ } |
+ } |
+ } |
+ SkASSERT(!leftSegment->fTs[SkMin32(tIndex, endIndex)].fTiny); |
+ return leftSegment; |
+} |
+ |
+// FIXME: not crazy about this |
+// when the intersections are performed, the other index is into an |
+// incomplete array. As the array grows, the indices become incorrect |
+// while the following fixes the indices up again, it isn't smart about |
+// skipping segments whose indices are already correct |
+// assuming we leave the code that wrote the index in the first place |
+void SkOpSegment::fixOtherTIndex() { |
+ int iCount = fTs.count(); |
+ for (int i = 0; i < iCount; ++i) { |
+ SkOpSpan& iSpan = fTs[i]; |
+ double oT = iSpan.fOtherT; |
+ SkOpSegment* other = iSpan.fOther; |
+ int oCount = other->fTs.count(); |
+ for (int o = 0; o < oCount; ++o) { |
+ SkOpSpan& oSpan = other->fTs[o]; |
+ if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == iSpan.fT) { |
+ iSpan.fOtherIndex = o; |
+ break; |
+ } |
+ } |
+ } |
+} |
+ |
+void SkOpSegment::init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) { |
+ fDoneSpans = 0; |
+ fOperand = operand; |
+ fXor = evenOdd; |
+ fPts = pts; |
+ fVerb = verb; |
+} |
+ |
+void SkOpSegment::initWinding(int start, int end) { |
+ int local = spanSign(start, end); |
+ int oppLocal = oppSign(start, end); |
+ (void) markAndChaseWinding(start, end, local, oppLocal); |
+ // OPTIMIZATION: the reverse mark and chase could skip the first marking |
+ (void) markAndChaseWinding(end, start, local, oppLocal); |
+} |
+ |
+void SkOpSegment::initWinding(int start, int end, int winding, int oppWinding) { |
+ int local = spanSign(start, end); |
+ if (local * winding >= 0) { |
+ winding += local; |
+ } |
+ int oppLocal = oppSign(start, end); |
+ if (oppLocal * oppWinding >= 0) { |
+ oppWinding += oppLocal; |
+ } |
+ (void) markAndChaseWinding(start, end, winding, oppWinding); |
+} |
+ |
+/* |
+when we start with a vertical intersect, we try to use the dx to determine if the edge is to |
+the left or the right of vertical. This determines if we need to add the span's |
+sign or not. However, this isn't enough. |
+If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed. |
+If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed |
+from has the same x direction as this span, the winding should change. If the dx is opposite, then |
+the same winding is shared by both. |
+*/ |
+void SkOpSegment::initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, |
+ int oppWind, SkScalar hitOppDx) { |
+ SkASSERT(hitDx || !winding); |
+ SkScalar dx = (*CurveSlopeAtT[fVerb])(fPts, tHit).fX; |
+ SkASSERT(dx); |
+ int windVal = windValue(SkMin32(start, end)); |
+#if DEBUG_WINDING_AT_T |
+ SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding, |
+ hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal); |
+#endif |
+ if (!winding) { |
+ winding = dx < 0 ? windVal : -windVal; |
+ } else if (winding * dx < 0) { |
+ int sideWind = winding + (dx < 0 ? windVal : -windVal); |
+ if (abs(winding) < abs(sideWind)) { |
+ winding = sideWind; |
+ } |
+ } |
+#if DEBUG_WINDING_AT_T |
+ SkDebugf(" winding=%d\n", winding); |
+#endif |
+ SkDEBUGCODE(int oppLocal = oppSign(start, end)); |
+ SkASSERT(hitOppDx || !oppWind || !oppLocal); |
+ int oppWindVal = oppValue(SkMin32(start, end)); |
+ if (!oppWind) { |
+ oppWind = dx < 0 ? oppWindVal : -oppWindVal; |
+ } else if (hitOppDx * dx >= 0) { |
+ int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal); |
+ if (abs(oppWind) < abs(oppSideWind)) { |
+ oppWind = oppSideWind; |
+ } |
+ } |
+ (void) markAndChaseWinding(start, end, winding, oppWind); |
+} |
+ |
+bool SkOpSegment::isLinear(int start, int end) const { |
+ if (fVerb == SkPath::kLine_Verb) { |
+ return true; |
+ } |
+ if (fVerb == SkPath::kQuad_Verb) { |
+ SkDQuad qPart = SkDQuad::SubDivide(fPts, fTs[start].fT, fTs[end].fT); |
+ return qPart.isLinear(0, 2); |
+ } else { |
+ SkASSERT(fVerb == SkPath::kCubic_Verb); |
+ SkDCubic cPart = SkDCubic::SubDivide(fPts, fTs[start].fT, fTs[end].fT); |
+ return cPart.isLinear(0, 3); |
+ } |
+} |
+ |
+// OPTIMIZE: successive calls could start were the last leaves off |
+// or calls could specialize to walk forwards or backwards |
+bool SkOpSegment::isMissing(double startT) const { |
+ size_t tCount = fTs.count(); |
+ for (size_t index = 0; index < tCount; ++index) { |
+ if (approximately_zero(startT - fTs[index].fT)) { |
+ return false; |
+ } |
+ } |
+ return true; |
+} |
+ |
+bool SkOpSegment::isSimple(int end) const { |
+ int count = fTs.count(); |
+ if (count == 2) { |
+ return true; |
+ } |
+ double t = fTs[end].fT; |
+ if (approximately_less_than_zero(t)) { |
+ return !approximately_less_than_zero(fTs[1].fT); |
+ } |
+ if (approximately_greater_than_one(t)) { |
+ return !approximately_greater_than_one(fTs[count - 2].fT); |
+ } |
+ return false; |
+} |
+ |
+// this span is excluded by the winding rule -- chase the ends |
+// as long as they are unambiguous to mark connections as done |
+// and give them the same winding value |
+SkOpSpan* SkOpSegment::markAndChaseDone(const SkOpAngle* angle, int winding) { |
+ int index = angle->start(); |
+ int endIndex = angle->end(); |
+ return markAndChaseDone(index, endIndex, winding); |
+} |
+ |
+SkOpSpan* SkOpSegment::markAndChaseDone(int index, int endIndex, int winding) { |
+ int step = SkSign32(endIndex - index); |
+ int min = SkMin32(index, endIndex); |
+ markDone(min, winding); |
+ SkOpSpan* last; |
+ SkOpSegment* other = this; |
+ while ((other = other->nextChase(index, step, min, last))) { |
+ other->markDone(min, winding); |
+ } |
+ return last; |
+} |
+ |
+SkOpSpan* SkOpSegment::markAndChaseDoneBinary(const SkOpAngle* angle, int winding, int oppWinding) { |
+ int index = angle->start(); |
+ int endIndex = angle->end(); |
+ int step = SkSign32(endIndex - index); |
+ int min = SkMin32(index, endIndex); |
+ markDoneBinary(min, winding, oppWinding); |
+ SkOpSpan* last; |
+ SkOpSegment* other = this; |
+ while ((other = other->nextChase(index, step, min, last))) { |
+ other->markDoneBinary(min, winding, oppWinding); |
+ } |
+ return last; |
+} |
+ |
+SkOpSpan* SkOpSegment::markAndChaseDoneBinary(int index, int endIndex) { |
+ int step = SkSign32(endIndex - index); |
+ int min = SkMin32(index, endIndex); |
+ markDoneBinary(min); |
+ SkOpSpan* last; |
+ SkOpSegment* other = this; |
+ while ((other = other->nextChase(index, step, min, last))) { |
+ if (other->done()) { |
+ return NULL; |
+ } |
+ other->markDoneBinary(min); |
+ } |
+ return last; |
+} |
+ |
+SkOpSpan* SkOpSegment::markAndChaseDoneUnary(int index, int endIndex) { |
+ int step = SkSign32(endIndex - index); |
+ int min = SkMin32(index, endIndex); |
+ markDoneUnary(min); |
+ SkOpSpan* last; |
+ SkOpSegment* other = this; |
+ while ((other = other->nextChase(index, step, min, last))) { |
+ if (other->done()) { |
+ return NULL; |
+ } |
+ other->markDoneUnary(min); |
+ } |
+ return last; |
+} |
+ |
+SkOpSpan* SkOpSegment::markAndChaseDoneUnary(const SkOpAngle* angle, int winding) { |
+ int index = angle->start(); |
+ int endIndex = angle->end(); |
+ return markAndChaseDone(index, endIndex, winding); |
+} |
+ |
+SkOpSpan* SkOpSegment::markAndChaseWinding(const SkOpAngle* angle, const int winding) { |
+ int index = angle->start(); |
+ int endIndex = angle->end(); |
+ int step = SkSign32(endIndex - index); |
+ int min = SkMin32(index, endIndex); |
+ markWinding(min, winding); |
+ SkOpSpan* last; |
+ SkOpSegment* other = this; |
+ while ((other = other->nextChase(index, step, min, last))) { |
+ if (other->fTs[min].fWindSum != SK_MinS32) { |
+ SkASSERT(other->fTs[min].fWindSum == winding); |
+ return NULL; |
+ } |
+ other->markWinding(min, winding); |
+ } |
+ return last; |
+} |
+ |
+SkOpSpan* SkOpSegment::markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) { |
+ int min = SkMin32(index, endIndex); |
+ int step = SkSign32(endIndex - index); |
+ markWinding(min, winding, oppWinding); |
+ SkOpSpan* last; |
+ SkOpSegment* other = this; |
+ while ((other = other->nextChase(index, step, min, last))) { |
+ if (other->fTs[min].fWindSum != SK_MinS32) { |
+ SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].fLoop); |
+ return NULL; |
+ } |
+ other->markWinding(min, winding, oppWinding); |
+ } |
+ return last; |
+} |
+ |
+SkOpSpan* SkOpSegment::markAndChaseWinding(const SkOpAngle* angle, int winding, int oppWinding) { |
+ int start = angle->start(); |
+ int end = angle->end(); |
+ return markAndChaseWinding(start, end, winding, oppWinding); |
+} |
+ |
+SkOpSpan* SkOpSegment::markAngle(int maxWinding, int sumWinding, bool activeAngle, |
+ const SkOpAngle* angle) { |
+ SkASSERT(angle->segment() == this); |
+ if (UseInnerWinding(maxWinding, sumWinding)) { |
+ maxWinding = sumWinding; |
+ } |
+ SkOpSpan* last; |
+ if (activeAngle) { |
+ last = markAndChaseWinding(angle, maxWinding); |
+ } else { |
+ last = markAndChaseDoneUnary(angle, maxWinding); |
+ } |
+ return last; |
+} |
+ |
+SkOpSpan* SkOpSegment::markAngle(int maxWinding, int sumWinding, int oppMaxWinding, |
+ int oppSumWinding, bool activeAngle, const SkOpAngle* angle) { |
+ SkASSERT(angle->segment() == this); |
+ if (UseInnerWinding(maxWinding, sumWinding)) { |
+ maxWinding = sumWinding; |
+ } |
+ if (oppMaxWinding != oppSumWinding && UseInnerWinding(oppMaxWinding, oppSumWinding)) { |
+ oppMaxWinding = oppSumWinding; |
+ } |
+ SkOpSpan* last; |
+ if (activeAngle) { |
+ last = markAndChaseWinding(angle, maxWinding, oppMaxWinding); |
+ } else { |
+ last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding); |
+ } |
+ return last; |
+} |
+ |
+// FIXME: this should also mark spans with equal (x,y) |
+// This may be called when the segment is already marked done. While this |
+// wastes time, it shouldn't do any more than spin through the T spans. |
+// OPTIMIZATION: abort on first done found (assuming that this code is |
+// always called to mark segments done). |
+void SkOpSegment::markDone(int index, int winding) { |
+ // SkASSERT(!done()); |
+ SkASSERT(winding); |
+ double referenceT = fTs[index].fT; |
+ int lesser = index; |
+ while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
+ markOneDone(__FUNCTION__, lesser, winding); |
+ } |
+ do { |
+ markOneDone(__FUNCTION__, index, winding); |
+ } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
+} |
+ |
+void SkOpSegment::markDoneBinary(int index, int winding, int oppWinding) { |
+ // SkASSERT(!done()); |
+ SkASSERT(winding || oppWinding); |
+ double referenceT = fTs[index].fT; |
+ int lesser = index; |
+ while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
+ markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding); |
+ } |
+ do { |
+ markOneDoneBinary(__FUNCTION__, index, winding, oppWinding); |
+ } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
+} |
+ |
+void SkOpSegment::markDoneBinary(int index) { |
+ double referenceT = fTs[index].fT; |
+ int lesser = index; |
+ while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
+ markOneDoneBinary(__FUNCTION__, lesser); |
+ } |
+ do { |
+ markOneDoneBinary(__FUNCTION__, index); |
+ } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
+} |
+ |
+void SkOpSegment::markDoneUnary(int index, int winding) { |
+ // SkASSERT(!done()); |
+ SkASSERT(winding); |
+ double referenceT = fTs[index].fT; |
+ int lesser = index; |
+ while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
+ markOneDoneUnary(__FUNCTION__, lesser, winding); |
+ } |
+ do { |
+ markOneDoneUnary(__FUNCTION__, index, winding); |
+ } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
+} |
+ |
+void SkOpSegment::markDoneUnary(int index) { |
+ double referenceT = fTs[index].fT; |
+ int lesser = index; |
+ while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
+ markOneDoneUnary(__FUNCTION__, lesser); |
+ } |
+ do { |
+ markOneDoneUnary(__FUNCTION__, index); |
+ } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
+} |
+ |
+void SkOpSegment::markOneDone(const char* funName, int tIndex, int winding) { |
+ SkOpSpan* span = markOneWinding(funName, tIndex, winding); |
+ if (!span) { |
+ return; |
+ } |
+ span->fDone = true; |
+ fDoneSpans++; |
+} |
+ |
+void SkOpSegment::markOneDoneBinary(const char* funName, int tIndex) { |
+ SkOpSpan* span = verifyOneWinding(funName, tIndex); |
+ if (!span) { |
+ return; |
+ } |
+ span->fDone = true; |
+ fDoneSpans++; |
+} |
+ |
+void SkOpSegment::markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) { |
+ SkOpSpan* span = markOneWinding(funName, tIndex, winding, oppWinding); |
+ if (!span) { |
+ return; |
+ } |
+ span->fDone = true; |
+ fDoneSpans++; |
+} |
+ |
+void SkOpSegment::markOneDoneUnary(const char* funName, int tIndex) { |
+ SkOpSpan* span = verifyOneWindingU(funName, tIndex); |
+ if (!span) { |
+ return; |
+ } |
+ span->fDone = true; |
+ fDoneSpans++; |
+} |
+ |
+void SkOpSegment::markOneDoneUnary(const char* funName, int tIndex, int winding) { |
+ SkOpSpan* span = markOneWinding(funName, tIndex, winding); |
+ if (!span) { |
+ return; |
+ } |
+ span->fDone = true; |
+ fDoneSpans++; |
+} |
+ |
+SkOpSpan* SkOpSegment::markOneWinding(const char* funName, int tIndex, int winding) { |
+ SkOpSpan& span = fTs[tIndex]; |
+ if (span.fDone) { |
+ return NULL; |
+ } |
+#if DEBUG_MARK_DONE |
+ debugShowNewWinding(funName, span, winding); |
+#endif |
+ SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); |
+#ifdef SK_DEBUG |
+ SkASSERT(abs(winding) <= gDebugMaxWindSum); |
+#endif |
+ span.fWindSum = winding; |
+ return &span; |
+} |
+ |
+SkOpSpan* SkOpSegment::markOneWinding(const char* funName, int tIndex, int winding, |
+ int oppWinding) { |
+ SkOpSpan& span = fTs[tIndex]; |
+ if (span.fDone) { |
+ return NULL; |
+ } |
+#if DEBUG_MARK_DONE |
+ debugShowNewWinding(funName, span, winding, oppWinding); |
+#endif |
+ SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); |
+#ifdef SK_DEBUG |
+ SkASSERT(abs(winding) <= gDebugMaxWindSum); |
+#endif |
+ span.fWindSum = winding; |
+ SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding); |
+#ifdef SK_DEBUG |
+ SkASSERT(abs(oppWinding) <= gDebugMaxWindSum); |
+#endif |
+ span.fOppSum = oppWinding; |
+ return &span; |
+} |
+ |
+// from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order |
+bool SkOpSegment::clockwise(int tStart, int tEnd) const { |
+ SkASSERT(fVerb != SkPath::kLine_Verb); |
+ SkPoint edge[4]; |
+ subDivide(tStart, tEnd, edge); |
+ double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].fY); |
+ if (fVerb == SkPath::kCubic_Verb) { |
+ SkScalar lesser = SkTMin(edge[0].fY, edge[3].fY); |
+ if (edge[1].fY < lesser && edge[2].fY < lesser) { |
+ SkDLine tangent1 = {{ {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1].fY} }}; |
+ SkDLine tangent2 = {{ {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3].fY} }}; |
+ if (SkIntersections::Test(tangent1, tangent2)) { |
+ SkPoint topPt = cubic_top(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
+ sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY); |
+ sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY); |
+ return sum <= 0; |
+ } |
+ } |
+ } |
+ for (int idx = 0; idx < fVerb; ++idx){ |
+ sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[idx].fY); |
+ } |
+ return sum <= 0; |
+} |
+ |
+bool SkOpSegment::monotonicInY(int tStart, int tEnd) const { |
+ if (fVerb == SkPath::kLine_Verb) { |
+ return false; |
+ } |
+ if (fVerb == SkPath::kQuad_Verb) { |
+ SkDQuad dst = SkDQuad::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
+ return dst.monotonicInY(); |
+ } |
+ SkASSERT(fVerb == SkPath::kCubic_Verb); |
+ SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
+ return dst.monotonicInY(); |
+} |
+ |
+bool SkOpSegment::serpentine(int tStart, int tEnd) const { |
+ if (fVerb != SkPath::kCubic_Verb) { |
+ return false; |
+ } |
+ SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
+ return dst.serpentine(); |
+} |
+ |
+SkOpSpan* SkOpSegment::verifyOneWinding(const char* funName, int tIndex) { |
+ SkOpSpan& span = fTs[tIndex]; |
+ if (span.fDone) { |
+ return NULL; |
+ } |
+#if DEBUG_MARK_DONE |
+ debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum); |
+#endif |
+ SkASSERT(span.fWindSum != SK_MinS32); |
+ SkASSERT(span.fOppSum != SK_MinS32); |
+ return &span; |
+} |
+ |
+SkOpSpan* SkOpSegment::verifyOneWindingU(const char* funName, int tIndex) { |
+ SkOpSpan& span = fTs[tIndex]; |
+ if (span.fDone) { |
+ return NULL; |
+ } |
+#if DEBUG_MARK_DONE |
+ debugShowNewWinding(funName, span, span.fWindSum); |
+#endif |
+ SkASSERT(span.fWindSum != SK_MinS32); |
+ return &span; |
+} |
+ |
+// note that just because a span has one end that is unsortable, that's |
+// not enough to mark it done. The other end may be sortable, allowing the |
+// span to be added. |
+// FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends |
+void SkOpSegment::markUnsortable(int start, int end) { |
+ SkOpSpan* span = &fTs[start]; |
+ if (start < end) { |
+#if DEBUG_UNSORTABLE |
+ debugShowNewWinding(__FUNCTION__, *span, 0); |
+#endif |
+ span->fUnsortableStart = true; |
+ } else { |
+ --span; |
+#if DEBUG_UNSORTABLE |
+ debugShowNewWinding(__FUNCTION__, *span, 0); |
+#endif |
+ span->fUnsortableEnd = true; |
+ } |
+ if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) { |
+ return; |
+ } |
+ span->fDone = true; |
+ fDoneSpans++; |
+} |
+ |
+void SkOpSegment::markWinding(int index, int winding) { |
+// SkASSERT(!done()); |
+ SkASSERT(winding); |
+ double referenceT = fTs[index].fT; |
+ int lesser = index; |
+ while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
+ markOneWinding(__FUNCTION__, lesser, winding); |
+ } |
+ do { |
+ markOneWinding(__FUNCTION__, index, winding); |
+ } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
+} |
+ |
+void SkOpSegment::markWinding(int index, int winding, int oppWinding) { |
+// SkASSERT(!done()); |
+ SkASSERT(winding || oppWinding); |
+ double referenceT = fTs[index].fT; |
+ int lesser = index; |
+ while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
+ markOneWinding(__FUNCTION__, lesser, winding, oppWinding); |
+ } |
+ do { |
+ markOneWinding(__FUNCTION__, index, winding, oppWinding); |
+ } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
+} |
+ |
+void SkOpSegment::matchWindingValue(int tIndex, double t, bool borrowWind) { |
+ int nextDoorWind = SK_MaxS32; |
+ int nextOppWind = SK_MaxS32; |
+ if (tIndex > 0) { |
+ const SkOpSpan& below = fTs[tIndex - 1]; |
+ if (approximately_negative(t - below.fT)) { |
+ nextDoorWind = below.fWindValue; |
+ nextOppWind = below.fOppValue; |
+ } |
+ } |
+ if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) { |
+ const SkOpSpan& above = fTs[tIndex + 1]; |
+ if (approximately_negative(above.fT - t)) { |
+ nextDoorWind = above.fWindValue; |
+ nextOppWind = above.fOppValue; |
+ } |
+ } |
+ if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) { |
+ const SkOpSpan& below = fTs[tIndex - 1]; |
+ nextDoorWind = below.fWindValue; |
+ nextOppWind = below.fOppValue; |
+ } |
+ if (nextDoorWind != SK_MaxS32) { |
+ SkOpSpan& newSpan = fTs[tIndex]; |
+ newSpan.fWindValue = nextDoorWind; |
+ newSpan.fOppValue = nextOppWind; |
+ if (!nextDoorWind && !nextOppWind && !newSpan.fDone) { |
+ newSpan.fDone = true; |
+ ++fDoneSpans; |
+ } |
+ } |
+} |
+ |
+bool SkOpSegment::moreHorizontal(int index, int endIndex, bool& unsortable) const { |
+ // find bounds |
+ SkPathOpsBounds bounds; |
+ bounds.setPointBounds(xyAtT(index)); |
+ bounds.add(xyAtT(endIndex)); |
+ SkScalar width = bounds.width(); |
+ SkScalar height = bounds.height(); |
+ if (width > height) { |
+ if (approximately_negative(width)) { |
+ unsortable = true; // edge is too small to resolve meaningfully |
+ } |
+ return false; |
+ } else { |
+ if (approximately_negative(height)) { |
+ unsortable = true; // edge is too small to resolve meaningfully |
+ } |
+ return true; |
+ } |
+} |
+ |
+// return span if when chasing, two or more radiating spans are not done |
+// OPTIMIZATION: ? multiple spans is detected when there is only one valid |
+// candidate and the remaining spans have windValue == 0 (canceled by |
+// coincidence). The coincident edges could either be removed altogether, |
+// or this code could be more complicated in detecting this case. Worth it? |
+bool SkOpSegment::multipleSpans(int end) const { |
+ return end > 0 && end < fTs.count() - 1; |
+} |
+ |
+bool SkOpSegment::nextCandidate(int& start, int& end) const { |
+ while (fTs[end].fDone) { |
+ if (fTs[end].fT == 1) { |
+ return false; |
+ } |
+ ++end; |
+ } |
+ start = end; |
+ end = nextExactSpan(start, 1); |
+ return true; |
+} |
+ |
+SkOpSegment* SkOpSegment::nextChase(int& index, const int step, int& min, SkOpSpan*& last) { |
+ int end = nextExactSpan(index, step); |
+ SkASSERT(end >= 0); |
+ if (multipleSpans(end)) { |
+ last = &fTs[end]; |
+ return NULL; |
+ } |
+ const SkOpSpan& endSpan = fTs[end]; |
+ SkOpSegment* other = endSpan.fOther; |
+ index = endSpan.fOtherIndex; |
+ SkASSERT(index >= 0); |
+ int otherEnd = other->nextExactSpan(index, step); |
+ SkASSERT(otherEnd >= 0); |
+ min = SkMin32(index, otherEnd); |
+ return other; |
+} |
+ |
+// This has callers for two different situations: one establishes the end |
+// of the current span, and one establishes the beginning of the next span |
+// (thus the name). When this is looking for the end of the current span, |
+// coincidence is found when the beginning Ts contain -step and the end |
+// contains step. When it is looking for the beginning of the next, the |
+// first Ts found can be ignored and the last Ts should contain -step. |
+// OPTIMIZATION: probably should split into two functions |
+int SkOpSegment::nextSpan(int from, int step) const { |
+ const SkOpSpan& fromSpan = fTs[from]; |
+ int count = fTs.count(); |
+ int to = from; |
+ while (step > 0 ? ++to < count : --to >= 0) { |
+ const SkOpSpan& span = fTs[to]; |
+ if (approximately_zero(span.fT - fromSpan.fT)) { |
+ continue; |
+ } |
+ return to; |
+ } |
+ return -1; |
+} |
+ |
+// FIXME |
+// this returns at any difference in T, vs. a preset minimum. It may be |
+// that all callers to nextSpan should use this instead. |
+// OPTIMIZATION splitting this into separate loops for up/down steps |
+// would allow using precisely_negative instead of precisely_zero |
+int SkOpSegment::nextExactSpan(int from, int step) const { |
+ const SkOpSpan& fromSpan = fTs[from]; |
+ int count = fTs.count(); |
+ int to = from; |
+ while (step > 0 ? ++to < count : --to >= 0) { |
+ const SkOpSpan& span = fTs[to]; |
+ if (precisely_zero(span.fT - fromSpan.fT)) { |
+ continue; |
+ } |
+ return to; |
+ } |
+ return -1; |
+} |
+ |
+void SkOpSegment::setUpWindings(int index, int endIndex, int& sumMiWinding, int& sumSuWinding, |
+ int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) { |
+ int deltaSum = spanSign(index, endIndex); |
+ int oppDeltaSum = oppSign(index, endIndex); |
+ if (operand()) { |
+ maxWinding = sumSuWinding; |
+ sumWinding = sumSuWinding -= deltaSum; |
+ oppMaxWinding = sumMiWinding; |
+ oppSumWinding = sumMiWinding -= oppDeltaSum; |
+ } else { |
+ maxWinding = sumMiWinding; |
+ sumWinding = sumMiWinding -= deltaSum; |
+ oppMaxWinding = sumSuWinding; |
+ oppSumWinding = sumSuWinding -= oppDeltaSum; |
+ } |
+} |
+ |
+// This marks all spans unsortable so that this info is available for early |
+// exclusion in find top and others. This could be optimized to only mark |
+// adjacent spans that unsortable. However, this makes it difficult to later |
+// determine starting points for edge detection in find top and the like. |
+bool SkOpSegment::SortAngles(SkTDArray<SkOpAngle>& angles, SkTDArray<SkOpAngle*>& angleList) { |
+ bool sortable = true; |
+ int angleCount = angles.count(); |
+ int angleIndex; |
+ angleList.setReserve(angleCount); |
+ for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
+ SkOpAngle& angle = angles[angleIndex]; |
+ *angleList.append() = ∠ |
+ sortable &= !angle.unsortable(); |
+ } |
+ if (sortable) { |
+ QSort<SkOpAngle>(angleList.begin(), angleList.end() - 1); |
+ for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
+ if (angles[angleIndex].unsortable()) { |
+ sortable = false; |
+ break; |
+ } |
+ } |
+ } |
+ if (!sortable) { |
+ for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
+ SkOpAngle& angle = angles[angleIndex]; |
+ angle.segment()->markUnsortable(angle.start(), angle.end()); |
+ } |
+ } |
+ return sortable; |
+} |
+ |
+void SkOpSegment::subDivide(int start, int end, SkPoint edge[4]) const { |
+ edge[0] = fTs[start].fPt; |
+ edge[fVerb] = fTs[end].fPt; |
+ if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) { |
+ SkDPoint sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fVerb].fY }}; |
+ if (fVerb == SkPath::kQuad_Verb) { |
+ edge[1] = SkDQuad::SubDivide(fPts, sub[0], sub[1], fTs[start].fT, |
+ fTs[end].fT).asSkPoint(); |
+ } else { |
+ SkDCubic::SubDivide(fPts, sub[0], sub[1], fTs[start].fT, fTs[end].fT, sub); |
+ edge[1] = sub[0].asSkPoint(); |
+ edge[2] = sub[1].asSkPoint(); |
+ } |
+ } |
+} |
+ |
+void SkOpSegment::subDivideBounds(int start, int end, SkPathOpsBounds& bounds) const { |
+ SkPoint edge[4]; |
+ subDivide(start, end, edge); |
+ (bounds.*SetCurveBounds[fVerb])(edge); |
+} |
+ |
+bool SkOpSegment::tiny(const SkOpAngle* angle) const { |
+ int start = angle->start(); |
+ int end = angle->end(); |
+ const SkOpSpan& mSpan = fTs[SkMin32(start, end)]; |
+ return mSpan.fTiny; |
+} |
+ |
+void SkOpSegment::TrackOutside(SkTDArray<double>& outsideTs, double end, double start) { |
+ int outCount = outsideTs.count(); |
+ if (outCount == 0 || !approximately_negative(end - outsideTs[outCount - 2])) { |
+ *outsideTs.append() = end; |
+ *outsideTs.append() = start; |
+ } |
+} |
+ |
+void SkOpSegment::undoneSpan(int& start, int& end) { |
+ size_t tCount = fTs.count(); |
+ size_t index; |
+ for (index = 0; index < tCount; ++index) { |
+ if (!fTs[index].fDone) { |
+ break; |
+ } |
+ } |
+ SkASSERT(index < tCount - 1); |
+ start = index; |
+ double startT = fTs[index].fT; |
+ while (approximately_negative(fTs[++index].fT - startT)) |
+ SkASSERT(index < tCount); |
+ SkASSERT(index < tCount); |
+ end = index; |
+} |
+ |
+int SkOpSegment::updateOppWinding(int index, int endIndex) const { |
+ int lesser = SkMin32(index, endIndex); |
+ int oppWinding = oppSum(lesser); |
+ int oppSpanWinding = oppSign(index, endIndex); |
+ if (oppSpanWinding && UseInnerWinding(oppWinding - oppSpanWinding, oppWinding) |
+ && oppWinding != SK_MaxS32) { |
+ oppWinding -= oppSpanWinding; |
+ } |
+ return oppWinding; |
+} |
+ |
+int SkOpSegment::updateOppWinding(const SkOpAngle* angle) const { |
+ int startIndex = angle->start(); |
+ int endIndex = angle->end(); |
+ return updateOppWinding(endIndex, startIndex); |
+} |
+ |
+int SkOpSegment::updateOppWindingReverse(const SkOpAngle* angle) const { |
+ int startIndex = angle->start(); |
+ int endIndex = angle->end(); |
+ return updateOppWinding(startIndex, endIndex); |
+} |
+ |
+int SkOpSegment::updateWinding(int index, int endIndex) const { |
+ int lesser = SkMin32(index, endIndex); |
+ int winding = windSum(lesser); |
+ int spanWinding = spanSign(index, endIndex); |
+ if (winding && UseInnerWinding(winding - spanWinding, winding) && winding != SK_MaxS32) { |
+ winding -= spanWinding; |
+ } |
+ return winding; |
+} |
+ |
+int SkOpSegment::updateWinding(const SkOpAngle* angle) const { |
+ int startIndex = angle->start(); |
+ int endIndex = angle->end(); |
+ return updateWinding(endIndex, startIndex); |
+} |
+ |
+int SkOpSegment::updateWindingReverse(const SkOpAngle* angle) const { |
+ int startIndex = angle->start(); |
+ int endIndex = angle->end(); |
+ return updateWinding(startIndex, endIndex); |
+} |
+ |
+int SkOpSegment::windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar& dx) const { |
+ if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard |
+ return SK_MinS32; |
+ } |
+ int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex); |
+ SkASSERT(winding != SK_MinS32); |
+ int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex); |
+#if DEBUG_WINDING_AT_T |
+ SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal); |
+#endif |
+ // see if a + change in T results in a +/- change in X (compute x'(T)) |
+ dx = (*CurveSlopeAtT[fVerb])(fPts, tHit).fX; |
+ if (fVerb > SkPath::kLine_Verb && approximately_zero(dx)) { |
+ dx = fPts[2].fX - fPts[1].fX - dx; |
+ } |
+ if (dx == 0) { |
+#if DEBUG_WINDING_AT_T |
+ SkDebugf(" dx=0 winding=SK_MinS32\n"); |
+#endif |
+ return SK_MinS32; |
+ } |
+ if (winding * dx > 0) { // if same signs, result is negative |
+ winding += dx > 0 ? -windVal : windVal; |
+ } |
+#if DEBUG_WINDING_AT_T |
+ SkDebugf(" dx=%c winding=%d\n", dx > 0 ? '+' : '-', winding); |
+#endif |
+ return winding; |
+} |
+ |
+int SkOpSegment::windSum(const SkOpAngle* angle) const { |
+ int start = angle->start(); |
+ int end = angle->end(); |
+ int index = SkMin32(start, end); |
+ return windSum(index); |
+} |
+ |
+int SkOpSegment::windValue(const SkOpAngle* angle) const { |
+ int start = angle->start(); |
+ int end = angle->end(); |
+ int index = SkMin32(start, end); |
+ return windValue(index); |
+} |
+ |
+int SkOpSegment::windValueAt(double t) const { |
+ int count = fTs.count(); |
+ for (int index = 0; index < count; ++index) { |
+ if (fTs[index].fT == t) { |
+ return fTs[index].fWindValue; |
+ } |
+ } |
+ SkASSERT(0); |
+ return 0; |
+} |
+ |
+void SkOpSegment::zeroCoincidentOpp(SkOpSpan* oTest, int index) { |
+ SkOpSpan* const test = &fTs[index]; |
+ SkOpSpan* end = test; |
+ do { |
+ end->fOppValue = 0; |
+ end = &fTs[++index]; |
+ } while (approximately_negative(end->fT - test->fT)); |
+} |
+ |
+void SkOpSegment::zeroCoincidentOther(SkOpSpan* test, const double tRatio, const double oEndT, |
+ int oIndex) { |
+ SkOpSpan* const oTest = &fTs[oIndex]; |
+ SkOpSpan* oEnd = oTest; |
+ const double startT = test->fT; |
+ const double oStartT = oTest->fT; |
+ double otherTMatch = (test->fT - startT) * tRatio + oStartT; |
+ while (!approximately_negative(oEndT - oEnd->fT) |
+ && approximately_negative(oEnd->fT - otherTMatch)) { |
+ oEnd->fOppValue = 0; |
+ oEnd = &fTs[++oIndex]; |
+ } |
+} |
+ |
+void SkOpSegment::zeroSpan(SkOpSpan* span) { |
+ SkASSERT(span->fWindValue > 0 || span->fOppValue > 0); |
+ span->fWindValue = 0; |
+ span->fOppValue = 0; |
+ SkASSERT(!span->fDone); |
+ span->fDone = true; |
+ ++fDoneSpans; |
+} |
+ |
+#if DEBUG_SWAP_TOP |
+bool SkOpSegment::controlsContainedByEnds(int tStart, int tEnd) const { |
+ if (fVerb != SkPath::kCubic_Verb) { |
+ return false; |
+ } |
+ SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
+ return dst.controlsContainedByEnds(); |
+} |
+#endif |
+ |
+#if DEBUG_DUMP |
+void SkOpSegment::dump() const { |
+ const char className[] = "SkOpSegment"; |
+ const int tab = 4; |
+ for (int i = 0; i < fTs.count(); ++i) { |
+ SkPoint out = (*CurvePointAtT[fVerb])(fPts, t(i)); |
+ SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d" |
+ " otherT=%1.9g windSum=%d\n", |
+ tab + sizeof(className), className, fID, |
+ kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY, |
+ fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum); |
+ } |
+ SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)", |
+ tab + sizeof(className), className, fID, |
+ fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
+} |
+#endif |
+ |
+#if DEBUG_CONCIDENT |
+// SkASSERT if pair has not already been added |
+ void SkOpSegment::debugAddTPair(double t, const SkOpSegment& other, double otherT) const { |
+ for (int i = 0; i < fTs.count(); ++i) { |
+ if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) { |
+ return; |
+ } |
+ } |
+ SkASSERT(0); |
+ } |
+#endif |
+ |
+#if DEBUG_WINDING |
+void SkOpSegment::debugShowSums() const { |
+ SkDebugf("%s id=%d (%1.9g,%1.9g %1.9g,%1.9g)", __FUNCTION__, fID, |
+ fPts[0].fX, fPts[0].fY, fPts[fVerb].fX, fPts[fVerb].fY); |
+ for (int i = 0; i < fTs.count(); ++i) { |
+ const SkOpSpan& span = fTs[i]; |
+ SkDebugf(" [t=%1.3g %1.9g,%1.9g w=", span.fT, xAtT(&span), yAtT(&span)); |
+ if (span.fWindSum == SK_MinS32) { |
+ SkDebugf("?"); |
+ } else { |
+ SkDebugf("%d", span.fWindSum); |
+ } |
+ SkDebugf("]"); |
+ } |
+ SkDebugf("\n"); |
+} |
+#endif |
+ |
+#if DEBUG_CONCIDENT |
+void SkOpSegment::debugShowTs() const { |
+ SkDebugf("%s id=%d", __FUNCTION__, fID); |
+ int lastWind = -1; |
+ int lastOpp = -1; |
+ double lastT = -1; |
+ int i; |
+ for (i = 0; i < fTs.count(); ++i) { |
+ bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue |
+ || lastOpp != fTs[i].fOppValue; |
+ if (change && lastWind >= 0) { |
+ SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", |
+ lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); |
+ } |
+ if (change) { |
+ SkDebugf(" [o=%d", fTs[i].fOther->fID); |
+ lastWind = fTs[i].fWindValue; |
+ lastOpp = fTs[i].fOppValue; |
+ lastT = fTs[i].fT; |
+ } else { |
+ SkDebugf(",%d", fTs[i].fOther->fID); |
+ } |
+ } |
+ if (i <= 0) { |
+ return; |
+ } |
+ SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", |
+ lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); |
+ if (fOperand) { |
+ SkDebugf(" operand"); |
+ } |
+ if (done()) { |
+ SkDebugf(" done"); |
+ } |
+ SkDebugf("\n"); |
+} |
+#endif |
+ |
+#if DEBUG_ACTIVE_SPANS |
+void SkOpSegment::debugShowActiveSpans() const { |
+ if (done()) { |
+ return; |
+ } |
+#if DEBUG_ACTIVE_SPANS_SHORT_FORM |
+ int lastId = -1; |
+ double lastT = -1; |
+#endif |
+ for (int i = 0; i < fTs.count(); ++i) { |
+ SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther-> |
+ fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]); |
+ if (fTs[i].fDone) { |
+ continue; |
+ } |
+#if DEBUG_ACTIVE_SPANS_SHORT_FORM |
+ if (lastId == fID && lastT == fTs[i].fT) { |
+ continue; |
+ } |
+ lastId = fID; |
+ lastT = fTs[i].fT; |
+#endif |
+ SkDebugf("%s id=%d", __FUNCTION__, fID); |
+ SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
+ for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
+ SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
+ } |
+ const SkOpSpan* span = &fTs[i]; |
+ SkDebugf(") t=%1.9g (%1.9g,%1.9g)", fTs[i].fT, |
+ xAtT(span), yAtT(span)); |
+ int iEnd = i + 1; |
+ while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].fT)) { |
+ ++iEnd; |
+ } |
+ SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT); |
+ const SkOpSegment* other = fTs[i].fOther; |
+ SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=", |
+ other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex); |
+ if (fTs[i].fWindSum == SK_MinS32) { |
+ SkDebugf("?"); |
+ } else { |
+ SkDebugf("%d", fTs[i].fWindSum); |
+ } |
+ SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue); |
+ } |
+} |
+ |
+// This isn't useful yet -- but leaving it in for now in case i think of something |
+// to use it for |
+void SkOpSegment::validateActiveSpans() const { |
+ if (done()) { |
+ return; |
+ } |
+ int tCount = fTs.count(); |
+ for (int index = 0; index < tCount; ++index) { |
+ if (fTs[index].fDone) { |
+ continue; |
+ } |
+ // count number of connections which are not done |
+ int first = index; |
+ double baseT = fTs[index].fT; |
+ while (first > 0 && approximately_equal(fTs[first - 1].fT, baseT)) { |
+ --first; |
+ } |
+ int last = index; |
+ while (last < tCount - 1 && approximately_equal(fTs[last + 1].fT, baseT)) { |
+ ++last; |
+ } |
+ int connections = 0; |
+ connections += first > 0 && !fTs[first - 1].fDone; |
+ for (int test = first; test <= last; ++test) { |
+ connections += !fTs[test].fDone; |
+ const SkOpSegment* other = fTs[test].fOther; |
+ int oIndex = fTs[test].fOtherIndex; |
+ connections += !other->fTs[oIndex].fDone; |
+ connections += oIndex > 0 && !other->fTs[oIndex - 1].fDone; |
+ } |
+ // SkASSERT(!(connections & 1)); |
+ } |
+} |
+#endif |
+ |
+ |
+#if DEBUG_MARK_DONE || DEBUG_UNSORTABLE |
+void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding) { |
+ const SkPoint& pt = xyAtT(&span); |
+ SkDebugf("%s id=%d", fun, fID); |
+ SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
+ for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
+ SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
+ } |
+ SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> |
+ fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); |
+ SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=", |
+ span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, |
+ (&span)[1].fT, winding); |
+ if (span.fWindSum == SK_MinS32) { |
+ SkDebugf("?"); |
+ } else { |
+ SkDebugf("%d", span.fWindSum); |
+ } |
+ SkDebugf(" windValue=%d\n", span.fWindValue); |
+} |
+ |
+void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding, |
+ int oppWinding) { |
+ const SkPoint& pt = xyAtT(&span); |
+ SkDebugf("%s id=%d", fun, fID); |
+ SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
+ for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
+ SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
+ } |
+ SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> |
+ fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); |
+ SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSum=%d oppSum=", |
+ span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, |
+ (&span)[1].fT, winding, oppWinding); |
+ if (span.fOppSum == SK_MinS32) { |
+ SkDebugf("?"); |
+ } else { |
+ SkDebugf("%d", span.fOppSum); |
+ } |
+ SkDebugf(" windSum="); |
+ if (span.fWindSum == SK_MinS32) { |
+ SkDebugf("?"); |
+ } else { |
+ SkDebugf("%d", span.fWindSum); |
+ } |
+ SkDebugf(" windValue=%d\n", span.fWindValue); |
+} |
+#endif |
+ |
+#if DEBUG_SORT || DEBUG_SWAP_TOP |
+void SkOpSegment::debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first, |
+ const int contourWinding, const int oppContourWinding) const { |
+ if (--gDebugSortCount < 0) { |
+ return; |
+ } |
+ SkASSERT(angles[first]->segment() == this); |
+ SkASSERT(angles.count() > 1); |
+ int lastSum = contourWinding; |
+ int oppLastSum = oppContourWinding; |
+ const SkOpAngle* firstAngle = angles[first]; |
+ int windSum = lastSum - spanSign(firstAngle); |
+ int oppoSign = oppSign(firstAngle); |
+ int oppWindSum = oppLastSum - oppoSign; |
+ #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x##Str, "?"); \ |
+ else snprintf(x##Str, sizeof(x##Str), "%d", x) |
+ WIND_AS_STRING(contourWinding); |
+ WIND_AS_STRING(oppContourWinding); |
+ SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun, __FUNCTION__, |
+ contourWindingStr, oppContourWindingStr, spanSign(angles[first])); |
+ int index = first; |
+ bool firstTime = true; |
+ do { |
+ const SkOpAngle& angle = *angles[index]; |
+ const SkOpSegment& segment = *angle.segment(); |
+ int start = angle.start(); |
+ int end = angle.end(); |
+ const SkOpSpan& sSpan = segment.fTs[start]; |
+ const SkOpSpan& eSpan = segment.fTs[end]; |
+ const SkOpSpan& mSpan = segment.fTs[SkMin32(start, end)]; |
+ bool opp = segment.fOperand ^ fOperand; |
+ if (!firstTime) { |
+ oppoSign = segment.oppSign(&angle); |
+ if (opp) { |
+ oppLastSum = oppWindSum; |
+ oppWindSum -= segment.spanSign(&angle); |
+ if (oppoSign) { |
+ lastSum = windSum; |
+ windSum -= oppoSign; |
+ } |
+ } else { |
+ lastSum = windSum; |
+ windSum -= segment.spanSign(&angle); |
+ if (oppoSign) { |
+ oppLastSum = oppWindSum; |
+ oppWindSum -= oppoSign; |
+ } |
+ } |
+ } |
+ SkDebugf("%s [%d] %s", __FUNCTION__, index, |
+ angle.unsortable() ? "*** UNSORTABLE *** " : ""); |
+ #if COMPACT_DEBUG_SORT |
+ SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)", |
+ segment.fID, kLVerbStr[segment.fVerb], |
+ start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end, |
+ segment.xAtT(&eSpan), segment.yAtT(&eSpan)); |
+ #else |
+ switch (segment.fVerb) { |
+ case SkPath::kLine_Verb: |
+ SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts)); |
+ break; |
+ case SkPath::kQuad_Verb: |
+ SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts)); |
+ break; |
+ case SkPath::kCubic_Verb: |
+ SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts)); |
+ break; |
+ default: |
+ SkASSERT(0); |
+ } |
+ SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT); |
+ #endif |
+ SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWindValue); |
+ #ifdef SK_DEBUG |
+ winding_printf(mSpan.fWindSum); |
+ #endif |
+ int last, wind; |
+ if (opp) { |
+ last = oppLastSum; |
+ wind = oppWindSum; |
+ } else { |
+ last = lastSum; |
+ wind = windSum; |
+ } |
+ bool useInner = valid_wind(last) && valid_wind(wind) && UseInnerWinding(last, wind); |
+ WIND_AS_STRING(last); |
+ WIND_AS_STRING(wind); |
+ WIND_AS_STRING(lastSum); |
+ WIND_AS_STRING(oppLastSum); |
+ WIND_AS_STRING(windSum); |
+ WIND_AS_STRING(oppWindSum); |
+ #undef WIND_AS_STRING |
+ if (!oppoSign) { |
+ SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windStr : lastStr); |
+ } else { |
+ SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr : oppLastSumStr, |
+ opp ? windSumStr : oppWindSumStr); |
+ } |
+ SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp); |
+#if false && DEBUG_ANGLE |
+ angle.debugShow(segment.xyAtT(&sSpan)); |
+#endif |
+ ++index; |
+ if (index == angles.count()) { |
+ index = 0; |
+ } |
+ if (firstTime) { |
+ firstTime = false; |
+ } |
+ } while (index != first); |
+} |
+ |
+void SkOpSegment::debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first) { |
+ const SkOpAngle* firstAngle = angles[first]; |
+ const SkOpSegment* segment = firstAngle->segment(); |
+ int winding = segment->updateWinding(firstAngle); |
+ int oppWinding = segment->updateOppWinding(firstAngle); |
+ debugShowSort(fun, angles, first, winding, oppWinding); |
+} |
+ |
+#endif |
+ |
+#if DEBUG_SHOW_WINDING |
+int SkOpSegment::debugShowWindingValues(int slotCount, int ofInterest) const { |
+ if (!(1 << fID & ofInterest)) { |
+ return 0; |
+ } |
+ int sum = 0; |
+ SkTDArray<char> slots; |
+ slots.setCount(slotCount * 2); |
+ memset(slots.begin(), ' ', slotCount * 2); |
+ for (int i = 0; i < fTs.count(); ++i) { |
+ // if (!(1 << fTs[i].fOther->fID & ofInterest)) { |
+ // continue; |
+ // } |
+ sum += fTs[i].fWindValue; |
+ slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue); |
+ sum += fTs[i].fOppValue; |
+ slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue); |
+ } |
+ SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount, |
+ slots.begin() + slotCount); |
+ return sum; |
+} |
+#endif |