| Index: src/pathops/SkOpSegment.cpp
|
| ===================================================================
|
| --- src/pathops/SkOpSegment.cpp (revision 0)
|
| +++ src/pathops/SkOpSegment.cpp (revision 0)
|
| @@ -0,0 +1,2939 @@
|
| +/*
|
| + * Copyright 2012 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +#include "SkIntersections.h"
|
| +#include "SkOpSegment.h"
|
| +#include "SkPathWriter.h"
|
| +#include "TSearch.h"
|
| +
|
| +#define F (false) // discard the edge
|
| +#define T (true) // keep the edge
|
| +
|
| +static const bool gUnaryActiveEdge[2][2] = {
|
| +// from=0 from=1
|
| +// to=0,1 to=0,1
|
| + {F, T}, {T, F},
|
| +};
|
| +
|
| +// FIXME: add support for kReverseDifference_Op
|
| +static const bool gActiveEdge[kXOR_PathOp + 1][2][2][2][2] = {
|
| +// miFrom=0 miFrom=1
|
| +// miTo=0 miTo=1 miTo=0 miTo=1
|
| +// suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1
|
| +// suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1
|
| + {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su
|
| + {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su
|
| + {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su
|
| + {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su
|
| +};
|
| +
|
| +#undef F
|
| +#undef T
|
| +
|
| +// OPTIMIZATION: does the following also work, and is it any faster?
|
| +// return outerWinding * innerWinding > 0
|
| +// || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0)))
|
| +bool SkOpSegment::UseInnerWinding(int outerWinding, int innerWinding) {
|
| + SkASSERT(outerWinding != SK_MaxS32);
|
| + SkASSERT(innerWinding != SK_MaxS32);
|
| + int absOut = abs(outerWinding);
|
| + int absIn = abs(innerWinding);
|
| + bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn;
|
| + return result;
|
| +}
|
| +
|
| +bool SkOpSegment::activeAngle(int index, int& done, SkTDArray<SkOpAngle>& angles) {
|
| + if (activeAngleInner(index, done, angles)) {
|
| + return true;
|
| + }
|
| + int lesser = index;
|
| + while (--lesser >= 0 && equalPoints(index, lesser)) {
|
| + if (activeAngleOther(lesser, done, angles)) {
|
| + return true;
|
| + }
|
| + }
|
| + lesser = index;
|
| + do {
|
| + if (activeAngleOther(index, done, angles)) {
|
| + return true;
|
| + }
|
| + } while (++index < fTs.count() && equalPoints(index, lesser));
|
| + return false;
|
| +}
|
| +
|
| +bool SkOpSegment::activeAngleOther(int index, int& done, SkTDArray<SkOpAngle>& angles) {
|
| + SkOpSpan* span = &fTs[index];
|
| + SkOpSegment* other = span->fOther;
|
| + int oIndex = span->fOtherIndex;
|
| + return other->activeAngleInner(oIndex, done, angles);
|
| +}
|
| +
|
| +bool SkOpSegment::activeAngleInner(int index, int& done, SkTDArray<SkOpAngle>& angles) {
|
| + int next = nextExactSpan(index, 1);
|
| + if (next > 0) {
|
| + SkOpSpan& upSpan = fTs[index];
|
| + if (upSpan.fWindValue || upSpan.fOppValue) {
|
| + addAngle(angles, index, next);
|
| + if (upSpan.fDone || upSpan.fUnsortableEnd) {
|
| + done++;
|
| + } else if (upSpan.fWindSum != SK_MinS32) {
|
| + return true;
|
| + }
|
| + } else if (!upSpan.fDone) {
|
| + upSpan.fDone = true;
|
| + fDoneSpans++;
|
| + }
|
| + }
|
| + int prev = nextExactSpan(index, -1);
|
| + // edge leading into junction
|
| + if (prev >= 0) {
|
| + SkOpSpan& downSpan = fTs[prev];
|
| + if (downSpan.fWindValue || downSpan.fOppValue) {
|
| + addAngle(angles, index, prev);
|
| + if (downSpan.fDone) {
|
| + done++;
|
| + } else if (downSpan.fWindSum != SK_MinS32) {
|
| + return true;
|
| + }
|
| + } else if (!downSpan.fDone) {
|
| + downSpan.fDone = true;
|
| + fDoneSpans++;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +SkPoint SkOpSegment::activeLeftTop(bool onlySortable, int* firstT) const {
|
| + SkASSERT(!done());
|
| + SkPoint topPt = {SK_ScalarMax, SK_ScalarMax};
|
| + int count = fTs.count();
|
| + // see if either end is not done since we want smaller Y of the pair
|
| + bool lastDone = true;
|
| + bool lastUnsortable = false;
|
| + double lastT = -1;
|
| + for (int index = 0; index < count; ++index) {
|
| + const SkOpSpan& span = fTs[index];
|
| + if (onlySortable && (span.fUnsortableStart || lastUnsortable)) {
|
| + goto next;
|
| + }
|
| + if (span.fDone && lastDone) {
|
| + goto next;
|
| + }
|
| + if (approximately_negative(span.fT - lastT)) {
|
| + goto next;
|
| + }
|
| + {
|
| + const SkPoint& xy = xyAtT(&span);
|
| + if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX)) {
|
| + topPt = xy;
|
| + if (firstT) {
|
| + *firstT = index;
|
| + }
|
| + }
|
| + if (fVerb != SkPath::kLine_Verb && !lastDone) {
|
| + SkPoint curveTop = (*CurveTop[fVerb])(fPts, lastT, span.fT);
|
| + if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY
|
| + && topPt.fX > curveTop.fX)) {
|
| + topPt = curveTop;
|
| + if (firstT) {
|
| + *firstT = index;
|
| + }
|
| + }
|
| + }
|
| + lastT = span.fT;
|
| + }
|
| +next:
|
| + lastDone = span.fDone;
|
| + lastUnsortable = span.fUnsortableEnd;
|
| + }
|
| + return topPt;
|
| +}
|
| +
|
| +bool SkOpSegment::activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, SkPathOp op) {
|
| + int sumMiWinding = updateWinding(endIndex, index);
|
| + int sumSuWinding = updateOppWinding(endIndex, index);
|
| + if (fOperand) {
|
| + SkTSwap<int>(sumMiWinding, sumSuWinding);
|
| + }
|
| + int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
|
| + return activeOp(xorMiMask, xorSuMask, index, endIndex, op, sumMiWinding, sumSuWinding,
|
| + maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
|
| +}
|
| +
|
| +bool SkOpSegment::activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, SkPathOp op,
|
| + int& sumMiWinding, int& sumSuWinding,
|
| + int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) {
|
| + setUpWindings(index, endIndex, sumMiWinding, sumSuWinding,
|
| + maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
|
| + bool miFrom;
|
| + bool miTo;
|
| + bool suFrom;
|
| + bool suTo;
|
| + if (operand()) {
|
| + miFrom = (oppMaxWinding & xorMiMask) != 0;
|
| + miTo = (oppSumWinding & xorMiMask) != 0;
|
| + suFrom = (maxWinding & xorSuMask) != 0;
|
| + suTo = (sumWinding & xorSuMask) != 0;
|
| + } else {
|
| + miFrom = (maxWinding & xorMiMask) != 0;
|
| + miTo = (sumWinding & xorMiMask) != 0;
|
| + suFrom = (oppMaxWinding & xorSuMask) != 0;
|
| + suTo = (oppSumWinding & xorSuMask) != 0;
|
| + }
|
| + bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo];
|
| +#if DEBUG_ACTIVE_OP
|
| + SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __FUNCTION__,
|
| + kPathOpStr[op], miFrom, miTo, suFrom, suTo, result);
|
| +#endif
|
| + SkASSERT(result != -1);
|
| + return result;
|
| +}
|
| +
|
| +bool SkOpSegment::activeWinding(int index, int endIndex) {
|
| + int sumWinding = updateWinding(endIndex, index);
|
| + int maxWinding;
|
| + return activeWinding(index, endIndex, maxWinding, sumWinding);
|
| +}
|
| +
|
| +bool SkOpSegment::activeWinding(int index, int endIndex, int& maxWinding, int& sumWinding) {
|
| + setUpWinding(index, endIndex, maxWinding, sumWinding);
|
| + bool from = maxWinding != 0;
|
| + bool to = sumWinding != 0;
|
| + bool result = gUnaryActiveEdge[from][to];
|
| + SkASSERT(result != -1);
|
| + return result;
|
| +}
|
| +
|
| +void SkOpSegment::addAngle(SkTDArray<SkOpAngle>& angles, int start, int end) const {
|
| + SkASSERT(start != end);
|
| + SkOpAngle* angle = angles.append();
|
| +#if DEBUG_ANGLE
|
| + if (angles.count() > 1 && !fTs[start].fTiny) {
|
| + SkPoint angle0Pt = (*CurvePointAtT[angles[0].verb()])(angles[0].pts(),
|
| + (*angles[0].spans())[angles[0].start()].fT);
|
| + SkPoint newPt = (*CurvePointAtT[fVerb])(fPts, fTs[start].fT);
|
| + SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX));
|
| + SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY));
|
| + }
|
| +#endif
|
| + angle->set(fPts, fVerb, this, start, end, fTs);
|
| +}
|
| +
|
| +void SkOpSegment::addCancelOutsides(double tStart, double oStart, SkOpSegment& other, double oEnd) {
|
| + int tIndex = -1;
|
| + int tCount = fTs.count();
|
| + int oIndex = -1;
|
| + int oCount = other.fTs.count();
|
| + do {
|
| + ++tIndex;
|
| + } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount);
|
| + int tIndexStart = tIndex;
|
| + do {
|
| + ++oIndex;
|
| + } while (!approximately_negative(oStart - other.fTs[oIndex].fT) && oIndex < oCount);
|
| + int oIndexStart = oIndex;
|
| + double nextT;
|
| + do {
|
| + nextT = fTs[++tIndex].fT;
|
| + } while (nextT < 1 && approximately_negative(nextT - tStart));
|
| + double oNextT;
|
| + do {
|
| + oNextT = other.fTs[++oIndex].fT;
|
| + } while (oNextT < 1 && approximately_negative(oNextT - oStart));
|
| + // at this point, spans before and after are at:
|
| + // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex]
|
| + // if tIndexStart == 0, no prior span
|
| + // if nextT == 1, no following span
|
| +
|
| + // advance the span with zero winding
|
| + // if the following span exists (not past the end, non-zero winding)
|
| + // connect the two edges
|
| + if (!fTs[tIndexStart].fWindValue) {
|
| + if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) {
|
| +#if DEBUG_CONCIDENT
|
| + SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
|
| + __FUNCTION__, fID, other.fID, tIndexStart - 1,
|
| + fTs[tIndexStart].fT, xyAtT(tIndexStart).fX,
|
| + xyAtT(tIndexStart).fY);
|
| +#endif
|
| + addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT, false,
|
| + fTs[tIndexStart].fPt);
|
| + }
|
| + if (nextT < 1 && fTs[tIndex].fWindValue) {
|
| +#if DEBUG_CONCIDENT
|
| + SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
|
| + __FUNCTION__, fID, other.fID, tIndex,
|
| + fTs[tIndex].fT, xyAtT(tIndex).fX,
|
| + xyAtT(tIndex).fY);
|
| +#endif
|
| + addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT, false, fTs[tIndex].fPt);
|
| + }
|
| + } else {
|
| + SkASSERT(!other.fTs[oIndexStart].fWindValue);
|
| + if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) {
|
| +#if DEBUG_CONCIDENT
|
| + SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
|
| + __FUNCTION__, fID, other.fID, oIndexStart - 1,
|
| + other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX,
|
| + other.xyAtT(oIndexStart).fY);
|
| + other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex].fT);
|
| +#endif
|
| + }
|
| + if (oNextT < 1 && other.fTs[oIndex].fWindValue) {
|
| +#if DEBUG_CONCIDENT
|
| + SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
|
| + __FUNCTION__, fID, other.fID, oIndex,
|
| + other.fTs[oIndex].fT, other.xyAtT(oIndex).fX,
|
| + other.xyAtT(oIndex).fY);
|
| + other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart].fT);
|
| +#endif
|
| + }
|
| + }
|
| +}
|
| +
|
| +void SkOpSegment::addCoinOutsides(const SkTDArray<double>& outsideTs, SkOpSegment& other,
|
| + double oEnd) {
|
| + // walk this to outsideTs[0]
|
| + // walk other to outsideTs[1]
|
| + // if either is > 0, add a pointer to the other, copying adjacent winding
|
| + int tIndex = -1;
|
| + int oIndex = -1;
|
| + double tStart = outsideTs[0];
|
| + double oStart = outsideTs[1];
|
| + do {
|
| + ++tIndex;
|
| + } while (!approximately_negative(tStart - fTs[tIndex].fT));
|
| + SkPoint ptStart = fTs[tIndex].fPt;
|
| + do {
|
| + ++oIndex;
|
| + } while (!approximately_negative(oStart - other.fTs[oIndex].fT));
|
| + if (tIndex > 0 || oIndex > 0 || fOperand != other.fOperand) {
|
| + addTPair(tStart, other, oStart, false, ptStart);
|
| + }
|
| + tStart = fTs[tIndex].fT;
|
| + oStart = other.fTs[oIndex].fT;
|
| + do {
|
| + double nextT;
|
| + do {
|
| + nextT = fTs[++tIndex].fT;
|
| + } while (approximately_negative(nextT - tStart));
|
| + tStart = nextT;
|
| + ptStart = fTs[tIndex].fPt;
|
| + do {
|
| + nextT = other.fTs[++oIndex].fT;
|
| + } while (approximately_negative(nextT - oStart));
|
| + oStart = nextT;
|
| + if (tStart == 1 && oStart == 1 && fOperand == other.fOperand) {
|
| + break;
|
| + }
|
| + addTPair(tStart, other, oStart, false, ptStart);
|
| + } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart));
|
| +}
|
| +
|
| +void SkOpSegment::addCubic(const SkPoint pts[4], bool operand, bool evenOdd) {
|
| + init(pts, SkPath::kCubic_Verb, operand, evenOdd);
|
| + fBounds.setCubicBounds(pts);
|
| +}
|
| +
|
| +void SkOpSegment::addCurveTo(int start, int end, SkPathWriter& path, bool active) const {
|
| + SkPoint edge[4];
|
| + const SkPoint* ePtr;
|
| + int lastT = fTs.count() - 1;
|
| + if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) {
|
| + ePtr = fPts;
|
| + } else {
|
| + // OPTIMIZE? if not active, skip remainder and return xyAtT(end)
|
| + subDivide(start, end, edge);
|
| + ePtr = edge;
|
| + }
|
| + if (active) {
|
| + bool reverse = ePtr == fPts && start != 0;
|
| + if (reverse) {
|
| + path.deferredMoveLine(ePtr[fVerb]);
|
| + switch (fVerb) {
|
| + case SkPath::kLine_Verb:
|
| + path.deferredLine(ePtr[0]);
|
| + break;
|
| + case SkPath::kQuad_Verb:
|
| + path.quadTo(ePtr[1], ePtr[0]);
|
| + break;
|
| + case SkPath::kCubic_Verb:
|
| + path.cubicTo(ePtr[2], ePtr[1], ePtr[0]);
|
| + break;
|
| + default:
|
| + SkASSERT(0);
|
| + }
|
| + // return ePtr[0];
|
| + } else {
|
| + path.deferredMoveLine(ePtr[0]);
|
| + switch (fVerb) {
|
| + case SkPath::kLine_Verb:
|
| + path.deferredLine(ePtr[1]);
|
| + break;
|
| + case SkPath::kQuad_Verb:
|
| + path.quadTo(ePtr[1], ePtr[2]);
|
| + break;
|
| + case SkPath::kCubic_Verb:
|
| + path.cubicTo(ePtr[1], ePtr[2], ePtr[3]);
|
| + break;
|
| + default:
|
| + SkASSERT(0);
|
| + }
|
| + }
|
| + }
|
| + // return ePtr[fVerb];
|
| +}
|
| +
|
| +void SkOpSegment::addLine(const SkPoint pts[2], bool operand, bool evenOdd) {
|
| + init(pts, SkPath::kLine_Verb, operand, evenOdd);
|
| + fBounds.set(pts, 2);
|
| +}
|
| +
|
| +// add 2 to edge or out of range values to get T extremes
|
| +void SkOpSegment::addOtherT(int index, double otherT, int otherIndex) {
|
| + SkOpSpan& span = fTs[index];
|
| +#if PIN_ADD_T
|
| + if (precisely_less_than_zero(otherT)) {
|
| + otherT = 0;
|
| + } else if (precisely_greater_than_one(otherT)) {
|
| + otherT = 1;
|
| + }
|
| +#endif
|
| + span.fOtherT = otherT;
|
| + span.fOtherIndex = otherIndex;
|
| +}
|
| +
|
| +void SkOpSegment::addQuad(const SkPoint pts[3], bool operand, bool evenOdd) {
|
| + init(pts, SkPath::kQuad_Verb, operand, evenOdd);
|
| + fBounds.setQuadBounds(pts);
|
| +}
|
| +
|
| + // Defer all coincident edge processing until
|
| + // after normal intersections have been computed
|
| +
|
| +// no need to be tricky; insert in normal T order
|
| +// resolve overlapping ts when considering coincidence later
|
| +
|
| + // add non-coincident intersection. Resulting edges are sorted in T.
|
| +int SkOpSegment::addT(SkOpSegment* other, const SkPoint& pt, double newT) {
|
| + // FIXME: in the pathological case where there is a ton of intercepts,
|
| + // binary search?
|
| + int insertedAt = -1;
|
| + size_t tCount = fTs.count();
|
| + for (size_t index = 0; index < tCount; ++index) {
|
| + // OPTIMIZATION: if there are three or more identical Ts, then
|
| + // the fourth and following could be further insertion-sorted so
|
| + // that all the edges are clockwise or counterclockwise.
|
| + // This could later limit segment tests to the two adjacent
|
| + // neighbors, although it doesn't help with determining which
|
| + // circular direction to go in.
|
| + if (newT < fTs[index].fT) {
|
| + insertedAt = index;
|
| + break;
|
| + }
|
| + }
|
| + SkOpSpan* span;
|
| + if (insertedAt >= 0) {
|
| + span = fTs.insert(insertedAt);
|
| + } else {
|
| + insertedAt = tCount;
|
| + span = fTs.append();
|
| + }
|
| + span->fT = newT;
|
| + span->fOther = other;
|
| + span->fPt = pt;
|
| + span->fWindSum = SK_MinS32;
|
| + span->fOppSum = SK_MinS32;
|
| + span->fWindValue = 1;
|
| + span->fOppValue = 0;
|
| + span->fTiny = false;
|
| + span->fLoop = false;
|
| + if ((span->fDone = newT == 1)) {
|
| + ++fDoneSpans;
|
| + }
|
| + span->fUnsortableStart = false;
|
| + span->fUnsortableEnd = false;
|
| + int less = -1;
|
| + while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(span)) {
|
| + if (span[less].fDone) {
|
| + break;
|
| + }
|
| + double tInterval = newT - span[less].fT;
|
| + if (precisely_negative(tInterval)) {
|
| + break;
|
| + }
|
| + if (fVerb == SkPath::kCubic_Verb) {
|
| + double tMid = newT - tInterval / 2;
|
| + SkDPoint midPt = dcubic_xy_at_t(fPts, tMid);
|
| + if (!midPt.approximatelyEqual(xyAtT(span))) {
|
| + break;
|
| + }
|
| + }
|
| + span[less].fTiny = true;
|
| + span[less].fDone = true;
|
| + if (approximately_negative(newT - span[less].fT)) {
|
| + if (approximately_greater_than_one(newT)) {
|
| + span[less].fUnsortableStart = true;
|
| + span[less - 1].fUnsortableEnd = true;
|
| + }
|
| + if (approximately_less_than_zero(span[less].fT)) {
|
| + span[less + 1].fUnsortableStart = true;
|
| + span[less].fUnsortableEnd = true;
|
| + }
|
| + }
|
| + ++fDoneSpans;
|
| + --less;
|
| + }
|
| + int more = 1;
|
| + while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(span)) {
|
| + if (span[more - 1].fDone) {
|
| + break;
|
| + }
|
| + double tEndInterval = span[more].fT - newT;
|
| + if (precisely_negative(tEndInterval)) {
|
| + break;
|
| + }
|
| + if (fVerb == SkPath::kCubic_Verb) {
|
| + double tMid = newT - tEndInterval / 2;
|
| + SkDPoint midEndPt = dcubic_xy_at_t(fPts, tMid);
|
| + if (!midEndPt.approximatelyEqual(xyAtT(span))) {
|
| + break;
|
| + }
|
| + }
|
| + span[more - 1].fTiny = true;
|
| + span[more - 1].fDone = true;
|
| + if (approximately_negative(span[more].fT - newT)) {
|
| + if (approximately_greater_than_one(span[more].fT)) {
|
| + span[more + 1].fUnsortableStart = true;
|
| + span[more].fUnsortableEnd = true;
|
| + }
|
| + if (approximately_less_than_zero(newT)) {
|
| + span[more].fUnsortableStart = true;
|
| + span[more - 1].fUnsortableEnd = true;
|
| + }
|
| + }
|
| + ++fDoneSpans;
|
| + ++more;
|
| + }
|
| + return insertedAt;
|
| +}
|
| +
|
| +// set spans from start to end to decrement by one
|
| +// note this walks other backwards
|
| +// FIMXE: there's probably an edge case that can be constructed where
|
| +// two span in one segment are separated by float epsilon on one span but
|
| +// not the other, if one segment is very small. For this
|
| +// case the counts asserted below may or may not be enough to separate the
|
| +// spans. Even if the counts work out, what if the spans aren't correctly
|
| +// sorted? It feels better in such a case to match the span's other span
|
| +// pointer since both coincident segments must contain the same spans.
|
| +void SkOpSegment::addTCancel(double startT, double endT, SkOpSegment& other,
|
| + double oStartT, double oEndT) {
|
| + SkASSERT(!approximately_negative(endT - startT));
|
| + SkASSERT(!approximately_negative(oEndT - oStartT));
|
| + bool binary = fOperand != other.fOperand;
|
| + int index = 0;
|
| + while (!approximately_negative(startT - fTs[index].fT)) {
|
| + ++index;
|
| + }
|
| + int oIndex = other.fTs.count();
|
| + while (approximately_positive(other.fTs[--oIndex].fT - oEndT))
|
| + ;
|
| + double tRatio = (oEndT - oStartT) / (endT - startT);
|
| + SkOpSpan* test = &fTs[index];
|
| + SkOpSpan* oTest = &other.fTs[oIndex];
|
| + SkTDArray<double> outsideTs;
|
| + SkTDArray<double> oOutsideTs;
|
| + do {
|
| + bool decrement = test->fWindValue && oTest->fWindValue && !binary;
|
| + bool track = test->fWindValue || oTest->fWindValue;
|
| + double testT = test->fT;
|
| + double oTestT = oTest->fT;
|
| + SkOpSpan* span = test;
|
| + do {
|
| + if (decrement) {
|
| + decrementSpan(span);
|
| + } else if (track && span->fT < 1 && oTestT < 1) {
|
| + TrackOutside(outsideTs, span->fT, oTestT);
|
| + }
|
| + span = &fTs[++index];
|
| + } while (approximately_negative(span->fT - testT));
|
| + SkOpSpan* oSpan = oTest;
|
| + double otherTMatchStart = oEndT - (span->fT - startT) * tRatio;
|
| + double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio;
|
| + SkDEBUGCODE(int originalWindValue = oSpan->fWindValue);
|
| + while (approximately_negative(otherTMatchStart - oSpan->fT)
|
| + && !approximately_negative(otherTMatchEnd - oSpan->fT)) {
|
| + #ifdef SK_DEBUG
|
| + SkASSERT(originalWindValue == oSpan->fWindValue);
|
| + #endif
|
| + if (decrement) {
|
| + other.decrementSpan(oSpan);
|
| + } else if (track && oSpan->fT < 1 && testT < 1) {
|
| + TrackOutside(oOutsideTs, oSpan->fT, testT);
|
| + }
|
| + if (!oIndex) {
|
| + break;
|
| + }
|
| + oSpan = &other.fTs[--oIndex];
|
| + }
|
| + test = span;
|
| + oTest = oSpan;
|
| + } while (!approximately_negative(endT - test->fT));
|
| + SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT));
|
| + // FIXME: determine if canceled edges need outside ts added
|
| + if (!done() && outsideTs.count()) {
|
| + double tStart = outsideTs[0];
|
| + double oStart = outsideTs[1];
|
| + addCancelOutsides(tStart, oStart, other, oEndT);
|
| + int count = outsideTs.count();
|
| + if (count > 2) {
|
| + double tStart = outsideTs[count - 2];
|
| + double oStart = outsideTs[count - 1];
|
| + addCancelOutsides(tStart, oStart, other, oEndT);
|
| + }
|
| + }
|
| + if (!other.done() && oOutsideTs.count()) {
|
| + double tStart = oOutsideTs[0];
|
| + double oStart = oOutsideTs[1];
|
| + other.addCancelOutsides(tStart, oStart, *this, endT);
|
| + }
|
| +}
|
| +
|
| +int SkOpSegment::addSelfT(SkOpSegment* other, const SkPoint& pt, double newT) {
|
| + int result = addT(other, pt, newT);
|
| + SkOpSpan* span = &fTs[result];
|
| + span->fLoop = true;
|
| + return result;
|
| +}
|
| +
|
| +int SkOpSegment::addUnsortableT(SkOpSegment* other, bool start, const SkPoint& pt, double newT) {
|
| + int result = addT(other, pt, newT);
|
| + SkOpSpan* span = &fTs[result];
|
| + if (start) {
|
| + if (result > 0) {
|
| + span[result - 1].fUnsortableEnd = true;
|
| + }
|
| + span[result].fUnsortableStart = true;
|
| + } else {
|
| + span[result].fUnsortableEnd = true;
|
| + if (result + 1 < fTs.count()) {
|
| + span[result + 1].fUnsortableStart = true;
|
| + }
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +int SkOpSegment::bumpCoincidentThis(const SkOpSpan* oTest, bool opp, int index,
|
| + SkTDArray<double>& outsideTs) {
|
| + int oWindValue = oTest->fWindValue;
|
| + int oOppValue = oTest->fOppValue;
|
| + if (opp) {
|
| + SkTSwap<int>(oWindValue, oOppValue);
|
| + }
|
| + SkOpSpan* const test = &fTs[index];
|
| + SkOpSpan* end = test;
|
| + const double oStartT = oTest->fT;
|
| + do {
|
| + if (bumpSpan(end, oWindValue, oOppValue)) {
|
| + TrackOutside(outsideTs, end->fT, oStartT);
|
| + }
|
| + end = &fTs[++index];
|
| + } while (approximately_negative(end->fT - test->fT));
|
| + return index;
|
| +}
|
| +
|
| +// because of the order in which coincidences are resolved, this and other
|
| +// may not have the same intermediate points. Compute the corresponding
|
| +// intermediate T values (using this as the master, other as the follower)
|
| +// and walk other conditionally -- hoping that it catches up in the end
|
| +int SkOpSegment::bumpCoincidentOther(const SkOpSpan* test, double oEndT, int& oIndex,
|
| + SkTDArray<double>& oOutsideTs) {
|
| + SkOpSpan* const oTest = &fTs[oIndex];
|
| + SkOpSpan* oEnd = oTest;
|
| + const double startT = test->fT;
|
| + const double oStartT = oTest->fT;
|
| + while (!approximately_negative(oEndT - oEnd->fT)
|
| + && approximately_negative(oEnd->fT - oStartT)) {
|
| + zeroSpan(oEnd);
|
| + TrackOutside(oOutsideTs, oEnd->fT, startT);
|
| + oEnd = &fTs[++oIndex];
|
| + }
|
| + return oIndex;
|
| +}
|
| +
|
| +// FIXME: need to test this case:
|
| +// contourA has two segments that are coincident
|
| +// contourB has two segments that are coincident in the same place
|
| +// each ends up with +2/0 pairs for winding count
|
| +// since logic below doesn't transfer count (only increments/decrements) can this be
|
| +// resolved to +4/0 ?
|
| +
|
| +// set spans from start to end to increment the greater by one and decrement
|
| +// the lesser
|
| +void SkOpSegment::addTCoincident(double startT, double endT, SkOpSegment& other, double oStartT,
|
| + double oEndT) {
|
| + SkASSERT(!approximately_negative(endT - startT));
|
| + SkASSERT(!approximately_negative(oEndT - oStartT));
|
| + bool opp = fOperand ^ other.fOperand;
|
| + int index = 0;
|
| + while (!approximately_negative(startT - fTs[index].fT)) {
|
| + ++index;
|
| + }
|
| + int oIndex = 0;
|
| + while (!approximately_negative(oStartT - other.fTs[oIndex].fT)) {
|
| + ++oIndex;
|
| + }
|
| + SkOpSpan* test = &fTs[index];
|
| + SkOpSpan* oTest = &other.fTs[oIndex];
|
| + SkTDArray<double> outsideTs;
|
| + SkTDArray<double> oOutsideTs;
|
| + do {
|
| + // if either span has an opposite value and the operands don't match, resolve first
|
| + // SkASSERT(!test->fDone || !oTest->fDone);
|
| + if (test->fDone || oTest->fDone) {
|
| + index = advanceCoincidentThis(oTest, opp, index);
|
| + oIndex = other.advanceCoincidentOther(test, oEndT, oIndex);
|
| + } else {
|
| + index = bumpCoincidentThis(oTest, opp, index, outsideTs);
|
| + oIndex = other.bumpCoincidentOther(test, oEndT, oIndex, oOutsideTs);
|
| + }
|
| + test = &fTs[index];
|
| + oTest = &other.fTs[oIndex];
|
| + } while (!approximately_negative(endT - test->fT));
|
| + SkASSERT(approximately_negative(oTest->fT - oEndT));
|
| + SkASSERT(approximately_negative(oEndT - oTest->fT));
|
| + if (!done() && outsideTs.count()) {
|
| + addCoinOutsides(outsideTs, other, oEndT);
|
| + }
|
| + if (!other.done() && oOutsideTs.count()) {
|
| + other.addCoinOutsides(oOutsideTs, *this, endT);
|
| + }
|
| +}
|
| +
|
| +// FIXME: this doesn't prevent the same span from being added twice
|
| +// fix in caller, SkASSERT here?
|
| +void SkOpSegment::addTPair(double t, SkOpSegment& other, double otherT, bool borrowWind,
|
| + const SkPoint& pt) {
|
| + int tCount = fTs.count();
|
| + for (int tIndex = 0; tIndex < tCount; ++tIndex) {
|
| + const SkOpSpan& span = fTs[tIndex];
|
| + if (!approximately_negative(span.fT - t)) {
|
| + break;
|
| + }
|
| + if (approximately_negative(span.fT - t) && span.fOther == &other
|
| + && approximately_equal(span.fOtherT, otherT)) {
|
| +#if DEBUG_ADD_T_PAIR
|
| + SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n",
|
| + __FUNCTION__, fID, t, other.fID, otherT);
|
| +#endif
|
| + return;
|
| + }
|
| + }
|
| +#if DEBUG_ADD_T_PAIR
|
| + SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n",
|
| + __FUNCTION__, fID, t, other.fID, otherT);
|
| +#endif
|
| + int insertedAt = addT(&other, pt, t);
|
| + int otherInsertedAt = other.addT(this, pt, otherT);
|
| + addOtherT(insertedAt, otherT, otherInsertedAt);
|
| + other.addOtherT(otherInsertedAt, t, insertedAt);
|
| + matchWindingValue(insertedAt, t, borrowWind);
|
| + other.matchWindingValue(otherInsertedAt, otherT, borrowWind);
|
| +}
|
| +
|
| +void SkOpSegment::addTwoAngles(int start, int end, SkTDArray<SkOpAngle>& angles) const {
|
| + // add edge leading into junction
|
| + int min = SkMin32(end, start);
|
| + if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) {
|
| + addAngle(angles, end, start);
|
| + }
|
| + // add edge leading away from junction
|
| + int step = SkSign32(end - start);
|
| + int tIndex = nextExactSpan(end, step);
|
| + min = SkMin32(end, tIndex);
|
| + if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) {
|
| + addAngle(angles, end, tIndex);
|
| + }
|
| +}
|
| +
|
| +int SkOpSegment::advanceCoincidentThis(const SkOpSpan* oTest, bool opp, int index) {
|
| + SkOpSpan* const test = &fTs[index];
|
| + SkOpSpan* end;
|
| + do {
|
| + end = &fTs[++index];
|
| + } while (approximately_negative(end->fT - test->fT));
|
| + return index;
|
| +}
|
| +
|
| +int SkOpSegment::advanceCoincidentOther(const SkOpSpan* test, double oEndT, int& oIndex) {
|
| + SkOpSpan* const oTest = &fTs[oIndex];
|
| + SkOpSpan* oEnd = oTest;
|
| + const double oStartT = oTest->fT;
|
| + while (!approximately_negative(oEndT - oEnd->fT)
|
| + && approximately_negative(oEnd->fT - oStartT)) {
|
| + oEnd = &fTs[++oIndex];
|
| + }
|
| + return oIndex;
|
| +}
|
| +
|
| +bool SkOpSegment::betweenTs(int lesser, double testT, int greater) {
|
| + if (lesser > greater) {
|
| + SkTSwap<int>(lesser, greater);
|
| + }
|
| + return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT);
|
| +}
|
| +
|
| +void SkOpSegment::buildAngles(int index, SkTDArray<SkOpAngle>& angles, bool includeOpp) const {
|
| + double referenceT = fTs[index].fT;
|
| + int lesser = index;
|
| + while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand)
|
| + && precisely_negative(referenceT - fTs[lesser].fT)) {
|
| + buildAnglesInner(lesser, angles);
|
| + }
|
| + do {
|
| + buildAnglesInner(index, angles);
|
| + } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand)
|
| + && precisely_negative(fTs[index].fT - referenceT));
|
| +}
|
| +
|
| +void SkOpSegment::buildAnglesInner(int index, SkTDArray<SkOpAngle>& angles) const {
|
| + const SkOpSpan* span = &fTs[index];
|
| + SkOpSegment* other = span->fOther;
|
| +// if there is only one live crossing, and no coincidence, continue
|
| +// in the same direction
|
| +// if there is coincidence, the only choice may be to reverse direction
|
| + // find edge on either side of intersection
|
| + int oIndex = span->fOtherIndex;
|
| + // if done == -1, prior span has already been processed
|
| + int step = 1;
|
| + int next = other->nextExactSpan(oIndex, step);
|
| + if (next < 0) {
|
| + step = -step;
|
| + next = other->nextExactSpan(oIndex, step);
|
| + }
|
| + // add candidate into and away from junction
|
| + other->addTwoAngles(next, oIndex, angles);
|
| +}
|
| +
|
| +int SkOpSegment::computeSum(int startIndex, int endIndex, bool binary) {
|
| + SkTDArray<SkOpAngle> angles;
|
| + addTwoAngles(startIndex, endIndex, angles);
|
| + buildAngles(endIndex, angles, false);
|
| + // OPTIMIZATION: check all angles to see if any have computed wind sum
|
| + // before sorting (early exit if none)
|
| + SkTDArray<SkOpAngle*> sorted;
|
| + bool sortable = SortAngles(angles, sorted);
|
| +#if DEBUG_SORT
|
| + sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
|
| +#endif
|
| + if (!sortable) {
|
| + return SK_MinS32;
|
| + }
|
| + int angleCount = angles.count();
|
| + const SkOpAngle* angle;
|
| + const SkOpSegment* base;
|
| + int winding;
|
| + int oWinding;
|
| + int firstIndex = 0;
|
| + do {
|
| + angle = sorted[firstIndex];
|
| + base = angle->segment();
|
| + winding = base->windSum(angle);
|
| + if (winding != SK_MinS32) {
|
| + oWinding = base->oppSum(angle);
|
| + break;
|
| + }
|
| + if (++firstIndex == angleCount) {
|
| + return SK_MinS32;
|
| + }
|
| + } while (true);
|
| + // turn winding into contourWinding
|
| + int spanWinding = base->spanSign(angle);
|
| + bool inner = UseInnerWinding(winding + spanWinding, winding);
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__,
|
| + spanWinding, winding, angle->sign(), inner,
|
| + inner ? winding + spanWinding : winding);
|
| +#endif
|
| + if (inner) {
|
| + winding += spanWinding;
|
| + }
|
| +#if DEBUG_SORT
|
| + base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding);
|
| +#endif
|
| + int nextIndex = firstIndex + 1;
|
| + int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
| + winding -= base->spanSign(angle);
|
| + oWinding -= base->oppSign(angle);
|
| + do {
|
| + if (nextIndex == angleCount) {
|
| + nextIndex = 0;
|
| + }
|
| + angle = sorted[nextIndex];
|
| + SkOpSegment* segment = angle->segment();
|
| + bool opp = base->fOperand ^ segment->fOperand;
|
| + int maxWinding, oMaxWinding;
|
| + int spanSign = segment->spanSign(angle);
|
| + int oppoSign = segment->oppSign(angle);
|
| + if (opp) {
|
| + oMaxWinding = oWinding;
|
| + oWinding -= spanSign;
|
| + maxWinding = winding;
|
| + if (oppoSign) {
|
| + winding -= oppoSign;
|
| + }
|
| + } else {
|
| + maxWinding = winding;
|
| + winding -= spanSign;
|
| + oMaxWinding = oWinding;
|
| + if (oppoSign) {
|
| + oWinding -= oppoSign;
|
| + }
|
| + }
|
| + if (segment->windSum(angle) == SK_MinS32) {
|
| + if (opp) {
|
| + if (UseInnerWinding(oMaxWinding, oWinding)) {
|
| + oMaxWinding = oWinding;
|
| + }
|
| + if (oppoSign && UseInnerWinding(maxWinding, winding)) {
|
| + maxWinding = winding;
|
| + }
|
| + (void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding);
|
| + } else {
|
| + if (UseInnerWinding(maxWinding, winding)) {
|
| + maxWinding = winding;
|
| + }
|
| + if (oppoSign && UseInnerWinding(oMaxWinding, oWinding)) {
|
| + oMaxWinding = oWinding;
|
| + }
|
| + (void) segment->markAndChaseWinding(angle, maxWinding,
|
| + binary ? oMaxWinding : 0);
|
| + }
|
| + }
|
| + } while (++nextIndex != lastIndex);
|
| + int minIndex = SkMin32(startIndex, endIndex);
|
| + return windSum(minIndex);
|
| +}
|
| +
|
| +int SkOpSegment::crossedSpanY(const SkPoint& basePt, SkScalar& bestY, double& hitT,
|
| + bool& hitSomething, double mid, bool opp, bool current) const {
|
| + SkScalar bottom = fBounds.fBottom;
|
| + int bestTIndex = -1;
|
| + if (bottom <= bestY) {
|
| + return bestTIndex;
|
| + }
|
| + SkScalar top = fBounds.fTop;
|
| + if (top >= basePt.fY) {
|
| + return bestTIndex;
|
| + }
|
| + if (fBounds.fLeft > basePt.fX) {
|
| + return bestTIndex;
|
| + }
|
| + if (fBounds.fRight < basePt.fX) {
|
| + return bestTIndex;
|
| + }
|
| + if (fBounds.fLeft == fBounds.fRight) {
|
| + // if vertical, and directly above test point, wait for another one
|
| + return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex;
|
| + }
|
| + // intersect ray starting at basePt with edge
|
| + SkIntersections intersections;
|
| + // OPTIMIZE: use specialty function that intersects ray with curve,
|
| + // returning t values only for curve (we don't care about t on ray)
|
| + int pts = (intersections.*CurveVertical[fVerb])(fPts, top, bottom, basePt.fX, false);
|
| + if (pts == 0 || (current && pts == 1)) {
|
| + return bestTIndex;
|
| + }
|
| + if (current) {
|
| + SkASSERT(pts > 1);
|
| + int closestIdx = 0;
|
| + double closest = fabs(intersections[0][0] - mid);
|
| + for (int idx = 1; idx < pts; ++idx) {
|
| + double test = fabs(intersections[0][idx] - mid);
|
| + if (closest > test) {
|
| + closestIdx = idx;
|
| + closest = test;
|
| + }
|
| + }
|
| + intersections.quickRemoveOne(closestIdx, --pts);
|
| + }
|
| + double bestT = -1;
|
| + for (int index = 0; index < pts; ++index) {
|
| + double foundT = intersections[0][index];
|
| + if (approximately_less_than_zero(foundT)
|
| + || approximately_greater_than_one(foundT)) {
|
| + continue;
|
| + }
|
| + SkScalar testY = (*CurvePointAtT[fVerb])(fPts, foundT).fY;
|
| + if (approximately_negative(testY - bestY)
|
| + || approximately_negative(basePt.fY - testY)) {
|
| + continue;
|
| + }
|
| + if (pts > 1 && fVerb == SkPath::kLine_Verb) {
|
| + return SK_MinS32; // if the intersection is edge on, wait for another one
|
| + }
|
| + if (fVerb > SkPath::kLine_Verb) {
|
| + SkScalar dx = (*CurveSlopeAtT[fVerb])(fPts, foundT).fX;
|
| + if (approximately_zero(dx)) {
|
| + return SK_MinS32; // hit vertical, wait for another one
|
| + }
|
| + }
|
| + bestY = testY;
|
| + bestT = foundT;
|
| + }
|
| + if (bestT < 0) {
|
| + return bestTIndex;
|
| + }
|
| + SkASSERT(bestT >= 0);
|
| + SkASSERT(bestT <= 1);
|
| + int start;
|
| + int end = 0;
|
| + do {
|
| + start = end;
|
| + end = nextSpan(start, 1);
|
| + } while (fTs[end].fT < bestT);
|
| + // FIXME: see next candidate for a better pattern to find the next start/end pair
|
| + while (start + 1 < end && fTs[start].fDone) {
|
| + ++start;
|
| + }
|
| + if (!isCanceled(start)) {
|
| + hitT = bestT;
|
| + bestTIndex = start;
|
| + hitSomething = true;
|
| + }
|
| + return bestTIndex;
|
| +}
|
| +
|
| +void SkOpSegment::decrementSpan(SkOpSpan* span) {
|
| + SkASSERT(span->fWindValue > 0);
|
| + if (--(span->fWindValue) == 0) {
|
| + if (!span->fOppValue && !span->fDone) {
|
| + span->fDone = true;
|
| + ++fDoneSpans;
|
| + }
|
| + }
|
| +}
|
| +
|
| +bool SkOpSegment::bumpSpan(SkOpSpan* span, int windDelta, int oppDelta) {
|
| + SkASSERT(!span->fDone);
|
| + span->fWindValue += windDelta;
|
| + SkASSERT(span->fWindValue >= 0);
|
| + span->fOppValue += oppDelta;
|
| + SkASSERT(span->fOppValue >= 0);
|
| + if (fXor) {
|
| + span->fWindValue &= 1;
|
| + }
|
| + if (fOppXor) {
|
| + span->fOppValue &= 1;
|
| + }
|
| + if (!span->fWindValue && !span->fOppValue) {
|
| + span->fDone = true;
|
| + ++fDoneSpans;
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +bool SkOpSegment::equalPoints(int greaterTIndex, int lesserTIndex) {
|
| + SkASSERT(greaterTIndex >= lesserTIndex);
|
| + double greaterT = fTs[greaterTIndex].fT;
|
| + double lesserT = fTs[lesserTIndex].fT;
|
| + if (greaterT == lesserT) {
|
| + return true;
|
| + }
|
| + if (!approximately_negative(greaterT - lesserT)) {
|
| + return false;
|
| + }
|
| + return xyAtT(greaterTIndex) == xyAtT(lesserTIndex);
|
| +}
|
| +
|
| +/*
|
| + The M and S variable name parts stand for the operators.
|
| + Mi stands for Minuend (see wiki subtraction, analogous to difference)
|
| + Su stands for Subtrahend
|
| + The Opp variable name part designates that the value is for the Opposite operator.
|
| + Opposite values result from combining coincident spans.
|
| + */
|
| +SkOpSegment* SkOpSegment::findNextOp(SkTDArray<SkOpSpan*>& chase, int& nextStart, int& nextEnd,
|
| + bool& unsortable, SkPathOp op, const int xorMiMask,
|
| + const int xorSuMask) {
|
| + const int startIndex = nextStart;
|
| + const int endIndex = nextEnd;
|
| + SkASSERT(startIndex != endIndex);
|
| + SkDEBUGCODE(const int count = fTs.count());
|
| + SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0);
|
| + const int step = SkSign32(endIndex - startIndex);
|
| + const int end = nextExactSpan(startIndex, step);
|
| + SkASSERT(end >= 0);
|
| + SkOpSpan* endSpan = &fTs[end];
|
| + SkOpSegment* other;
|
| + if (isSimple(end)) {
|
| + // mark the smaller of startIndex, endIndex done, and all adjacent
|
| + // spans with the same T value (but not 'other' spans)
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s simple\n", __FUNCTION__);
|
| +#endif
|
| + int min = SkMin32(startIndex, endIndex);
|
| + if (fTs[min].fDone) {
|
| + return NULL;
|
| + }
|
| + markDoneBinary(min);
|
| + other = endSpan->fOther;
|
| + nextStart = endSpan->fOtherIndex;
|
| + double startT = other->fTs[nextStart].fT;
|
| + nextEnd = nextStart;
|
| + do {
|
| + nextEnd += step;
|
| + }
|
| + while (precisely_zero(startT - other->fTs[nextEnd].fT));
|
| + SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
|
| + return other;
|
| + }
|
| + // more than one viable candidate -- measure angles to find best
|
| + SkTDArray<SkOpAngle> angles;
|
| + SkASSERT(startIndex - endIndex != 0);
|
| + SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
|
| + addTwoAngles(startIndex, end, angles);
|
| + buildAngles(end, angles, true);
|
| + SkTDArray<SkOpAngle*> sorted;
|
| + bool sortable = SortAngles(angles, sorted);
|
| + int angleCount = angles.count();
|
| + int firstIndex = findStartingEdge(sorted, startIndex, end);
|
| + SkASSERT(firstIndex >= 0);
|
| +#if DEBUG_SORT
|
| + debugShowSort(__FUNCTION__, sorted, firstIndex);
|
| +#endif
|
| + if (!sortable) {
|
| + unsortable = true;
|
| + return NULL;
|
| + }
|
| + SkASSERT(sorted[firstIndex]->segment() == this);
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex,
|
| + sorted[firstIndex]->sign());
|
| +#endif
|
| + int sumMiWinding = updateWinding(endIndex, startIndex);
|
| + int sumSuWinding = updateOppWinding(endIndex, startIndex);
|
| + if (operand()) {
|
| + SkTSwap<int>(sumMiWinding, sumSuWinding);
|
| + }
|
| + int nextIndex = firstIndex + 1;
|
| + int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
| + const SkOpAngle* foundAngle = NULL;
|
| + bool foundDone = false;
|
| + // iterate through the angle, and compute everyone's winding
|
| + SkOpSegment* nextSegment;
|
| + int activeCount = 0;
|
| + do {
|
| + SkASSERT(nextIndex != firstIndex);
|
| + if (nextIndex == angleCount) {
|
| + nextIndex = 0;
|
| + }
|
| + const SkOpAngle* nextAngle = sorted[nextIndex];
|
| + nextSegment = nextAngle->segment();
|
| + int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
|
| + bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(),
|
| + nextAngle->end(), op, sumMiWinding, sumSuWinding,
|
| + maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
|
| + if (activeAngle) {
|
| + ++activeCount;
|
| + if (!foundAngle || (foundDone && activeCount & 1)) {
|
| + if (nextSegment->tiny(nextAngle)) {
|
| + unsortable = true;
|
| + return NULL;
|
| + }
|
| + foundAngle = nextAngle;
|
| + foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle);
|
| + }
|
| + }
|
| + if (nextSegment->done()) {
|
| + continue;
|
| + }
|
| + if (nextSegment->windSum(nextAngle) != SK_MinS32) {
|
| + continue;
|
| + }
|
| + SkOpSpan* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding,
|
| + oppSumWinding, activeAngle, nextAngle);
|
| + if (last) {
|
| + *chase.append() = last;
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s chase.append id=%d\n", __FUNCTION__,
|
| + last->fOther->fTs[last->fOtherIndex].fOther->debugID());
|
| +#endif
|
| + }
|
| + } while (++nextIndex != lastIndex);
|
| + markDoneBinary(SkMin32(startIndex, endIndex));
|
| + if (!foundAngle) {
|
| + return NULL;
|
| + }
|
| + nextStart = foundAngle->start();
|
| + nextEnd = foundAngle->end();
|
| + nextSegment = foundAngle->segment();
|
| +
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
|
| + __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
|
| + #endif
|
| + return nextSegment;
|
| +}
|
| +
|
| +SkOpSegment* SkOpSegment::findNextWinding(SkTDArray<SkOpSpan*>& chase, int& nextStart,
|
| + int& nextEnd, bool& unsortable) {
|
| + const int startIndex = nextStart;
|
| + const int endIndex = nextEnd;
|
| + SkASSERT(startIndex != endIndex);
|
| + SkDEBUGCODE(const int count = fTs.count());
|
| + SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0);
|
| + const int step = SkSign32(endIndex - startIndex);
|
| + const int end = nextExactSpan(startIndex, step);
|
| + SkASSERT(end >= 0);
|
| + SkOpSpan* endSpan = &fTs[end];
|
| + SkOpSegment* other;
|
| + if (isSimple(end)) {
|
| + // mark the smaller of startIndex, endIndex done, and all adjacent
|
| + // spans with the same T value (but not 'other' spans)
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s simple\n", __FUNCTION__);
|
| +#endif
|
| + int min = SkMin32(startIndex, endIndex);
|
| + if (fTs[min].fDone) {
|
| + return NULL;
|
| + }
|
| + markDoneUnary(min);
|
| + other = endSpan->fOther;
|
| + nextStart = endSpan->fOtherIndex;
|
| + double startT = other->fTs[nextStart].fT;
|
| + nextEnd = nextStart;
|
| + do {
|
| + nextEnd += step;
|
| + }
|
| + while (precisely_zero(startT - other->fTs[nextEnd].fT));
|
| + SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
|
| + return other;
|
| + }
|
| + // more than one viable candidate -- measure angles to find best
|
| + SkTDArray<SkOpAngle> angles;
|
| + SkASSERT(startIndex - endIndex != 0);
|
| + SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
|
| + addTwoAngles(startIndex, end, angles);
|
| + buildAngles(end, angles, true);
|
| + SkTDArray<SkOpAngle*> sorted;
|
| + bool sortable = SortAngles(angles, sorted);
|
| + int angleCount = angles.count();
|
| + int firstIndex = findStartingEdge(sorted, startIndex, end);
|
| + SkASSERT(firstIndex >= 0);
|
| +#if DEBUG_SORT
|
| + debugShowSort(__FUNCTION__, sorted, firstIndex);
|
| +#endif
|
| + if (!sortable) {
|
| + unsortable = true;
|
| + return NULL;
|
| + }
|
| + SkASSERT(sorted[firstIndex]->segment() == this);
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex,
|
| + sorted[firstIndex]->sign());
|
| +#endif
|
| + int sumWinding = updateWinding(endIndex, startIndex);
|
| + int nextIndex = firstIndex + 1;
|
| + int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
| + const SkOpAngle* foundAngle = NULL;
|
| + bool foundDone = false;
|
| + // iterate through the angle, and compute everyone's winding
|
| + SkOpSegment* nextSegment;
|
| + int activeCount = 0;
|
| + do {
|
| + SkASSERT(nextIndex != firstIndex);
|
| + if (nextIndex == angleCount) {
|
| + nextIndex = 0;
|
| + }
|
| + const SkOpAngle* nextAngle = sorted[nextIndex];
|
| + nextSegment = nextAngle->segment();
|
| + int maxWinding;
|
| + bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(),
|
| + maxWinding, sumWinding);
|
| + if (activeAngle) {
|
| + ++activeCount;
|
| + if (!foundAngle || (foundDone && activeCount & 1)) {
|
| + if (nextSegment->tiny(nextAngle)) {
|
| + unsortable = true;
|
| + return NULL;
|
| + }
|
| + foundAngle = nextAngle;
|
| + foundDone = nextSegment->done(nextAngle);
|
| + }
|
| + }
|
| + if (nextSegment->done()) {
|
| + continue;
|
| + }
|
| + if (nextSegment->windSum(nextAngle) != SK_MinS32) {
|
| + continue;
|
| + }
|
| + SkOpSpan* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle);
|
| + if (last) {
|
| + *chase.append() = last;
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s chase.append id=%d\n", __FUNCTION__,
|
| + last->fOther->fTs[last->fOtherIndex].fOther->debugID());
|
| +#endif
|
| + }
|
| + } while (++nextIndex != lastIndex);
|
| + markDoneUnary(SkMin32(startIndex, endIndex));
|
| + if (!foundAngle) {
|
| + return NULL;
|
| + }
|
| + nextStart = foundAngle->start();
|
| + nextEnd = foundAngle->end();
|
| + nextSegment = foundAngle->segment();
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
|
| + __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
|
| + #endif
|
| + return nextSegment;
|
| +}
|
| +
|
| +SkOpSegment* SkOpSegment::findNextXor(int& nextStart, int& nextEnd, bool& unsortable) {
|
| + const int startIndex = nextStart;
|
| + const int endIndex = nextEnd;
|
| + SkASSERT(startIndex != endIndex);
|
| + SkDEBUGCODE(int count = fTs.count());
|
| + SkASSERT(startIndex < endIndex ? startIndex < count - 1
|
| + : startIndex > 0);
|
| + int step = SkSign32(endIndex - startIndex);
|
| + int end = nextExactSpan(startIndex, step);
|
| + SkASSERT(end >= 0);
|
| + SkOpSpan* endSpan = &fTs[end];
|
| + SkOpSegment* other;
|
| + if (isSimple(end)) {
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s simple\n", __FUNCTION__);
|
| +#endif
|
| + int min = SkMin32(startIndex, endIndex);
|
| + if (fTs[min].fDone) {
|
| + return NULL;
|
| + }
|
| + markDone(min, 1);
|
| + other = endSpan->fOther;
|
| + nextStart = endSpan->fOtherIndex;
|
| + double startT = other->fTs[nextStart].fT;
|
| + // FIXME: I don't know why the logic here is difference from the winding case
|
| + SkDEBUGCODE(bool firstLoop = true;)
|
| + if ((approximately_less_than_zero(startT) && step < 0)
|
| + || (approximately_greater_than_one(startT) && step > 0)) {
|
| + step = -step;
|
| + SkDEBUGCODE(firstLoop = false;)
|
| + }
|
| + do {
|
| + nextEnd = nextStart;
|
| + do {
|
| + nextEnd += step;
|
| + }
|
| + while (precisely_zero(startT - other->fTs[nextEnd].fT));
|
| + if (other->fTs[SkMin32(nextStart, nextEnd)].fWindValue) {
|
| + break;
|
| + }
|
| +#ifdef SK_DEBUG
|
| + SkASSERT(firstLoop);
|
| +#endif
|
| + SkDEBUGCODE(firstLoop = false;)
|
| + step = -step;
|
| + } while (true);
|
| + SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
|
| + return other;
|
| + }
|
| + SkTDArray<SkOpAngle> angles;
|
| + SkASSERT(startIndex - endIndex != 0);
|
| + SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
|
| + addTwoAngles(startIndex, end, angles);
|
| + buildAngles(end, angles, false);
|
| + SkTDArray<SkOpAngle*> sorted;
|
| + bool sortable = SortAngles(angles, sorted);
|
| + if (!sortable) {
|
| + unsortable = true;
|
| +#if DEBUG_SORT
|
| + debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0);
|
| +#endif
|
| + return NULL;
|
| + }
|
| + int angleCount = angles.count();
|
| + int firstIndex = findStartingEdge(sorted, startIndex, end);
|
| + SkASSERT(firstIndex >= 0);
|
| +#if DEBUG_SORT
|
| + debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0);
|
| +#endif
|
| + SkASSERT(sorted[firstIndex]->segment() == this);
|
| + int nextIndex = firstIndex + 1;
|
| + int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
|
| + const SkOpAngle* foundAngle = NULL;
|
| + bool foundDone = false;
|
| + SkOpSegment* nextSegment;
|
| + int activeCount = 0;
|
| + do {
|
| + SkASSERT(nextIndex != firstIndex);
|
| + if (nextIndex == angleCount) {
|
| + nextIndex = 0;
|
| + }
|
| + const SkOpAngle* nextAngle = sorted[nextIndex];
|
| + nextSegment = nextAngle->segment();
|
| + ++activeCount;
|
| + if (!foundAngle || (foundDone && activeCount & 1)) {
|
| + if (nextSegment->tiny(nextAngle)) {
|
| + unsortable = true;
|
| + return NULL;
|
| + }
|
| + foundAngle = nextAngle;
|
| + foundDone = nextSegment->done(nextAngle);
|
| + }
|
| + if (nextSegment->done()) {
|
| + continue;
|
| + }
|
| + } while (++nextIndex != lastIndex);
|
| + markDone(SkMin32(startIndex, endIndex), 1);
|
| + if (!foundAngle) {
|
| + return NULL;
|
| + }
|
| + nextStart = foundAngle->start();
|
| + nextEnd = foundAngle->end();
|
| + nextSegment = foundAngle->segment();
|
| +#if DEBUG_WINDING
|
| + SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
|
| + __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
|
| + #endif
|
| + return nextSegment;
|
| +}
|
| +
|
| +int SkOpSegment::findStartingEdge(SkTDArray<SkOpAngle*>& sorted, int start, int end) {
|
| + int angleCount = sorted.count();
|
| + int firstIndex = -1;
|
| + for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
|
| + const SkOpAngle* angle = sorted[angleIndex];
|
| + if (angle->segment() == this && angle->start() == end &&
|
| + angle->end() == start) {
|
| + firstIndex = angleIndex;
|
| + break;
|
| + }
|
| + }
|
| + return firstIndex;
|
| +}
|
| +
|
| +// FIXME: this is tricky code; needs its own unit test
|
| +// note that fOtherIndex isn't computed yet, so it can't be used here
|
| +void SkOpSegment::findTooCloseToCall() {
|
| + int count = fTs.count();
|
| + if (count < 3) { // require t=0, x, 1 at minimum
|
| + return;
|
| + }
|
| + int matchIndex = 0;
|
| + int moCount;
|
| + SkOpSpan* match;
|
| + SkOpSegment* mOther;
|
| + do {
|
| + match = &fTs[matchIndex];
|
| + mOther = match->fOther;
|
| + // FIXME: allow quads, cubics to be near coincident?
|
| + if (mOther->fVerb == SkPath::kLine_Verb) {
|
| + moCount = mOther->fTs.count();
|
| + if (moCount >= 3) {
|
| + break;
|
| + }
|
| + }
|
| + if (++matchIndex >= count) {
|
| + return;
|
| + }
|
| + } while (true); // require t=0, x, 1 at minimum
|
| + // OPTIMIZATION: defer matchPt until qualifying toCount is found?
|
| + const SkPoint* matchPt = &xyAtT(match);
|
| + // look for a pair of nearby T values that map to the same (x,y) value
|
| + // if found, see if the pair of other segments share a common point. If
|
| + // so, the span from here to there is coincident.
|
| + for (int index = matchIndex + 1; index < count; ++index) {
|
| + SkOpSpan* test = &fTs[index];
|
| + if (test->fDone) {
|
| + continue;
|
| + }
|
| + SkOpSegment* tOther = test->fOther;
|
| + if (tOther->fVerb != SkPath::kLine_Verb) {
|
| + continue; // FIXME: allow quads, cubics to be near coincident?
|
| + }
|
| + int toCount = tOther->fTs.count();
|
| + if (toCount < 3) { // require t=0, x, 1 at minimum
|
| + continue;
|
| + }
|
| + const SkPoint* testPt = &xyAtT(test);
|
| + if (*matchPt != *testPt) {
|
| + matchIndex = index;
|
| + moCount = toCount;
|
| + match = test;
|
| + mOther = tOther;
|
| + matchPt = testPt;
|
| + continue;
|
| + }
|
| + int moStart = -1;
|
| + int moEnd = -1;
|
| + double moStartT, moEndT;
|
| + for (int moIndex = 0; moIndex < moCount; ++moIndex) {
|
| + SkOpSpan& moSpan = mOther->fTs[moIndex];
|
| + if (moSpan.fDone) {
|
| + continue;
|
| + }
|
| + if (moSpan.fOther == this) {
|
| + if (moSpan.fOtherT == match->fT) {
|
| + moStart = moIndex;
|
| + moStartT = moSpan.fT;
|
| + }
|
| + continue;
|
| + }
|
| + if (moSpan.fOther == tOther) {
|
| + if (tOther->windValueAt(moSpan.fOtherT) == 0) {
|
| + moStart = -1;
|
| + break;
|
| + }
|
| + SkASSERT(moEnd == -1);
|
| + moEnd = moIndex;
|
| + moEndT = moSpan.fT;
|
| + }
|
| + }
|
| + if (moStart < 0 || moEnd < 0) {
|
| + continue;
|
| + }
|
| + // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test
|
| + if (approximately_equal(moStartT, moEndT)) {
|
| + continue;
|
| + }
|
| + int toStart = -1;
|
| + int toEnd = -1;
|
| + double toStartT, toEndT;
|
| + for (int toIndex = 0; toIndex < toCount; ++toIndex) {
|
| + SkOpSpan& toSpan = tOther->fTs[toIndex];
|
| + if (toSpan.fDone) {
|
| + continue;
|
| + }
|
| + if (toSpan.fOther == this) {
|
| + if (toSpan.fOtherT == test->fT) {
|
| + toStart = toIndex;
|
| + toStartT = toSpan.fT;
|
| + }
|
| + continue;
|
| + }
|
| + if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) {
|
| + if (mOther->windValueAt(toSpan.fOtherT) == 0) {
|
| + moStart = -1;
|
| + break;
|
| + }
|
| + SkASSERT(toEnd == -1);
|
| + toEnd = toIndex;
|
| + toEndT = toSpan.fT;
|
| + }
|
| + }
|
| + // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test
|
| + if (toStart <= 0 || toEnd <= 0) {
|
| + continue;
|
| + }
|
| + if (approximately_equal(toStartT, toEndT)) {
|
| + continue;
|
| + }
|
| + // test to see if the segment between there and here is linear
|
| + if (!mOther->isLinear(moStart, moEnd)
|
| + || !tOther->isLinear(toStart, toEnd)) {
|
| + continue;
|
| + }
|
| + bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1;
|
| + if (flipped) {
|
| + mOther->addTCancel(moStartT, moEndT, *tOther, toEndT, toStartT);
|
| + } else {
|
| + mOther->addTCoincident(moStartT, moEndT, *tOther, toStartT, toEndT);
|
| + }
|
| + }
|
| +}
|
| +
|
| +// FIXME: either:
|
| +// a) mark spans with either end unsortable as done, or
|
| +// b) rewrite findTop / findTopSegment / findTopContour to iterate further
|
| +// when encountering an unsortable span
|
| +
|
| +// OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
|
| +// and use more concise logic like the old edge walker code?
|
| +// FIXME: this needs to deal with coincident edges
|
| +SkOpSegment* SkOpSegment::findTop(int& tIndex, int& endIndex, bool& unsortable, bool onlySortable) {
|
| + // iterate through T intersections and return topmost
|
| + // topmost tangent from y-min to first pt is closer to horizontal
|
| + SkASSERT(!done());
|
| + int firstT = -1;
|
| + /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT);
|
| + if (firstT < 0) {
|
| + unsortable = true;
|
| + firstT = 0;
|
| + while (fTs[firstT].fDone) {
|
| + SkASSERT(firstT < fTs.count());
|
| + ++firstT;
|
| + }
|
| + tIndex = firstT;
|
| + endIndex = nextExactSpan(firstT, 1);
|
| + return this;
|
| + }
|
| + // sort the edges to find the leftmost
|
| + int step = 1;
|
| + int end = nextSpan(firstT, step);
|
| + if (end == -1) {
|
| + step = -1;
|
| + end = nextSpan(firstT, step);
|
| + SkASSERT(end != -1);
|
| + }
|
| + // if the topmost T is not on end, or is three-way or more, find left
|
| + // look for left-ness from tLeft to firstT (matching y of other)
|
| + SkTDArray<SkOpAngle> angles;
|
| + SkASSERT(firstT - end != 0);
|
| + addTwoAngles(end, firstT, angles);
|
| + buildAngles(firstT, angles, true);
|
| + SkTDArray<SkOpAngle*> sorted;
|
| + bool sortable = SortAngles(angles, sorted);
|
| + int first = SK_MaxS32;
|
| + SkScalar top = SK_ScalarMax;
|
| + int count = sorted.count();
|
| + for (int index = 0; index < count; ++index) {
|
| + const SkOpAngle* angle = sorted[index];
|
| + SkOpSegment* next = angle->segment();
|
| + SkPathOpsBounds bounds;
|
| + next->subDivideBounds(angle->end(), angle->start(), bounds);
|
| + if (approximately_greater(top, bounds.fTop)) {
|
| + top = bounds.fTop;
|
| + first = index;
|
| + }
|
| + }
|
| + SkASSERT(first < SK_MaxS32);
|
| +#if DEBUG_SORT // || DEBUG_SWAP_TOP
|
| + sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0, 0);
|
| +#endif
|
| + if (onlySortable && !sortable) {
|
| + unsortable = true;
|
| + return NULL;
|
| + }
|
| + // skip edges that have already been processed
|
| + firstT = first - 1;
|
| + SkOpSegment* leftSegment;
|
| + do {
|
| + if (++firstT == count) {
|
| + firstT = 0;
|
| + }
|
| + const SkOpAngle* angle = sorted[firstT];
|
| + SkASSERT(!onlySortable || !angle->unsortable());
|
| + leftSegment = angle->segment();
|
| + tIndex = angle->end();
|
| + endIndex = angle->start();
|
| + } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone);
|
| + if (leftSegment->verb() >= SkPath::kQuad_Verb) {
|
| + if (!leftSegment->clockwise(tIndex, endIndex)) {
|
| + bool swap = !leftSegment->monotonicInY(tIndex, endIndex)
|
| + && !leftSegment->serpentine(tIndex, endIndex);
|
| + #if DEBUG_SWAP_TOP
|
| + SkDebugf("%s swap=%d serpentine=%d containedByEnds=%d monotonic=%d\n", __FUNCTION__,
|
| + swap,
|
| + leftSegment->serpentine(tIndex, endIndex),
|
| + leftSegment->controlsContainedByEnds(tIndex, endIndex),
|
| + leftSegment->monotonicInY(tIndex, endIndex));
|
| + #endif
|
| + if (swap) {
|
| + // FIXME: I doubt it makes sense to (necessarily) swap if the edge was not the first
|
| + // sorted but merely the first not already processed (i.e., not done)
|
| + SkTSwap(tIndex, endIndex);
|
| + }
|
| + }
|
| + }
|
| + SkASSERT(!leftSegment->fTs[SkMin32(tIndex, endIndex)].fTiny);
|
| + return leftSegment;
|
| +}
|
| +
|
| +// FIXME: not crazy about this
|
| +// when the intersections are performed, the other index is into an
|
| +// incomplete array. As the array grows, the indices become incorrect
|
| +// while the following fixes the indices up again, it isn't smart about
|
| +// skipping segments whose indices are already correct
|
| +// assuming we leave the code that wrote the index in the first place
|
| +void SkOpSegment::fixOtherTIndex() {
|
| + int iCount = fTs.count();
|
| + for (int i = 0; i < iCount; ++i) {
|
| + SkOpSpan& iSpan = fTs[i];
|
| + double oT = iSpan.fOtherT;
|
| + SkOpSegment* other = iSpan.fOther;
|
| + int oCount = other->fTs.count();
|
| + for (int o = 0; o < oCount; ++o) {
|
| + SkOpSpan& oSpan = other->fTs[o];
|
| + if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == iSpan.fT) {
|
| + iSpan.fOtherIndex = o;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +void SkOpSegment::init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) {
|
| + fDoneSpans = 0;
|
| + fOperand = operand;
|
| + fXor = evenOdd;
|
| + fPts = pts;
|
| + fVerb = verb;
|
| +}
|
| +
|
| +void SkOpSegment::initWinding(int start, int end) {
|
| + int local = spanSign(start, end);
|
| + int oppLocal = oppSign(start, end);
|
| + (void) markAndChaseWinding(start, end, local, oppLocal);
|
| + // OPTIMIZATION: the reverse mark and chase could skip the first marking
|
| + (void) markAndChaseWinding(end, start, local, oppLocal);
|
| +}
|
| +
|
| +void SkOpSegment::initWinding(int start, int end, int winding, int oppWinding) {
|
| + int local = spanSign(start, end);
|
| + if (local * winding >= 0) {
|
| + winding += local;
|
| + }
|
| + int oppLocal = oppSign(start, end);
|
| + if (oppLocal * oppWinding >= 0) {
|
| + oppWinding += oppLocal;
|
| + }
|
| + (void) markAndChaseWinding(start, end, winding, oppWinding);
|
| +}
|
| +
|
| +/*
|
| +when we start with a vertical intersect, we try to use the dx to determine if the edge is to
|
| +the left or the right of vertical. This determines if we need to add the span's
|
| +sign or not. However, this isn't enough.
|
| +If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed.
|
| +If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed
|
| +from has the same x direction as this span, the winding should change. If the dx is opposite, then
|
| +the same winding is shared by both.
|
| +*/
|
| +void SkOpSegment::initWinding(int start, int end, double tHit, int winding, SkScalar hitDx,
|
| + int oppWind, SkScalar hitOppDx) {
|
| + SkASSERT(hitDx || !winding);
|
| + SkScalar dx = (*CurveSlopeAtT[fVerb])(fPts, tHit).fX;
|
| + SkASSERT(dx);
|
| + int windVal = windValue(SkMin32(start, end));
|
| +#if DEBUG_WINDING_AT_T
|
| + SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding,
|
| + hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal);
|
| +#endif
|
| + if (!winding) {
|
| + winding = dx < 0 ? windVal : -windVal;
|
| + } else if (winding * dx < 0) {
|
| + int sideWind = winding + (dx < 0 ? windVal : -windVal);
|
| + if (abs(winding) < abs(sideWind)) {
|
| + winding = sideWind;
|
| + }
|
| + }
|
| +#if DEBUG_WINDING_AT_T
|
| + SkDebugf(" winding=%d\n", winding);
|
| +#endif
|
| + SkDEBUGCODE(int oppLocal = oppSign(start, end));
|
| + SkASSERT(hitOppDx || !oppWind || !oppLocal);
|
| + int oppWindVal = oppValue(SkMin32(start, end));
|
| + if (!oppWind) {
|
| + oppWind = dx < 0 ? oppWindVal : -oppWindVal;
|
| + } else if (hitOppDx * dx >= 0) {
|
| + int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal);
|
| + if (abs(oppWind) < abs(oppSideWind)) {
|
| + oppWind = oppSideWind;
|
| + }
|
| + }
|
| + (void) markAndChaseWinding(start, end, winding, oppWind);
|
| +}
|
| +
|
| +bool SkOpSegment::isLinear(int start, int end) const {
|
| + if (fVerb == SkPath::kLine_Verb) {
|
| + return true;
|
| + }
|
| + if (fVerb == SkPath::kQuad_Verb) {
|
| + SkDQuad qPart = SkDQuad::SubDivide(fPts, fTs[start].fT, fTs[end].fT);
|
| + return qPart.isLinear(0, 2);
|
| + } else {
|
| + SkASSERT(fVerb == SkPath::kCubic_Verb);
|
| + SkDCubic cPart = SkDCubic::SubDivide(fPts, fTs[start].fT, fTs[end].fT);
|
| + return cPart.isLinear(0, 3);
|
| + }
|
| +}
|
| +
|
| +// OPTIMIZE: successive calls could start were the last leaves off
|
| +// or calls could specialize to walk forwards or backwards
|
| +bool SkOpSegment::isMissing(double startT) const {
|
| + size_t tCount = fTs.count();
|
| + for (size_t index = 0; index < tCount; ++index) {
|
| + if (approximately_zero(startT - fTs[index].fT)) {
|
| + return false;
|
| + }
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +bool SkOpSegment::isSimple(int end) const {
|
| + int count = fTs.count();
|
| + if (count == 2) {
|
| + return true;
|
| + }
|
| + double t = fTs[end].fT;
|
| + if (approximately_less_than_zero(t)) {
|
| + return !approximately_less_than_zero(fTs[1].fT);
|
| + }
|
| + if (approximately_greater_than_one(t)) {
|
| + return !approximately_greater_than_one(fTs[count - 2].fT);
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// this span is excluded by the winding rule -- chase the ends
|
| +// as long as they are unambiguous to mark connections as done
|
| +// and give them the same winding value
|
| +SkOpSpan* SkOpSegment::markAndChaseDone(const SkOpAngle* angle, int winding) {
|
| + int index = angle->start();
|
| + int endIndex = angle->end();
|
| + return markAndChaseDone(index, endIndex, winding);
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAndChaseDone(int index, int endIndex, int winding) {
|
| + int step = SkSign32(endIndex - index);
|
| + int min = SkMin32(index, endIndex);
|
| + markDone(min, winding);
|
| + SkOpSpan* last;
|
| + SkOpSegment* other = this;
|
| + while ((other = other->nextChase(index, step, min, last))) {
|
| + other->markDone(min, winding);
|
| + }
|
| + return last;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAndChaseDoneBinary(const SkOpAngle* angle, int winding, int oppWinding) {
|
| + int index = angle->start();
|
| + int endIndex = angle->end();
|
| + int step = SkSign32(endIndex - index);
|
| + int min = SkMin32(index, endIndex);
|
| + markDoneBinary(min, winding, oppWinding);
|
| + SkOpSpan* last;
|
| + SkOpSegment* other = this;
|
| + while ((other = other->nextChase(index, step, min, last))) {
|
| + other->markDoneBinary(min, winding, oppWinding);
|
| + }
|
| + return last;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAndChaseDoneBinary(int index, int endIndex) {
|
| + int step = SkSign32(endIndex - index);
|
| + int min = SkMin32(index, endIndex);
|
| + markDoneBinary(min);
|
| + SkOpSpan* last;
|
| + SkOpSegment* other = this;
|
| + while ((other = other->nextChase(index, step, min, last))) {
|
| + if (other->done()) {
|
| + return NULL;
|
| + }
|
| + other->markDoneBinary(min);
|
| + }
|
| + return last;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAndChaseDoneUnary(int index, int endIndex) {
|
| + int step = SkSign32(endIndex - index);
|
| + int min = SkMin32(index, endIndex);
|
| + markDoneUnary(min);
|
| + SkOpSpan* last;
|
| + SkOpSegment* other = this;
|
| + while ((other = other->nextChase(index, step, min, last))) {
|
| + if (other->done()) {
|
| + return NULL;
|
| + }
|
| + other->markDoneUnary(min);
|
| + }
|
| + return last;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAndChaseDoneUnary(const SkOpAngle* angle, int winding) {
|
| + int index = angle->start();
|
| + int endIndex = angle->end();
|
| + return markAndChaseDone(index, endIndex, winding);
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAndChaseWinding(const SkOpAngle* angle, const int winding) {
|
| + int index = angle->start();
|
| + int endIndex = angle->end();
|
| + int step = SkSign32(endIndex - index);
|
| + int min = SkMin32(index, endIndex);
|
| + markWinding(min, winding);
|
| + SkOpSpan* last;
|
| + SkOpSegment* other = this;
|
| + while ((other = other->nextChase(index, step, min, last))) {
|
| + if (other->fTs[min].fWindSum != SK_MinS32) {
|
| + SkASSERT(other->fTs[min].fWindSum == winding);
|
| + return NULL;
|
| + }
|
| + other->markWinding(min, winding);
|
| + }
|
| + return last;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) {
|
| + int min = SkMin32(index, endIndex);
|
| + int step = SkSign32(endIndex - index);
|
| + markWinding(min, winding, oppWinding);
|
| + SkOpSpan* last;
|
| + SkOpSegment* other = this;
|
| + while ((other = other->nextChase(index, step, min, last))) {
|
| + if (other->fTs[min].fWindSum != SK_MinS32) {
|
| + SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].fLoop);
|
| + return NULL;
|
| + }
|
| + other->markWinding(min, winding, oppWinding);
|
| + }
|
| + return last;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAndChaseWinding(const SkOpAngle* angle, int winding, int oppWinding) {
|
| + int start = angle->start();
|
| + int end = angle->end();
|
| + return markAndChaseWinding(start, end, winding, oppWinding);
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAngle(int maxWinding, int sumWinding, bool activeAngle,
|
| + const SkOpAngle* angle) {
|
| + SkASSERT(angle->segment() == this);
|
| + if (UseInnerWinding(maxWinding, sumWinding)) {
|
| + maxWinding = sumWinding;
|
| + }
|
| + SkOpSpan* last;
|
| + if (activeAngle) {
|
| + last = markAndChaseWinding(angle, maxWinding);
|
| + } else {
|
| + last = markAndChaseDoneUnary(angle, maxWinding);
|
| + }
|
| + return last;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markAngle(int maxWinding, int sumWinding, int oppMaxWinding,
|
| + int oppSumWinding, bool activeAngle, const SkOpAngle* angle) {
|
| + SkASSERT(angle->segment() == this);
|
| + if (UseInnerWinding(maxWinding, sumWinding)) {
|
| + maxWinding = sumWinding;
|
| + }
|
| + if (oppMaxWinding != oppSumWinding && UseInnerWinding(oppMaxWinding, oppSumWinding)) {
|
| + oppMaxWinding = oppSumWinding;
|
| + }
|
| + SkOpSpan* last;
|
| + if (activeAngle) {
|
| + last = markAndChaseWinding(angle, maxWinding, oppMaxWinding);
|
| + } else {
|
| + last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding);
|
| + }
|
| + return last;
|
| +}
|
| +
|
| +// FIXME: this should also mark spans with equal (x,y)
|
| +// This may be called when the segment is already marked done. While this
|
| +// wastes time, it shouldn't do any more than spin through the T spans.
|
| +// OPTIMIZATION: abort on first done found (assuming that this code is
|
| +// always called to mark segments done).
|
| +void SkOpSegment::markDone(int index, int winding) {
|
| + // SkASSERT(!done());
|
| + SkASSERT(winding);
|
| + double referenceT = fTs[index].fT;
|
| + int lesser = index;
|
| + while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
| + markOneDone(__FUNCTION__, lesser, winding);
|
| + }
|
| + do {
|
| + markOneDone(__FUNCTION__, index, winding);
|
| + } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
| +}
|
| +
|
| +void SkOpSegment::markDoneBinary(int index, int winding, int oppWinding) {
|
| + // SkASSERT(!done());
|
| + SkASSERT(winding || oppWinding);
|
| + double referenceT = fTs[index].fT;
|
| + int lesser = index;
|
| + while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
| + markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding);
|
| + }
|
| + do {
|
| + markOneDoneBinary(__FUNCTION__, index, winding, oppWinding);
|
| + } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
| +}
|
| +
|
| +void SkOpSegment::markDoneBinary(int index) {
|
| + double referenceT = fTs[index].fT;
|
| + int lesser = index;
|
| + while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
| + markOneDoneBinary(__FUNCTION__, lesser);
|
| + }
|
| + do {
|
| + markOneDoneBinary(__FUNCTION__, index);
|
| + } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
| +}
|
| +
|
| +void SkOpSegment::markDoneUnary(int index, int winding) {
|
| + // SkASSERT(!done());
|
| + SkASSERT(winding);
|
| + double referenceT = fTs[index].fT;
|
| + int lesser = index;
|
| + while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
| + markOneDoneUnary(__FUNCTION__, lesser, winding);
|
| + }
|
| + do {
|
| + markOneDoneUnary(__FUNCTION__, index, winding);
|
| + } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
| +}
|
| +
|
| +void SkOpSegment::markDoneUnary(int index) {
|
| + double referenceT = fTs[index].fT;
|
| + int lesser = index;
|
| + while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
| + markOneDoneUnary(__FUNCTION__, lesser);
|
| + }
|
| + do {
|
| + markOneDoneUnary(__FUNCTION__, index);
|
| + } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
| +}
|
| +
|
| +void SkOpSegment::markOneDone(const char* funName, int tIndex, int winding) {
|
| + SkOpSpan* span = markOneWinding(funName, tIndex, winding);
|
| + if (!span) {
|
| + return;
|
| + }
|
| + span->fDone = true;
|
| + fDoneSpans++;
|
| +}
|
| +
|
| +void SkOpSegment::markOneDoneBinary(const char* funName, int tIndex) {
|
| + SkOpSpan* span = verifyOneWinding(funName, tIndex);
|
| + if (!span) {
|
| + return;
|
| + }
|
| + span->fDone = true;
|
| + fDoneSpans++;
|
| +}
|
| +
|
| +void SkOpSegment::markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) {
|
| + SkOpSpan* span = markOneWinding(funName, tIndex, winding, oppWinding);
|
| + if (!span) {
|
| + return;
|
| + }
|
| + span->fDone = true;
|
| + fDoneSpans++;
|
| +}
|
| +
|
| +void SkOpSegment::markOneDoneUnary(const char* funName, int tIndex) {
|
| + SkOpSpan* span = verifyOneWindingU(funName, tIndex);
|
| + if (!span) {
|
| + return;
|
| + }
|
| + span->fDone = true;
|
| + fDoneSpans++;
|
| +}
|
| +
|
| +void SkOpSegment::markOneDoneUnary(const char* funName, int tIndex, int winding) {
|
| + SkOpSpan* span = markOneWinding(funName, tIndex, winding);
|
| + if (!span) {
|
| + return;
|
| + }
|
| + span->fDone = true;
|
| + fDoneSpans++;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markOneWinding(const char* funName, int tIndex, int winding) {
|
| + SkOpSpan& span = fTs[tIndex];
|
| + if (span.fDone) {
|
| + return NULL;
|
| + }
|
| +#if DEBUG_MARK_DONE
|
| + debugShowNewWinding(funName, span, winding);
|
| +#endif
|
| + SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
|
| +#ifdef SK_DEBUG
|
| + SkASSERT(abs(winding) <= gDebugMaxWindSum);
|
| +#endif
|
| + span.fWindSum = winding;
|
| + return &span;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::markOneWinding(const char* funName, int tIndex, int winding,
|
| + int oppWinding) {
|
| + SkOpSpan& span = fTs[tIndex];
|
| + if (span.fDone) {
|
| + return NULL;
|
| + }
|
| +#if DEBUG_MARK_DONE
|
| + debugShowNewWinding(funName, span, winding, oppWinding);
|
| +#endif
|
| + SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
|
| +#ifdef SK_DEBUG
|
| + SkASSERT(abs(winding) <= gDebugMaxWindSum);
|
| +#endif
|
| + span.fWindSum = winding;
|
| + SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding);
|
| +#ifdef SK_DEBUG
|
| + SkASSERT(abs(oppWinding) <= gDebugMaxWindSum);
|
| +#endif
|
| + span.fOppSum = oppWinding;
|
| + return &span;
|
| +}
|
| +
|
| +// from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order
|
| +bool SkOpSegment::clockwise(int tStart, int tEnd) const {
|
| + SkASSERT(fVerb != SkPath::kLine_Verb);
|
| + SkPoint edge[4];
|
| + subDivide(tStart, tEnd, edge);
|
| + double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].fY);
|
| + if (fVerb == SkPath::kCubic_Verb) {
|
| + SkScalar lesser = SkTMin(edge[0].fY, edge[3].fY);
|
| + if (edge[1].fY < lesser && edge[2].fY < lesser) {
|
| + SkDLine tangent1 = {{ {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1].fY} }};
|
| + SkDLine tangent2 = {{ {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3].fY} }};
|
| + if (SkIntersections::Test(tangent1, tangent2)) {
|
| + SkPoint topPt = cubic_top(fPts, fTs[tStart].fT, fTs[tEnd].fT);
|
| + sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY);
|
| + sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY);
|
| + return sum <= 0;
|
| + }
|
| + }
|
| + }
|
| + for (int idx = 0; idx < fVerb; ++idx){
|
| + sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[idx].fY);
|
| + }
|
| + return sum <= 0;
|
| +}
|
| +
|
| +bool SkOpSegment::monotonicInY(int tStart, int tEnd) const {
|
| + if (fVerb == SkPath::kLine_Verb) {
|
| + return false;
|
| + }
|
| + if (fVerb == SkPath::kQuad_Verb) {
|
| + SkDQuad dst = SkDQuad::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT);
|
| + return dst.monotonicInY();
|
| + }
|
| + SkASSERT(fVerb == SkPath::kCubic_Verb);
|
| + SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT);
|
| + return dst.monotonicInY();
|
| +}
|
| +
|
| +bool SkOpSegment::serpentine(int tStart, int tEnd) const {
|
| + if (fVerb != SkPath::kCubic_Verb) {
|
| + return false;
|
| + }
|
| + SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT);
|
| + return dst.serpentine();
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::verifyOneWinding(const char* funName, int tIndex) {
|
| + SkOpSpan& span = fTs[tIndex];
|
| + if (span.fDone) {
|
| + return NULL;
|
| + }
|
| +#if DEBUG_MARK_DONE
|
| + debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum);
|
| +#endif
|
| + SkASSERT(span.fWindSum != SK_MinS32);
|
| + SkASSERT(span.fOppSum != SK_MinS32);
|
| + return &span;
|
| +}
|
| +
|
| +SkOpSpan* SkOpSegment::verifyOneWindingU(const char* funName, int tIndex) {
|
| + SkOpSpan& span = fTs[tIndex];
|
| + if (span.fDone) {
|
| + return NULL;
|
| + }
|
| +#if DEBUG_MARK_DONE
|
| + debugShowNewWinding(funName, span, span.fWindSum);
|
| +#endif
|
| + SkASSERT(span.fWindSum != SK_MinS32);
|
| + return &span;
|
| +}
|
| +
|
| +// note that just because a span has one end that is unsortable, that's
|
| +// not enough to mark it done. The other end may be sortable, allowing the
|
| +// span to be added.
|
| +// FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends
|
| +void SkOpSegment::markUnsortable(int start, int end) {
|
| + SkOpSpan* span = &fTs[start];
|
| + if (start < end) {
|
| +#if DEBUG_UNSORTABLE
|
| + debugShowNewWinding(__FUNCTION__, *span, 0);
|
| +#endif
|
| + span->fUnsortableStart = true;
|
| + } else {
|
| + --span;
|
| +#if DEBUG_UNSORTABLE
|
| + debugShowNewWinding(__FUNCTION__, *span, 0);
|
| +#endif
|
| + span->fUnsortableEnd = true;
|
| + }
|
| + if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) {
|
| + return;
|
| + }
|
| + span->fDone = true;
|
| + fDoneSpans++;
|
| +}
|
| +
|
| +void SkOpSegment::markWinding(int index, int winding) {
|
| +// SkASSERT(!done());
|
| + SkASSERT(winding);
|
| + double referenceT = fTs[index].fT;
|
| + int lesser = index;
|
| + while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
| + markOneWinding(__FUNCTION__, lesser, winding);
|
| + }
|
| + do {
|
| + markOneWinding(__FUNCTION__, index, winding);
|
| + } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
| +}
|
| +
|
| +void SkOpSegment::markWinding(int index, int winding, int oppWinding) {
|
| +// SkASSERT(!done());
|
| + SkASSERT(winding || oppWinding);
|
| + double referenceT = fTs[index].fT;
|
| + int lesser = index;
|
| + while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
|
| + markOneWinding(__FUNCTION__, lesser, winding, oppWinding);
|
| + }
|
| + do {
|
| + markOneWinding(__FUNCTION__, index, winding, oppWinding);
|
| + } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
|
| +}
|
| +
|
| +void SkOpSegment::matchWindingValue(int tIndex, double t, bool borrowWind) {
|
| + int nextDoorWind = SK_MaxS32;
|
| + int nextOppWind = SK_MaxS32;
|
| + if (tIndex > 0) {
|
| + const SkOpSpan& below = fTs[tIndex - 1];
|
| + if (approximately_negative(t - below.fT)) {
|
| + nextDoorWind = below.fWindValue;
|
| + nextOppWind = below.fOppValue;
|
| + }
|
| + }
|
| + if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) {
|
| + const SkOpSpan& above = fTs[tIndex + 1];
|
| + if (approximately_negative(above.fT - t)) {
|
| + nextDoorWind = above.fWindValue;
|
| + nextOppWind = above.fOppValue;
|
| + }
|
| + }
|
| + if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) {
|
| + const SkOpSpan& below = fTs[tIndex - 1];
|
| + nextDoorWind = below.fWindValue;
|
| + nextOppWind = below.fOppValue;
|
| + }
|
| + if (nextDoorWind != SK_MaxS32) {
|
| + SkOpSpan& newSpan = fTs[tIndex];
|
| + newSpan.fWindValue = nextDoorWind;
|
| + newSpan.fOppValue = nextOppWind;
|
| + if (!nextDoorWind && !nextOppWind && !newSpan.fDone) {
|
| + newSpan.fDone = true;
|
| + ++fDoneSpans;
|
| + }
|
| + }
|
| +}
|
| +
|
| +bool SkOpSegment::moreHorizontal(int index, int endIndex, bool& unsortable) const {
|
| + // find bounds
|
| + SkPathOpsBounds bounds;
|
| + bounds.setPointBounds(xyAtT(index));
|
| + bounds.add(xyAtT(endIndex));
|
| + SkScalar width = bounds.width();
|
| + SkScalar height = bounds.height();
|
| + if (width > height) {
|
| + if (approximately_negative(width)) {
|
| + unsortable = true; // edge is too small to resolve meaningfully
|
| + }
|
| + return false;
|
| + } else {
|
| + if (approximately_negative(height)) {
|
| + unsortable = true; // edge is too small to resolve meaningfully
|
| + }
|
| + return true;
|
| + }
|
| +}
|
| +
|
| +// return span if when chasing, two or more radiating spans are not done
|
| +// OPTIMIZATION: ? multiple spans is detected when there is only one valid
|
| +// candidate and the remaining spans have windValue == 0 (canceled by
|
| +// coincidence). The coincident edges could either be removed altogether,
|
| +// or this code could be more complicated in detecting this case. Worth it?
|
| +bool SkOpSegment::multipleSpans(int end) const {
|
| + return end > 0 && end < fTs.count() - 1;
|
| +}
|
| +
|
| +bool SkOpSegment::nextCandidate(int& start, int& end) const {
|
| + while (fTs[end].fDone) {
|
| + if (fTs[end].fT == 1) {
|
| + return false;
|
| + }
|
| + ++end;
|
| + }
|
| + start = end;
|
| + end = nextExactSpan(start, 1);
|
| + return true;
|
| +}
|
| +
|
| +SkOpSegment* SkOpSegment::nextChase(int& index, const int step, int& min, SkOpSpan*& last) {
|
| + int end = nextExactSpan(index, step);
|
| + SkASSERT(end >= 0);
|
| + if (multipleSpans(end)) {
|
| + last = &fTs[end];
|
| + return NULL;
|
| + }
|
| + const SkOpSpan& endSpan = fTs[end];
|
| + SkOpSegment* other = endSpan.fOther;
|
| + index = endSpan.fOtherIndex;
|
| + SkASSERT(index >= 0);
|
| + int otherEnd = other->nextExactSpan(index, step);
|
| + SkASSERT(otherEnd >= 0);
|
| + min = SkMin32(index, otherEnd);
|
| + return other;
|
| +}
|
| +
|
| +// This has callers for two different situations: one establishes the end
|
| +// of the current span, and one establishes the beginning of the next span
|
| +// (thus the name). When this is looking for the end of the current span,
|
| +// coincidence is found when the beginning Ts contain -step and the end
|
| +// contains step. When it is looking for the beginning of the next, the
|
| +// first Ts found can be ignored and the last Ts should contain -step.
|
| +// OPTIMIZATION: probably should split into two functions
|
| +int SkOpSegment::nextSpan(int from, int step) const {
|
| + const SkOpSpan& fromSpan = fTs[from];
|
| + int count = fTs.count();
|
| + int to = from;
|
| + while (step > 0 ? ++to < count : --to >= 0) {
|
| + const SkOpSpan& span = fTs[to];
|
| + if (approximately_zero(span.fT - fromSpan.fT)) {
|
| + continue;
|
| + }
|
| + return to;
|
| + }
|
| + return -1;
|
| +}
|
| +
|
| +// FIXME
|
| +// this returns at any difference in T, vs. a preset minimum. It may be
|
| +// that all callers to nextSpan should use this instead.
|
| +// OPTIMIZATION splitting this into separate loops for up/down steps
|
| +// would allow using precisely_negative instead of precisely_zero
|
| +int SkOpSegment::nextExactSpan(int from, int step) const {
|
| + const SkOpSpan& fromSpan = fTs[from];
|
| + int count = fTs.count();
|
| + int to = from;
|
| + while (step > 0 ? ++to < count : --to >= 0) {
|
| + const SkOpSpan& span = fTs[to];
|
| + if (precisely_zero(span.fT - fromSpan.fT)) {
|
| + continue;
|
| + }
|
| + return to;
|
| + }
|
| + return -1;
|
| +}
|
| +
|
| +void SkOpSegment::setUpWindings(int index, int endIndex, int& sumMiWinding, int& sumSuWinding,
|
| + int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) {
|
| + int deltaSum = spanSign(index, endIndex);
|
| + int oppDeltaSum = oppSign(index, endIndex);
|
| + if (operand()) {
|
| + maxWinding = sumSuWinding;
|
| + sumWinding = sumSuWinding -= deltaSum;
|
| + oppMaxWinding = sumMiWinding;
|
| + oppSumWinding = sumMiWinding -= oppDeltaSum;
|
| + } else {
|
| + maxWinding = sumMiWinding;
|
| + sumWinding = sumMiWinding -= deltaSum;
|
| + oppMaxWinding = sumSuWinding;
|
| + oppSumWinding = sumSuWinding -= oppDeltaSum;
|
| + }
|
| +}
|
| +
|
| +// This marks all spans unsortable so that this info is available for early
|
| +// exclusion in find top and others. This could be optimized to only mark
|
| +// adjacent spans that unsortable. However, this makes it difficult to later
|
| +// determine starting points for edge detection in find top and the like.
|
| +bool SkOpSegment::SortAngles(SkTDArray<SkOpAngle>& angles, SkTDArray<SkOpAngle*>& angleList) {
|
| + bool sortable = true;
|
| + int angleCount = angles.count();
|
| + int angleIndex;
|
| + angleList.setReserve(angleCount);
|
| + for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
|
| + SkOpAngle& angle = angles[angleIndex];
|
| + *angleList.append() = ∠
|
| + sortable &= !angle.unsortable();
|
| + }
|
| + if (sortable) {
|
| + QSort<SkOpAngle>(angleList.begin(), angleList.end() - 1);
|
| + for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
|
| + if (angles[angleIndex].unsortable()) {
|
| + sortable = false;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + if (!sortable) {
|
| + for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
|
| + SkOpAngle& angle = angles[angleIndex];
|
| + angle.segment()->markUnsortable(angle.start(), angle.end());
|
| + }
|
| + }
|
| + return sortable;
|
| +}
|
| +
|
| +void SkOpSegment::subDivide(int start, int end, SkPoint edge[4]) const {
|
| + edge[0] = fTs[start].fPt;
|
| + edge[fVerb] = fTs[end].fPt;
|
| + if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) {
|
| + SkDPoint sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fVerb].fY }};
|
| + if (fVerb == SkPath::kQuad_Verb) {
|
| + edge[1] = SkDQuad::SubDivide(fPts, sub[0], sub[1], fTs[start].fT,
|
| + fTs[end].fT).asSkPoint();
|
| + } else {
|
| + SkDCubic::SubDivide(fPts, sub[0], sub[1], fTs[start].fT, fTs[end].fT, sub);
|
| + edge[1] = sub[0].asSkPoint();
|
| + edge[2] = sub[1].asSkPoint();
|
| + }
|
| + }
|
| +}
|
| +
|
| +void SkOpSegment::subDivideBounds(int start, int end, SkPathOpsBounds& bounds) const {
|
| + SkPoint edge[4];
|
| + subDivide(start, end, edge);
|
| + (bounds.*SetCurveBounds[fVerb])(edge);
|
| +}
|
| +
|
| +bool SkOpSegment::tiny(const SkOpAngle* angle) const {
|
| + int start = angle->start();
|
| + int end = angle->end();
|
| + const SkOpSpan& mSpan = fTs[SkMin32(start, end)];
|
| + return mSpan.fTiny;
|
| +}
|
| +
|
| +void SkOpSegment::TrackOutside(SkTDArray<double>& outsideTs, double end, double start) {
|
| + int outCount = outsideTs.count();
|
| + if (outCount == 0 || !approximately_negative(end - outsideTs[outCount - 2])) {
|
| + *outsideTs.append() = end;
|
| + *outsideTs.append() = start;
|
| + }
|
| +}
|
| +
|
| +void SkOpSegment::undoneSpan(int& start, int& end) {
|
| + size_t tCount = fTs.count();
|
| + size_t index;
|
| + for (index = 0; index < tCount; ++index) {
|
| + if (!fTs[index].fDone) {
|
| + break;
|
| + }
|
| + }
|
| + SkASSERT(index < tCount - 1);
|
| + start = index;
|
| + double startT = fTs[index].fT;
|
| + while (approximately_negative(fTs[++index].fT - startT))
|
| + SkASSERT(index < tCount);
|
| + SkASSERT(index < tCount);
|
| + end = index;
|
| +}
|
| +
|
| +int SkOpSegment::updateOppWinding(int index, int endIndex) const {
|
| + int lesser = SkMin32(index, endIndex);
|
| + int oppWinding = oppSum(lesser);
|
| + int oppSpanWinding = oppSign(index, endIndex);
|
| + if (oppSpanWinding && UseInnerWinding(oppWinding - oppSpanWinding, oppWinding)
|
| + && oppWinding != SK_MaxS32) {
|
| + oppWinding -= oppSpanWinding;
|
| + }
|
| + return oppWinding;
|
| +}
|
| +
|
| +int SkOpSegment::updateOppWinding(const SkOpAngle* angle) const {
|
| + int startIndex = angle->start();
|
| + int endIndex = angle->end();
|
| + return updateOppWinding(endIndex, startIndex);
|
| +}
|
| +
|
| +int SkOpSegment::updateOppWindingReverse(const SkOpAngle* angle) const {
|
| + int startIndex = angle->start();
|
| + int endIndex = angle->end();
|
| + return updateOppWinding(startIndex, endIndex);
|
| +}
|
| +
|
| +int SkOpSegment::updateWinding(int index, int endIndex) const {
|
| + int lesser = SkMin32(index, endIndex);
|
| + int winding = windSum(lesser);
|
| + int spanWinding = spanSign(index, endIndex);
|
| + if (winding && UseInnerWinding(winding - spanWinding, winding) && winding != SK_MaxS32) {
|
| + winding -= spanWinding;
|
| + }
|
| + return winding;
|
| +}
|
| +
|
| +int SkOpSegment::updateWinding(const SkOpAngle* angle) const {
|
| + int startIndex = angle->start();
|
| + int endIndex = angle->end();
|
| + return updateWinding(endIndex, startIndex);
|
| +}
|
| +
|
| +int SkOpSegment::updateWindingReverse(const SkOpAngle* angle) const {
|
| + int startIndex = angle->start();
|
| + int endIndex = angle->end();
|
| + return updateWinding(startIndex, endIndex);
|
| +}
|
| +
|
| +int SkOpSegment::windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar& dx) const {
|
| + if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard
|
| + return SK_MinS32;
|
| + }
|
| + int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex);
|
| + SkASSERT(winding != SK_MinS32);
|
| + int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex);
|
| +#if DEBUG_WINDING_AT_T
|
| + SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal);
|
| +#endif
|
| + // see if a + change in T results in a +/- change in X (compute x'(T))
|
| + dx = (*CurveSlopeAtT[fVerb])(fPts, tHit).fX;
|
| + if (fVerb > SkPath::kLine_Verb && approximately_zero(dx)) {
|
| + dx = fPts[2].fX - fPts[1].fX - dx;
|
| + }
|
| + if (dx == 0) {
|
| +#if DEBUG_WINDING_AT_T
|
| + SkDebugf(" dx=0 winding=SK_MinS32\n");
|
| +#endif
|
| + return SK_MinS32;
|
| + }
|
| + if (winding * dx > 0) { // if same signs, result is negative
|
| + winding += dx > 0 ? -windVal : windVal;
|
| + }
|
| +#if DEBUG_WINDING_AT_T
|
| + SkDebugf(" dx=%c winding=%d\n", dx > 0 ? '+' : '-', winding);
|
| +#endif
|
| + return winding;
|
| +}
|
| +
|
| +int SkOpSegment::windSum(const SkOpAngle* angle) const {
|
| + int start = angle->start();
|
| + int end = angle->end();
|
| + int index = SkMin32(start, end);
|
| + return windSum(index);
|
| +}
|
| +
|
| +int SkOpSegment::windValue(const SkOpAngle* angle) const {
|
| + int start = angle->start();
|
| + int end = angle->end();
|
| + int index = SkMin32(start, end);
|
| + return windValue(index);
|
| +}
|
| +
|
| +int SkOpSegment::windValueAt(double t) const {
|
| + int count = fTs.count();
|
| + for (int index = 0; index < count; ++index) {
|
| + if (fTs[index].fT == t) {
|
| + return fTs[index].fWindValue;
|
| + }
|
| + }
|
| + SkASSERT(0);
|
| + return 0;
|
| +}
|
| +
|
| +void SkOpSegment::zeroCoincidentOpp(SkOpSpan* oTest, int index) {
|
| + SkOpSpan* const test = &fTs[index];
|
| + SkOpSpan* end = test;
|
| + do {
|
| + end->fOppValue = 0;
|
| + end = &fTs[++index];
|
| + } while (approximately_negative(end->fT - test->fT));
|
| +}
|
| +
|
| +void SkOpSegment::zeroCoincidentOther(SkOpSpan* test, const double tRatio, const double oEndT,
|
| + int oIndex) {
|
| + SkOpSpan* const oTest = &fTs[oIndex];
|
| + SkOpSpan* oEnd = oTest;
|
| + const double startT = test->fT;
|
| + const double oStartT = oTest->fT;
|
| + double otherTMatch = (test->fT - startT) * tRatio + oStartT;
|
| + while (!approximately_negative(oEndT - oEnd->fT)
|
| + && approximately_negative(oEnd->fT - otherTMatch)) {
|
| + oEnd->fOppValue = 0;
|
| + oEnd = &fTs[++oIndex];
|
| + }
|
| +}
|
| +
|
| +void SkOpSegment::zeroSpan(SkOpSpan* span) {
|
| + SkASSERT(span->fWindValue > 0 || span->fOppValue > 0);
|
| + span->fWindValue = 0;
|
| + span->fOppValue = 0;
|
| + SkASSERT(!span->fDone);
|
| + span->fDone = true;
|
| + ++fDoneSpans;
|
| +}
|
| +
|
| +#if DEBUG_SWAP_TOP
|
| +bool SkOpSegment::controlsContainedByEnds(int tStart, int tEnd) const {
|
| + if (fVerb != SkPath::kCubic_Verb) {
|
| + return false;
|
| + }
|
| + SkDCubic dst = SkDCubic::SubDivide(fPts, fTs[tStart].fT, fTs[tEnd].fT);
|
| + return dst.controlsContainedByEnds();
|
| +}
|
| +#endif
|
| +
|
| +#if DEBUG_DUMP
|
| +void SkOpSegment::dump() const {
|
| + const char className[] = "SkOpSegment";
|
| + const int tab = 4;
|
| + for (int i = 0; i < fTs.count(); ++i) {
|
| + SkPoint out = (*CurvePointAtT[fVerb])(fPts, t(i));
|
| + SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
|
| + " otherT=%1.9g windSum=%d\n",
|
| + tab + sizeof(className), className, fID,
|
| + kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
|
| + fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum);
|
| + }
|
| + SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
|
| + tab + sizeof(className), className, fID,
|
| + fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
|
| +}
|
| +#endif
|
| +
|
| +#if DEBUG_CONCIDENT
|
| +// SkASSERT if pair has not already been added
|
| + void SkOpSegment::debugAddTPair(double t, const SkOpSegment& other, double otherT) const {
|
| + for (int i = 0; i < fTs.count(); ++i) {
|
| + if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) {
|
| + return;
|
| + }
|
| + }
|
| + SkASSERT(0);
|
| + }
|
| +#endif
|
| +
|
| +#if DEBUG_WINDING
|
| +void SkOpSegment::debugShowSums() const {
|
| + SkDebugf("%s id=%d (%1.9g,%1.9g %1.9g,%1.9g)", __FUNCTION__, fID,
|
| + fPts[0].fX, fPts[0].fY, fPts[fVerb].fX, fPts[fVerb].fY);
|
| + for (int i = 0; i < fTs.count(); ++i) {
|
| + const SkOpSpan& span = fTs[i];
|
| + SkDebugf(" [t=%1.3g %1.9g,%1.9g w=", span.fT, xAtT(&span), yAtT(&span));
|
| + if (span.fWindSum == SK_MinS32) {
|
| + SkDebugf("?");
|
| + } else {
|
| + SkDebugf("%d", span.fWindSum);
|
| + }
|
| + SkDebugf("]");
|
| + }
|
| + SkDebugf("\n");
|
| +}
|
| +#endif
|
| +
|
| +#if DEBUG_CONCIDENT
|
| +void SkOpSegment::debugShowTs() const {
|
| + SkDebugf("%s id=%d", __FUNCTION__, fID);
|
| + int lastWind = -1;
|
| + int lastOpp = -1;
|
| + double lastT = -1;
|
| + int i;
|
| + for (i = 0; i < fTs.count(); ++i) {
|
| + bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue
|
| + || lastOpp != fTs[i].fOppValue;
|
| + if (change && lastWind >= 0) {
|
| + SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]",
|
| + lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp);
|
| + }
|
| + if (change) {
|
| + SkDebugf(" [o=%d", fTs[i].fOther->fID);
|
| + lastWind = fTs[i].fWindValue;
|
| + lastOpp = fTs[i].fOppValue;
|
| + lastT = fTs[i].fT;
|
| + } else {
|
| + SkDebugf(",%d", fTs[i].fOther->fID);
|
| + }
|
| + }
|
| + if (i <= 0) {
|
| + return;
|
| + }
|
| + SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]",
|
| + lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp);
|
| + if (fOperand) {
|
| + SkDebugf(" operand");
|
| + }
|
| + if (done()) {
|
| + SkDebugf(" done");
|
| + }
|
| + SkDebugf("\n");
|
| +}
|
| +#endif
|
| +
|
| +#if DEBUG_ACTIVE_SPANS
|
| +void SkOpSegment::debugShowActiveSpans() const {
|
| + if (done()) {
|
| + return;
|
| + }
|
| +#if DEBUG_ACTIVE_SPANS_SHORT_FORM
|
| + int lastId = -1;
|
| + double lastT = -1;
|
| +#endif
|
| + for (int i = 0; i < fTs.count(); ++i) {
|
| + SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther->
|
| + fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]);
|
| + if (fTs[i].fDone) {
|
| + continue;
|
| + }
|
| +#if DEBUG_ACTIVE_SPANS_SHORT_FORM
|
| + if (lastId == fID && lastT == fTs[i].fT) {
|
| + continue;
|
| + }
|
| + lastId = fID;
|
| + lastT = fTs[i].fT;
|
| +#endif
|
| + SkDebugf("%s id=%d", __FUNCTION__, fID);
|
| + SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
|
| + for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
|
| + SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
|
| + }
|
| + const SkOpSpan* span = &fTs[i];
|
| + SkDebugf(") t=%1.9g (%1.9g,%1.9g)", fTs[i].fT,
|
| + xAtT(span), yAtT(span));
|
| + int iEnd = i + 1;
|
| + while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].fT)) {
|
| + ++iEnd;
|
| + }
|
| + SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT);
|
| + const SkOpSegment* other = fTs[i].fOther;
|
| + SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=",
|
| + other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex);
|
| + if (fTs[i].fWindSum == SK_MinS32) {
|
| + SkDebugf("?");
|
| + } else {
|
| + SkDebugf("%d", fTs[i].fWindSum);
|
| + }
|
| + SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue);
|
| + }
|
| +}
|
| +
|
| +// This isn't useful yet -- but leaving it in for now in case i think of something
|
| +// to use it for
|
| +void SkOpSegment::validateActiveSpans() const {
|
| + if (done()) {
|
| + return;
|
| + }
|
| + int tCount = fTs.count();
|
| + for (int index = 0; index < tCount; ++index) {
|
| + if (fTs[index].fDone) {
|
| + continue;
|
| + }
|
| + // count number of connections which are not done
|
| + int first = index;
|
| + double baseT = fTs[index].fT;
|
| + while (first > 0 && approximately_equal(fTs[first - 1].fT, baseT)) {
|
| + --first;
|
| + }
|
| + int last = index;
|
| + while (last < tCount - 1 && approximately_equal(fTs[last + 1].fT, baseT)) {
|
| + ++last;
|
| + }
|
| + int connections = 0;
|
| + connections += first > 0 && !fTs[first - 1].fDone;
|
| + for (int test = first; test <= last; ++test) {
|
| + connections += !fTs[test].fDone;
|
| + const SkOpSegment* other = fTs[test].fOther;
|
| + int oIndex = fTs[test].fOtherIndex;
|
| + connections += !other->fTs[oIndex].fDone;
|
| + connections += oIndex > 0 && !other->fTs[oIndex - 1].fDone;
|
| + }
|
| + // SkASSERT(!(connections & 1));
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +
|
| +#if DEBUG_MARK_DONE || DEBUG_UNSORTABLE
|
| +void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding) {
|
| + const SkPoint& pt = xyAtT(&span);
|
| + SkDebugf("%s id=%d", fun, fID);
|
| + SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
|
| + for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
|
| + SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
|
| + }
|
| + SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther->
|
| + fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]);
|
| + SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=",
|
| + span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY,
|
| + (&span)[1].fT, winding);
|
| + if (span.fWindSum == SK_MinS32) {
|
| + SkDebugf("?");
|
| + } else {
|
| + SkDebugf("%d", span.fWindSum);
|
| + }
|
| + SkDebugf(" windValue=%d\n", span.fWindValue);
|
| +}
|
| +
|
| +void SkOpSegment::debugShowNewWinding(const char* fun, const SkOpSpan& span, int winding,
|
| + int oppWinding) {
|
| + const SkPoint& pt = xyAtT(&span);
|
| + SkDebugf("%s id=%d", fun, fID);
|
| + SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
|
| + for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
|
| + SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
|
| + }
|
| + SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther->
|
| + fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]);
|
| + SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSum=%d oppSum=",
|
| + span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY,
|
| + (&span)[1].fT, winding, oppWinding);
|
| + if (span.fOppSum == SK_MinS32) {
|
| + SkDebugf("?");
|
| + } else {
|
| + SkDebugf("%d", span.fOppSum);
|
| + }
|
| + SkDebugf(" windSum=");
|
| + if (span.fWindSum == SK_MinS32) {
|
| + SkDebugf("?");
|
| + } else {
|
| + SkDebugf("%d", span.fWindSum);
|
| + }
|
| + SkDebugf(" windValue=%d\n", span.fWindValue);
|
| +}
|
| +#endif
|
| +
|
| +#if DEBUG_SORT || DEBUG_SWAP_TOP
|
| +void SkOpSegment::debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first,
|
| + const int contourWinding, const int oppContourWinding) const {
|
| + if (--gDebugSortCount < 0) {
|
| + return;
|
| + }
|
| + SkASSERT(angles[first]->segment() == this);
|
| + SkASSERT(angles.count() > 1);
|
| + int lastSum = contourWinding;
|
| + int oppLastSum = oppContourWinding;
|
| + const SkOpAngle* firstAngle = angles[first];
|
| + int windSum = lastSum - spanSign(firstAngle);
|
| + int oppoSign = oppSign(firstAngle);
|
| + int oppWindSum = oppLastSum - oppoSign;
|
| + #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x##Str, "?"); \
|
| + else snprintf(x##Str, sizeof(x##Str), "%d", x)
|
| + WIND_AS_STRING(contourWinding);
|
| + WIND_AS_STRING(oppContourWinding);
|
| + SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun, __FUNCTION__,
|
| + contourWindingStr, oppContourWindingStr, spanSign(angles[first]));
|
| + int index = first;
|
| + bool firstTime = true;
|
| + do {
|
| + const SkOpAngle& angle = *angles[index];
|
| + const SkOpSegment& segment = *angle.segment();
|
| + int start = angle.start();
|
| + int end = angle.end();
|
| + const SkOpSpan& sSpan = segment.fTs[start];
|
| + const SkOpSpan& eSpan = segment.fTs[end];
|
| + const SkOpSpan& mSpan = segment.fTs[SkMin32(start, end)];
|
| + bool opp = segment.fOperand ^ fOperand;
|
| + if (!firstTime) {
|
| + oppoSign = segment.oppSign(&angle);
|
| + if (opp) {
|
| + oppLastSum = oppWindSum;
|
| + oppWindSum -= segment.spanSign(&angle);
|
| + if (oppoSign) {
|
| + lastSum = windSum;
|
| + windSum -= oppoSign;
|
| + }
|
| + } else {
|
| + lastSum = windSum;
|
| + windSum -= segment.spanSign(&angle);
|
| + if (oppoSign) {
|
| + oppLastSum = oppWindSum;
|
| + oppWindSum -= oppoSign;
|
| + }
|
| + }
|
| + }
|
| + SkDebugf("%s [%d] %s", __FUNCTION__, index,
|
| + angle.unsortable() ? "*** UNSORTABLE *** " : "");
|
| + #if COMPACT_DEBUG_SORT
|
| + SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)",
|
| + segment.fID, kLVerbStr[segment.fVerb],
|
| + start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end,
|
| + segment.xAtT(&eSpan), segment.yAtT(&eSpan));
|
| + #else
|
| + switch (segment.fVerb) {
|
| + case SkPath::kLine_Verb:
|
| + SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts));
|
| + break;
|
| + case SkPath::kQuad_Verb:
|
| + SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts));
|
| + break;
|
| + case SkPath::kCubic_Verb:
|
| + SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts));
|
| + break;
|
| + default:
|
| + SkASSERT(0);
|
| + }
|
| + SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT);
|
| + #endif
|
| + SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWindValue);
|
| + #ifdef SK_DEBUG
|
| + winding_printf(mSpan.fWindSum);
|
| + #endif
|
| + int last, wind;
|
| + if (opp) {
|
| + last = oppLastSum;
|
| + wind = oppWindSum;
|
| + } else {
|
| + last = lastSum;
|
| + wind = windSum;
|
| + }
|
| + bool useInner = valid_wind(last) && valid_wind(wind) && UseInnerWinding(last, wind);
|
| + WIND_AS_STRING(last);
|
| + WIND_AS_STRING(wind);
|
| + WIND_AS_STRING(lastSum);
|
| + WIND_AS_STRING(oppLastSum);
|
| + WIND_AS_STRING(windSum);
|
| + WIND_AS_STRING(oppWindSum);
|
| + #undef WIND_AS_STRING
|
| + if (!oppoSign) {
|
| + SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windStr : lastStr);
|
| + } else {
|
| + SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr : oppLastSumStr,
|
| + opp ? windSumStr : oppWindSumStr);
|
| + }
|
| + SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp);
|
| +#if false && DEBUG_ANGLE
|
| + angle.debugShow(segment.xyAtT(&sSpan));
|
| +#endif
|
| + ++index;
|
| + if (index == angles.count()) {
|
| + index = 0;
|
| + }
|
| + if (firstTime) {
|
| + firstTime = false;
|
| + }
|
| + } while (index != first);
|
| +}
|
| +
|
| +void SkOpSegment::debugShowSort(const char* fun, const SkTDArray<SkOpAngle*>& angles, int first) {
|
| + const SkOpAngle* firstAngle = angles[first];
|
| + const SkOpSegment* segment = firstAngle->segment();
|
| + int winding = segment->updateWinding(firstAngle);
|
| + int oppWinding = segment->updateOppWinding(firstAngle);
|
| + debugShowSort(fun, angles, first, winding, oppWinding);
|
| +}
|
| +
|
| +#endif
|
| +
|
| +#if DEBUG_SHOW_WINDING
|
| +int SkOpSegment::debugShowWindingValues(int slotCount, int ofInterest) const {
|
| + if (!(1 << fID & ofInterest)) {
|
| + return 0;
|
| + }
|
| + int sum = 0;
|
| + SkTDArray<char> slots;
|
| + slots.setCount(slotCount * 2);
|
| + memset(slots.begin(), ' ', slotCount * 2);
|
| + for (int i = 0; i < fTs.count(); ++i) {
|
| + // if (!(1 << fTs[i].fOther->fID & ofInterest)) {
|
| + // continue;
|
| + // }
|
| + sum += fTs[i].fWindValue;
|
| + slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue);
|
| + sum += fTs[i].fOppValue;
|
| + slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue);
|
| + }
|
| + SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount,
|
| + slots.begin() + slotCount);
|
| + return sum;
|
| +}
|
| +#endif
|
|
|