| Index: src/core/SkSharedMutex.cpp
|
| diff --git a/src/core/SkSharedMutex.cpp b/src/core/SkSharedMutex.cpp
|
| index 05e434c35b8f259b7e645e5b4119ec2d2b8d1f58..10fc03fb244a31b17b753e20300b343616b744fd 100644
|
| --- a/src/core/SkSharedMutex.cpp
|
| +++ b/src/core/SkSharedMutex.cpp
|
| @@ -66,144 +66,293 @@ void AnnotateRWLockReleased(
|
|
|
| #endif
|
|
|
| -// The fQueueCounts fields holds many counts in an int32_t in order to make managing them atomic.
|
| -// These three counts must be the same size, so each gets 10 bits. The 10 bits represent
|
| -// the log of the count which is 1024.
|
| -//
|
| -// The three counts held in fQueueCounts are:
|
| -// * Shared - the number of shared lock holders currently running.
|
| -// * WaitingExclusive - the number of threads waiting for an exclusive lock.
|
| -// * WaitingShared - the number of threads waiting to run while waiting for an exclusive thread
|
| -// to finish.
|
| -static const int kLogThreadCount = 10;
|
| -
|
| -enum {
|
| - kSharedOffset = (0 * kLogThreadCount),
|
| - kWaitingExlusiveOffset = (1 * kLogThreadCount),
|
| - kWaitingSharedOffset = (2 * kLogThreadCount),
|
| - kSharedMask = ((1 << kLogThreadCount) - 1) << kSharedOffset,
|
| - kWaitingExclusiveMask = ((1 << kLogThreadCount) - 1) << kWaitingExlusiveOffset,
|
| - kWaitingSharedMask = ((1 << kLogThreadCount) - 1) << kWaitingSharedOffset,
|
| -};
|
| -
|
| -SkSharedMutex::SkSharedMutex() : fQueueCounts(0) { ANNOTATE_RWLOCK_CREATE(this); }
|
| -SkSharedMutex::~SkSharedMutex() { ANNOTATE_RWLOCK_DESTROY(this); }
|
| -void SkSharedMutex::acquire() {
|
| - // Increment the count of exclusive queue waiters.
|
| - int32_t oldQueueCounts = fQueueCounts.fetch_add(1 << kWaitingExlusiveOffset,
|
| - sk_memory_order_acquire);
|
| -
|
| - // If there are no other exclusive waiters and no shared threads are running then run
|
| - // else wait.
|
| - if ((oldQueueCounts & kWaitingExclusiveMask) > 0 || (oldQueueCounts & kSharedMask) > 0) {
|
| - fExclusiveQueue.wait();
|
| +#ifdef SK_DEBUG
|
| +
|
| + #include "SkTDArray.h"
|
| + #ifdef SK_BUILD_FOR_WIN
|
| + #include <windows.h>
|
| + static int64_t get_thread_id() { return GetCurrentThreadId(); }
|
| + #else
|
| + #include <pthread.h>
|
| + static int64_t get_thread_id() { return (int64_t)pthread_self(); }
|
| + #endif
|
| +
|
| + typedef int64_t ThreadID;
|
| +
|
| + class SkSharedMutex::ThreadIDSet {
|
| + public:
|
| + // Returns true if threadID is in the set.
|
| + bool find(ThreadID threadID) const {
|
| + for (auto& t : fThreadIDs) {
|
| + if (t == threadID) return true;
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + // Returns true if did not already exist.
|
| + bool tryAdd(ThreadID threadID) {
|
| + for (auto& t : fThreadIDs) {
|
| + if (t == threadID) return false;
|
| + }
|
| + fThreadIDs.append(1, &threadID);
|
| + return true;
|
| + }
|
| + // Returns true if already exists in Set.
|
| + bool tryRemove(ThreadID threadID) {
|
| + for (int i = 0; i < fThreadIDs.count(); ++i) {
|
| + if (fThreadIDs[i] == threadID) {
|
| + fThreadIDs.remove(i);
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| + }
|
| +
|
| + void swap(ThreadIDSet& other) {
|
| + fThreadIDs.swap(other.fThreadIDs);
|
| + }
|
| +
|
| + int count() const {
|
| + return fThreadIDs.count();
|
| + }
|
| +
|
| + private:
|
| + SkTDArray<ThreadID> fThreadIDs;
|
| + };
|
| +
|
| + SkSharedMutex::SkSharedMutex()
|
| + : fCurrentShared(new ThreadIDSet)
|
| + , fWaitingExclusive(new ThreadIDSet)
|
| + , fWaitingShared(new ThreadIDSet){
|
| + ANNOTATE_RWLOCK_CREATE(this);
|
| }
|
| - ANNOTATE_RWLOCK_ACQUIRED(this, 1);
|
| -}
|
|
|
| -void SkSharedMutex::release() {
|
| - ANNOTATE_RWLOCK_RELEASED(this, 1);
|
| + SkSharedMutex::~SkSharedMutex() { ANNOTATE_RWLOCK_DESTROY(this); }
|
|
|
| - int32_t oldQueueCounts = fQueueCounts.load(sk_memory_order_relaxed);
|
| - int32_t waitingShared;
|
| - int32_t newQueueCounts;
|
| - do {
|
| - newQueueCounts = oldQueueCounts;
|
| + void SkSharedMutex::acquire() {
|
| + ThreadID threadID(get_thread_id());
|
| + int currentSharedCount;
|
| + int waitingExclusiveCount;
|
| + {
|
| + SkAutoMutexAcquire l(&fMu);
|
|
|
| - // Decrement exclusive waiters.
|
| - newQueueCounts -= 1 << kWaitingExlusiveOffset;
|
| + if (!fWaitingExclusive->tryAdd(threadID)) {
|
| + SkDEBUGFAILF("Thread %lx already has an exclusive lock\n", threadID);
|
| + }
|
|
|
| - // The number of threads waiting to acquire a shared lock.
|
| - waitingShared = (oldQueueCounts & kWaitingSharedMask) >> kWaitingSharedOffset;
|
| + currentSharedCount = fCurrentShared->count();
|
| + waitingExclusiveCount = fWaitingExclusive->count();
|
| + }
|
|
|
| - // If there are any move the counts of all the shared waiters to actual shared. They are
|
| - // going to run next.
|
| - if (waitingShared > 0) {
|
| + if (currentSharedCount > 0 || waitingExclusiveCount > 1) {
|
| + fExclusiveQueue.wait();
|
| + }
|
|
|
| - // Set waiting shared to zero.
|
| - newQueueCounts &= ~kWaitingSharedMask;
|
| + ANNOTATE_RWLOCK_ACQUIRED(this, 1);
|
| + }
|
|
|
| - // Because this is the exclusive release, then there are zero readers. So, the bits
|
| - // for shared locks should be zero. Since those bits are zero, we can just |= in the
|
| - // waitingShared count instead of clearing with an &= and then |= the count.
|
| - newQueueCounts |= waitingShared << kSharedOffset;
|
| + // Implementation Detail:
|
| + // The shared threads need two seperate queues to keep the threads that were added after the
|
| + // exclusive lock separate from the threads added before.
|
| + void SkSharedMutex::release() {
|
| + ANNOTATE_RWLOCK_RELEASED(this, 1);
|
| + ThreadID threadID(get_thread_id());
|
| + int sharedWaitingCount;
|
| + int exclusiveWaitingCount;
|
| + int sharedQueueSelect;
|
| + {
|
| + SkAutoMutexAcquire l(&fMu);
|
| + SkASSERT(0 == fCurrentShared->count());
|
| + if (!fWaitingExclusive->tryRemove(threadID)) {
|
| + SkDEBUGFAILF("Thread %lx did not have the lock held.\n", threadID);
|
| + }
|
| + exclusiveWaitingCount = fWaitingExclusive->count();
|
| + sharedWaitingCount = fWaitingShared->count();
|
| + fWaitingShared.swap(fCurrentShared);
|
| + sharedQueueSelect = fSharedQueueSelect;
|
| + if (sharedWaitingCount > 0) {
|
| + fSharedQueueSelect = 1 - fSharedQueueSelect;
|
| + }
|
| }
|
|
|
| - } while (!fQueueCounts.compare_exchange(&oldQueueCounts, newQueueCounts,
|
| - sk_memory_order_release, sk_memory_order_relaxed));
|
| + if (sharedWaitingCount > 0) {
|
| + fSharedQueue[sharedQueueSelect].signal(sharedWaitingCount);
|
| + } else if (exclusiveWaitingCount > 0) {
|
| + fExclusiveQueue.signal();
|
| + }
|
| + }
|
|
|
| - if (waitingShared > 0) {
|
| - // Run all the shared.
|
| - fSharedQueue.signal(waitingShared);
|
| - } else if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
|
| - // Run a single exclusive waiter.
|
| - fExclusiveQueue.signal();
|
| + void SkSharedMutex::assertHeld() const {
|
| + ThreadID threadID(get_thread_id());
|
| + SkAutoMutexAcquire l(&fMu);
|
| + SkASSERT(0 == fCurrentShared->count());
|
| + SkASSERT(fWaitingExclusive->find(threadID));
|
| }
|
| -}
|
|
|
| -#ifdef SK_DEBUG
|
| -void SkSharedMutex::assertHeld() const {
|
| - int32_t queueCounts = fQueueCounts.load(sk_memory_order_relaxed);
|
| - // These are very loose asserts about the mutex being held exclusively.
|
| - SkASSERTF(0 == (queueCounts & kSharedMask),
|
| - "running shared: %d, exclusive: %d, waiting shared: %d",
|
| - (queueCounts & kSharedMask) >> kSharedOffset,
|
| - (queueCounts & kWaitingExclusiveMask) >> kWaitingExlusiveOffset,
|
| - (queueCounts & kWaitingSharedMask) >> kWaitingSharedOffset);
|
| - SkASSERTF((queueCounts & kWaitingExclusiveMask) > 0,
|
| - "running shared: %d, exclusive: %d, waiting shared: %d",
|
| - (queueCounts & kSharedMask) >> kSharedOffset,
|
| - (queueCounts & kWaitingExclusiveMask) >> kWaitingExlusiveOffset,
|
| - (queueCounts & kWaitingSharedMask) >> kWaitingSharedOffset);
|
| -}
|
| -#endif
|
| + void SkSharedMutex::acquireShared() {
|
| + ThreadID threadID(get_thread_id());
|
| + int exclusiveWaitingCount;
|
| + int sharedQueueSelect;
|
| + {
|
| + SkAutoMutexAcquire l(&fMu);
|
| + exclusiveWaitingCount = fWaitingExclusive->count();
|
| + if (exclusiveWaitingCount > 0) {
|
| + if (!fWaitingShared->tryAdd(threadID)) {
|
| + SkDEBUGFAILF("Thread %lx was already waiting!\n", threadID);
|
| + }
|
| + } else {
|
| + if (!fCurrentShared->tryAdd(threadID)) {
|
| + SkDEBUGFAILF("Thread %lx already holds a shared lock!\n", threadID);
|
| + }
|
| + }
|
| + sharedQueueSelect = fSharedQueueSelect;
|
| + }
|
|
|
| -void SkSharedMutex::acquireShared() {
|
| - int32_t oldQueueCounts = fQueueCounts.load(sk_memory_order_relaxed);
|
| - int32_t newQueueCounts;
|
| - do {
|
| - newQueueCounts = oldQueueCounts;
|
| - // If there are waiting exclusives then this shared lock waits else it runs.
|
| - if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
|
| - newQueueCounts += 1 << kWaitingSharedOffset;
|
| - } else {
|
| - newQueueCounts += 1 << kSharedOffset;
|
| + if (exclusiveWaitingCount > 0) {
|
| + fSharedQueue[sharedQueueSelect].wait();
|
| }
|
| - } while (!fQueueCounts.compare_exchange(&oldQueueCounts, newQueueCounts,
|
| - sk_memory_order_acquire, sk_memory_order_relaxed));
|
|
|
| - // If there are waiting exclusives, then this shared waits until after it runs.
|
| - if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
|
| - fSharedQueue.wait();
|
| + ANNOTATE_RWLOCK_ACQUIRED(this, 0);
|
| + }
|
| +
|
| + void SkSharedMutex::releaseShared() {
|
| + ANNOTATE_RWLOCK_RELEASED(this, 0);
|
| + ThreadID threadID(get_thread_id());
|
| +
|
| + int currentSharedCount;
|
| + int waitingExclusiveCount;
|
| + {
|
| + SkAutoMutexAcquire l(&fMu);
|
| + if (!fCurrentShared->tryRemove(threadID)) {
|
| + SkDEBUGFAILF("Thread %lx does not hold a shared lock.\n", threadID);
|
| + }
|
| + currentSharedCount = fCurrentShared->count();
|
| + waitingExclusiveCount = fWaitingExclusive->count();
|
| + }
|
| +
|
| + if (0 == currentSharedCount && waitingExclusiveCount > 0) {
|
| + fExclusiveQueue.signal();
|
| + }
|
| }
|
| - ANNOTATE_RWLOCK_ACQUIRED(this, 0);
|
| -
|
| -}
|
|
|
| -void SkSharedMutex::releaseShared() {
|
| - ANNOTATE_RWLOCK_RELEASED(this, 0);
|
| + void SkSharedMutex::assertHeldShared() const {
|
| + ThreadID threadID(get_thread_id());
|
| + SkAutoMutexAcquire l(&fMu);
|
| + SkASSERT(fCurrentShared->find(threadID));
|
| + }
|
|
|
| - // Decrement the shared count.
|
| - int32_t oldQueueCounts = fQueueCounts.fetch_sub(1 << kSharedOffset,
|
| - sk_memory_order_release);
|
| +#else
|
|
|
| - // If shared count is going to zero (because the old count == 1) and there are exclusive
|
| - // waiters, then run a single exclusive waiter.
|
| - if (((oldQueueCounts & kSharedMask) >> kSharedOffset) == 1
|
| - && (oldQueueCounts & kWaitingExclusiveMask) > 0) {
|
| - fExclusiveQueue.signal();
|
| + // The fQueueCounts fields holds many counts in an int32_t in order to make managing them atomic.
|
| + // These three counts must be the same size, so each gets 10 bits. The 10 bits represent
|
| + // the log of the count which is 1024.
|
| + //
|
| + // The three counts held in fQueueCounts are:
|
| + // * Shared - the number of shared lock holders currently running.
|
| + // * WaitingExclusive - the number of threads waiting for an exclusive lock.
|
| + // * WaitingShared - the number of threads waiting to run while waiting for an exclusive thread
|
| + // to finish.
|
| + static const int kLogThreadCount = 10;
|
| +
|
| + enum {
|
| + kSharedOffset = (0 * kLogThreadCount),
|
| + kWaitingExlusiveOffset = (1 * kLogThreadCount),
|
| + kWaitingSharedOffset = (2 * kLogThreadCount),
|
| + kSharedMask = ((1 << kLogThreadCount) - 1) << kSharedOffset,
|
| + kWaitingExclusiveMask = ((1 << kLogThreadCount) - 1) << kWaitingExlusiveOffset,
|
| + kWaitingSharedMask = ((1 << kLogThreadCount) - 1) << kWaitingSharedOffset,
|
| + };
|
| +
|
| + SkSharedMutex::SkSharedMutex() : fQueueCounts(0) { ANNOTATE_RWLOCK_CREATE(this); }
|
| + SkSharedMutex::~SkSharedMutex() { ANNOTATE_RWLOCK_DESTROY(this); }
|
| + void SkSharedMutex::acquire() {
|
| + // Increment the count of exclusive queue waiters.
|
| + int32_t oldQueueCounts = fQueueCounts.fetch_add(1 << kWaitingExlusiveOffset,
|
| + sk_memory_order_acquire);
|
| +
|
| + // If there are no other exclusive waiters and no shared threads are running then run
|
| + // else wait.
|
| + if ((oldQueueCounts & kWaitingExclusiveMask) > 0 || (oldQueueCounts & kSharedMask) > 0) {
|
| + fExclusiveQueue.wait();
|
| + }
|
| + ANNOTATE_RWLOCK_ACQUIRED(this, 1);
|
| }
|
| -}
|
|
|
| -#ifdef SK_DEBUG
|
| -void SkSharedMutex::assertHeldShared() const {
|
| - int32_t queueCounts = fQueueCounts.load(sk_memory_order_relaxed);
|
| - // A very loose assert about the mutex being shared.
|
| - SkASSERTF((queueCounts & kSharedMask) > 0,
|
| - "running shared: %d, exclusive: %d, waiting shared: %d",
|
| - (queueCounts & kSharedMask) >> kSharedOffset,
|
| - (queueCounts & kWaitingExclusiveMask) >> kWaitingExlusiveOffset,
|
| - (queueCounts & kWaitingSharedMask) >> kWaitingSharedOffset);
|
| -}
|
| + void SkSharedMutex::release() {
|
| + ANNOTATE_RWLOCK_RELEASED(this, 1);
|
| +
|
| + int32_t oldQueueCounts = fQueueCounts.load(sk_memory_order_relaxed);
|
| + int32_t waitingShared;
|
| + int32_t newQueueCounts;
|
| + do {
|
| + newQueueCounts = oldQueueCounts;
|
| +
|
| + // Decrement exclusive waiters.
|
| + newQueueCounts -= 1 << kWaitingExlusiveOffset;
|
| +
|
| + // The number of threads waiting to acquire a shared lock.
|
| + waitingShared = (oldQueueCounts & kWaitingSharedMask) >> kWaitingSharedOffset;
|
| +
|
| + // If there are any move the counts of all the shared waiters to actual shared. They are
|
| + // going to run next.
|
| + if (waitingShared > 0) {
|
| +
|
| + // Set waiting shared to zero.
|
| + newQueueCounts &= ~kWaitingSharedMask;
|
| +
|
| + // Because this is the exclusive release, then there are zero readers. So, the bits
|
| + // for shared locks should be zero. Since those bits are zero, we can just |= in the
|
| + // waitingShared count instead of clearing with an &= and then |= the count.
|
| + newQueueCounts |= waitingShared << kSharedOffset;
|
| + }
|
| +
|
| + } while (!fQueueCounts.compare_exchange(&oldQueueCounts, newQueueCounts,
|
| + sk_memory_order_release, sk_memory_order_relaxed));
|
| +
|
| + if (waitingShared > 0) {
|
| + // Run all the shared.
|
| + fSharedQueue.signal(waitingShared);
|
| + } else if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
|
| + // Run a single exclusive waiter.
|
| + fExclusiveQueue.signal();
|
| + }
|
| + }
|
| +
|
| + void SkSharedMutex::acquireShared() {
|
| + int32_t oldQueueCounts = fQueueCounts.load(sk_memory_order_relaxed);
|
| + int32_t newQueueCounts;
|
| + do {
|
| + newQueueCounts = oldQueueCounts;
|
| + // If there are waiting exclusives then this shared lock waits else it runs.
|
| + if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
|
| + newQueueCounts += 1 << kWaitingSharedOffset;
|
| + } else {
|
| + newQueueCounts += 1 << kSharedOffset;
|
| + }
|
| + } while (!fQueueCounts.compare_exchange(&oldQueueCounts, newQueueCounts,
|
| + sk_memory_order_acquire, sk_memory_order_relaxed));
|
| +
|
| + // If there are waiting exclusives, then this shared waits until after it runs.
|
| + if ((newQueueCounts & kWaitingExclusiveMask) > 0) {
|
| + fSharedQueue.wait();
|
| + }
|
| + ANNOTATE_RWLOCK_ACQUIRED(this, 0);
|
| +
|
| + }
|
| +
|
| + void SkSharedMutex::releaseShared() {
|
| + ANNOTATE_RWLOCK_RELEASED(this, 0);
|
| +
|
| + // Decrement the shared count.
|
| + int32_t oldQueueCounts = fQueueCounts.fetch_sub(1 << kSharedOffset,
|
| + sk_memory_order_release);
|
| +
|
| + // If shared count is going to zero (because the old count == 1) and there are exclusive
|
| + // waiters, then run a single exclusive waiter.
|
| + if (((oldQueueCounts & kSharedMask) >> kSharedOffset) == 1
|
| + && (oldQueueCounts & kWaitingExclusiveMask) > 0) {
|
| + fExclusiveQueue.signal();
|
| + }
|
| + }
|
|
|
| #endif
|
|
|