Index: src/gpu/GrAAConvexPathRenderer.cpp |
diff --git a/src/gpu/GrAAConvexPathRenderer.cpp b/src/gpu/GrAAConvexPathRenderer.cpp |
deleted file mode 100644 |
index 6023f188df8535127180c8480227068d59315d13..0000000000000000000000000000000000000000 |
--- a/src/gpu/GrAAConvexPathRenderer.cpp |
+++ /dev/null |
@@ -1,1022 +0,0 @@ |
- |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "GrAAConvexPathRenderer.h" |
- |
-#include "GrAAConvexTessellator.h" |
-#include "GrBatchFlushState.h" |
-#include "GrBatchTest.h" |
-#include "GrCaps.h" |
-#include "GrContext.h" |
-#include "GrDefaultGeoProcFactory.h" |
-#include "GrGeometryProcessor.h" |
-#include "GrInvariantOutput.h" |
-#include "GrPathUtils.h" |
-#include "GrProcessor.h" |
-#include "GrPipelineBuilder.h" |
-#include "GrStrokeInfo.h" |
-#include "SkGeometry.h" |
-#include "SkPathPriv.h" |
-#include "SkString.h" |
-#include "SkTraceEvent.h" |
-#include "batches/GrVertexBatch.h" |
-#include "gl/GrGLProcessor.h" |
-#include "gl/GrGLGeometryProcessor.h" |
-#include "gl/builders/GrGLProgramBuilder.h" |
- |
-GrAAConvexPathRenderer::GrAAConvexPathRenderer() { |
-} |
- |
-struct Segment { |
- enum { |
- // These enum values are assumed in member functions below. |
- kLine = 0, |
- kQuad = 1, |
- } fType; |
- |
- // line uses one pt, quad uses 2 pts |
- SkPoint fPts[2]; |
- // normal to edge ending at each pt |
- SkVector fNorms[2]; |
- // is the corner where the previous segment meets this segment |
- // sharp. If so, fMid is a normalized bisector facing outward. |
- SkVector fMid; |
- |
- int countPoints() { |
- GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
- return fType + 1; |
- } |
- const SkPoint& endPt() const { |
- GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
- return fPts[fType]; |
- }; |
- const SkPoint& endNorm() const { |
- GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); |
- return fNorms[fType]; |
- }; |
-}; |
- |
-typedef SkTArray<Segment, true> SegmentArray; |
- |
-static void center_of_mass(const SegmentArray& segments, SkPoint* c) { |
- SkScalar area = 0; |
- SkPoint center = {0, 0}; |
- int count = segments.count(); |
- SkPoint p0 = {0, 0}; |
- if (count > 2) { |
- // We translate the polygon so that the first point is at the origin. |
- // This avoids some precision issues with small area polygons far away |
- // from the origin. |
- p0 = segments[0].endPt(); |
- SkPoint pi; |
- SkPoint pj; |
- // the first and last iteration of the below loop would compute |
- // zeros since the starting / ending point is (0,0). So instead we start |
- // at i=1 and make the last iteration i=count-2. |
- pj = segments[1].endPt() - p0; |
- for (int i = 1; i < count - 1; ++i) { |
- pi = pj; |
- const SkPoint pj = segments[i + 1].endPt() - p0; |
- |
- SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY); |
- area += t; |
- center.fX += (pi.fX + pj.fX) * t; |
- center.fY += (pi.fY + pj.fY) * t; |
- |
- } |
- } |
- // If the poly has no area then we instead return the average of |
- // its points. |
- if (SkScalarNearlyZero(area)) { |
- SkPoint avg; |
- avg.set(0, 0); |
- for (int i = 0; i < count; ++i) { |
- const SkPoint& pt = segments[i].endPt(); |
- avg.fX += pt.fX; |
- avg.fY += pt.fY; |
- } |
- SkScalar denom = SK_Scalar1 / count; |
- avg.scale(denom); |
- *c = avg; |
- } else { |
- area *= 3; |
- area = SkScalarInvert(area); |
- center.fX = SkScalarMul(center.fX, area); |
- center.fY = SkScalarMul(center.fY, area); |
- // undo the translate of p0 to the origin. |
- *c = center + p0; |
- } |
- SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY)); |
-} |
- |
-static void compute_vectors(SegmentArray* segments, |
- SkPoint* fanPt, |
- SkPathPriv::FirstDirection dir, |
- int* vCount, |
- int* iCount) { |
- center_of_mass(*segments, fanPt); |
- int count = segments->count(); |
- |
- // Make the normals point towards the outside |
- SkPoint::Side normSide; |
- if (dir == SkPathPriv::kCCW_FirstDirection) { |
- normSide = SkPoint::kRight_Side; |
- } else { |
- normSide = SkPoint::kLeft_Side; |
- } |
- |
- *vCount = 0; |
- *iCount = 0; |
- // compute normals at all points |
- for (int a = 0; a < count; ++a) { |
- Segment& sega = (*segments)[a]; |
- int b = (a + 1) % count; |
- Segment& segb = (*segments)[b]; |
- |
- const SkPoint* prevPt = &sega.endPt(); |
- int n = segb.countPoints(); |
- for (int p = 0; p < n; ++p) { |
- segb.fNorms[p] = segb.fPts[p] - *prevPt; |
- segb.fNorms[p].normalize(); |
- segb.fNorms[p].setOrthog(segb.fNorms[p], normSide); |
- prevPt = &segb.fPts[p]; |
- } |
- if (Segment::kLine == segb.fType) { |
- *vCount += 5; |
- *iCount += 9; |
- } else { |
- *vCount += 6; |
- *iCount += 12; |
- } |
- } |
- |
- // compute mid-vectors where segments meet. TODO: Detect shallow corners |
- // and leave out the wedges and close gaps by stitching segments together. |
- for (int a = 0; a < count; ++a) { |
- const Segment& sega = (*segments)[a]; |
- int b = (a + 1) % count; |
- Segment& segb = (*segments)[b]; |
- segb.fMid = segb.fNorms[0] + sega.endNorm(); |
- segb.fMid.normalize(); |
- // corner wedges |
- *vCount += 4; |
- *iCount += 6; |
- } |
-} |
- |
-struct DegenerateTestData { |
- DegenerateTestData() { fStage = kInitial; } |
- bool isDegenerate() const { return kNonDegenerate != fStage; } |
- enum { |
- kInitial, |
- kPoint, |
- kLine, |
- kNonDegenerate |
- } fStage; |
- SkPoint fFirstPoint; |
- SkVector fLineNormal; |
- SkScalar fLineC; |
-}; |
- |
-static const SkScalar kClose = (SK_Scalar1 / 16); |
-static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); |
- |
-static void update_degenerate_test(DegenerateTestData* data, const SkPoint& pt) { |
- switch (data->fStage) { |
- case DegenerateTestData::kInitial: |
- data->fFirstPoint = pt; |
- data->fStage = DegenerateTestData::kPoint; |
- break; |
- case DegenerateTestData::kPoint: |
- if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) { |
- data->fLineNormal = pt - data->fFirstPoint; |
- data->fLineNormal.normalize(); |
- data->fLineNormal.setOrthog(data->fLineNormal); |
- data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); |
- data->fStage = DegenerateTestData::kLine; |
- } |
- break; |
- case DegenerateTestData::kLine: |
- if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { |
- data->fStage = DegenerateTestData::kNonDegenerate; |
- } |
- case DegenerateTestData::kNonDegenerate: |
- break; |
- default: |
- SkFAIL("Unexpected degenerate test stage."); |
- } |
-} |
- |
-static inline bool get_direction(const SkPath& path, const SkMatrix& m, |
- SkPathPriv::FirstDirection* dir) { |
- if (!SkPathPriv::CheapComputeFirstDirection(path, dir)) { |
- return false; |
- } |
- // check whether m reverses the orientation |
- SkASSERT(!m.hasPerspective()); |
- SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - |
- SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); |
- if (det2x2 < 0) { |
- *dir = SkPathPriv::OppositeFirstDirection(*dir); |
- } |
- return true; |
-} |
- |
-static inline void add_line_to_segment(const SkPoint& pt, |
- SegmentArray* segments) { |
- segments->push_back(); |
- segments->back().fType = Segment::kLine; |
- segments->back().fPts[0] = pt; |
-} |
- |
-static inline void add_quad_segment(const SkPoint pts[3], |
- SegmentArray* segments) { |
- if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) { |
- if (pts[0] != pts[2]) { |
- add_line_to_segment(pts[2], segments); |
- } |
- } else { |
- segments->push_back(); |
- segments->back().fType = Segment::kQuad; |
- segments->back().fPts[0] = pts[1]; |
- segments->back().fPts[1] = pts[2]; |
- } |
-} |
- |
-static inline void add_cubic_segments(const SkPoint pts[4], |
- SkPathPriv::FirstDirection dir, |
- SegmentArray* segments) { |
- SkSTArray<15, SkPoint, true> quads; |
- GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); |
- int count = quads.count(); |
- for (int q = 0; q < count; q += 3) { |
- add_quad_segment(&quads[q], segments); |
- } |
-} |
- |
-static bool get_segments(const SkPath& path, |
- const SkMatrix& m, |
- SegmentArray* segments, |
- SkPoint* fanPt, |
- int* vCount, |
- int* iCount) { |
- SkPath::Iter iter(path, true); |
- // This renderer over-emphasizes very thin path regions. We use the distance |
- // to the path from the sample to compute coverage. Every pixel intersected |
- // by the path will be hit and the maximum distance is sqrt(2)/2. We don't |
- // notice that the sample may be close to a very thin area of the path and |
- // thus should be very light. This is particularly egregious for degenerate |
- // line paths. We detect paths that are very close to a line (zero area) and |
- // draw nothing. |
- DegenerateTestData degenerateData; |
- SkPathPriv::FirstDirection dir; |
- // get_direction can fail for some degenerate paths. |
- if (!get_direction(path, m, &dir)) { |
- return false; |
- } |
- |
- for (;;) { |
- SkPoint pts[4]; |
- SkPath::Verb verb = iter.next(pts); |
- switch (verb) { |
- case SkPath::kMove_Verb: |
- m.mapPoints(pts, 1); |
- update_degenerate_test(°enerateData, pts[0]); |
- break; |
- case SkPath::kLine_Verb: { |
- m.mapPoints(&pts[1], 1); |
- update_degenerate_test(°enerateData, pts[1]); |
- add_line_to_segment(pts[1], segments); |
- break; |
- } |
- case SkPath::kQuad_Verb: |
- m.mapPoints(pts, 3); |
- update_degenerate_test(°enerateData, pts[1]); |
- update_degenerate_test(°enerateData, pts[2]); |
- add_quad_segment(pts, segments); |
- break; |
- case SkPath::kConic_Verb: { |
- m.mapPoints(pts, 3); |
- SkScalar weight = iter.conicWeight(); |
- SkAutoConicToQuads converter; |
- const SkPoint* quadPts = converter.computeQuads(pts, weight, 0.5f); |
- for (int i = 0; i < converter.countQuads(); ++i) { |
- update_degenerate_test(°enerateData, quadPts[2*i + 1]); |
- update_degenerate_test(°enerateData, quadPts[2*i + 2]); |
- add_quad_segment(quadPts + 2*i, segments); |
- } |
- break; |
- } |
- case SkPath::kCubic_Verb: { |
- m.mapPoints(pts, 4); |
- update_degenerate_test(°enerateData, pts[1]); |
- update_degenerate_test(°enerateData, pts[2]); |
- update_degenerate_test(°enerateData, pts[3]); |
- add_cubic_segments(pts, dir, segments); |
- break; |
- }; |
- case SkPath::kDone_Verb: |
- if (degenerateData.isDegenerate()) { |
- return false; |
- } else { |
- compute_vectors(segments, fanPt, dir, vCount, iCount); |
- return true; |
- } |
- default: |
- break; |
- } |
- } |
-} |
- |
-struct QuadVertex { |
- SkPoint fPos; |
- SkPoint fUV; |
- SkScalar fD0; |
- SkScalar fD1; |
-}; |
- |
-struct Draw { |
- Draw() : fVertexCnt(0), fIndexCnt(0) {} |
- int fVertexCnt; |
- int fIndexCnt; |
-}; |
- |
-typedef SkTArray<Draw, true> DrawArray; |
- |
-static void create_vertices(const SegmentArray& segments, |
- const SkPoint& fanPt, |
- DrawArray* draws, |
- QuadVertex* verts, |
- uint16_t* idxs) { |
- Draw* draw = &draws->push_back(); |
- // alias just to make vert/index assignments easier to read. |
- int* v = &draw->fVertexCnt; |
- int* i = &draw->fIndexCnt; |
- |
- int count = segments.count(); |
- for (int a = 0; a < count; ++a) { |
- const Segment& sega = segments[a]; |
- int b = (a + 1) % count; |
- const Segment& segb = segments[b]; |
- |
- // Check whether adding the verts for this segment to the current draw would cause index |
- // values to overflow. |
- int vCount = 4; |
- if (Segment::kLine == segb.fType) { |
- vCount += 5; |
- } else { |
- vCount += 6; |
- } |
- if (draw->fVertexCnt + vCount > (1 << 16)) { |
- verts += *v; |
- idxs += *i; |
- draw = &draws->push_back(); |
- v = &draw->fVertexCnt; |
- i = &draw->fIndexCnt; |
- } |
- |
- // FIXME: These tris are inset in the 1 unit arc around the corner |
- verts[*v + 0].fPos = sega.endPt(); |
- verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm(); |
- verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid; |
- verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0]; |
- verts[*v + 0].fUV.set(0,0); |
- verts[*v + 1].fUV.set(0,-SK_Scalar1); |
- verts[*v + 2].fUV.set(0,-SK_Scalar1); |
- verts[*v + 3].fUV.set(0,-SK_Scalar1); |
- verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; |
- verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; |
- verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; |
- verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; |
- |
- idxs[*i + 0] = *v + 0; |
- idxs[*i + 1] = *v + 2; |
- idxs[*i + 2] = *v + 1; |
- idxs[*i + 3] = *v + 0; |
- idxs[*i + 4] = *v + 3; |
- idxs[*i + 5] = *v + 2; |
- |
- *v += 4; |
- *i += 6; |
- |
- if (Segment::kLine == segb.fType) { |
- verts[*v + 0].fPos = fanPt; |
- verts[*v + 1].fPos = sega.endPt(); |
- verts[*v + 2].fPos = segb.fPts[0]; |
- |
- verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0]; |
- verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0]; |
- |
- // we draw the line edge as a degenerate quad (u is 0, v is the |
- // signed distance to the edge) |
- SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos, |
- verts[*v + 2].fPos); |
- verts[*v + 0].fUV.set(0, dist); |
- verts[*v + 1].fUV.set(0, 0); |
- verts[*v + 2].fUV.set(0, 0); |
- verts[*v + 3].fUV.set(0, -SK_Scalar1); |
- verts[*v + 4].fUV.set(0, -SK_Scalar1); |
- |
- verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; |
- verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; |
- verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; |
- verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; |
- verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1; |
- |
- idxs[*i + 0] = *v + 3; |
- idxs[*i + 1] = *v + 1; |
- idxs[*i + 2] = *v + 2; |
- |
- idxs[*i + 3] = *v + 4; |
- idxs[*i + 4] = *v + 3; |
- idxs[*i + 5] = *v + 2; |
- |
- *i += 6; |
- |
- // Draw the interior fan if it exists. |
- // TODO: Detect and combine colinear segments. This will ensure we catch every case |
- // with no interior, and that the resulting shared edge uses the same endpoints. |
- if (count >= 3) { |
- idxs[*i + 0] = *v + 0; |
- idxs[*i + 1] = *v + 2; |
- idxs[*i + 2] = *v + 1; |
- |
- *i += 3; |
- } |
- |
- *v += 5; |
- } else { |
- SkPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; |
- |
- SkVector midVec = segb.fNorms[0] + segb.fNorms[1]; |
- midVec.normalize(); |
- |
- verts[*v + 0].fPos = fanPt; |
- verts[*v + 1].fPos = qpts[0]; |
- verts[*v + 2].fPos = qpts[2]; |
- verts[*v + 3].fPos = qpts[0] + segb.fNorms[0]; |
- verts[*v + 4].fPos = qpts[2] + segb.fNorms[1]; |
- verts[*v + 5].fPos = qpts[1] + midVec; |
- |
- SkScalar c = segb.fNorms[0].dot(qpts[0]); |
- verts[*v + 0].fD0 = -segb.fNorms[0].dot(fanPt) + c; |
- verts[*v + 1].fD0 = 0.f; |
- verts[*v + 2].fD0 = -segb.fNorms[0].dot(qpts[2]) + c; |
- verts[*v + 3].fD0 = -SK_ScalarMax/100; |
- verts[*v + 4].fD0 = -SK_ScalarMax/100; |
- verts[*v + 5].fD0 = -SK_ScalarMax/100; |
- |
- c = segb.fNorms[1].dot(qpts[2]); |
- verts[*v + 0].fD1 = -segb.fNorms[1].dot(fanPt) + c; |
- verts[*v + 1].fD1 = -segb.fNorms[1].dot(qpts[0]) + c; |
- verts[*v + 2].fD1 = 0.f; |
- verts[*v + 3].fD1 = -SK_ScalarMax/100; |
- verts[*v + 4].fD1 = -SK_ScalarMax/100; |
- verts[*v + 5].fD1 = -SK_ScalarMax/100; |
- |
- GrPathUtils::QuadUVMatrix toUV(qpts); |
- toUV.apply<6, sizeof(QuadVertex), sizeof(SkPoint)>(verts + *v); |
- |
- idxs[*i + 0] = *v + 3; |
- idxs[*i + 1] = *v + 1; |
- idxs[*i + 2] = *v + 2; |
- idxs[*i + 3] = *v + 4; |
- idxs[*i + 4] = *v + 3; |
- idxs[*i + 5] = *v + 2; |
- |
- idxs[*i + 6] = *v + 5; |
- idxs[*i + 7] = *v + 3; |
- idxs[*i + 8] = *v + 4; |
- |
- *i += 9; |
- |
- // Draw the interior fan if it exists. |
- // TODO: Detect and combine colinear segments. This will ensure we catch every case |
- // with no interior, and that the resulting shared edge uses the same endpoints. |
- if (count >= 3) { |
- idxs[*i + 0] = *v + 0; |
- idxs[*i + 1] = *v + 2; |
- idxs[*i + 2] = *v + 1; |
- |
- *i += 3; |
- } |
- |
- *v += 6; |
- } |
- } |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-/* |
- * Quadratic specified by 0=u^2-v canonical coords. u and v are the first |
- * two components of the vertex attribute. Coverage is based on signed |
- * distance with negative being inside, positive outside. The edge is specified in |
- * window space (y-down). If either the third or fourth component of the interpolated |
- * vertex coord is > 0 then the pixel is considered outside the edge. This is used to |
- * attempt to trim to a portion of the infinite quad. |
- * Requires shader derivative instruction support. |
- */ |
- |
-class QuadEdgeEffect : public GrGeometryProcessor { |
-public: |
- |
- static GrGeometryProcessor* Create(GrColor color, const SkMatrix& localMatrix, |
- bool usesLocalCoords) { |
- return new QuadEdgeEffect(color, localMatrix, usesLocalCoords); |
- } |
- |
- virtual ~QuadEdgeEffect() {} |
- |
- const char* name() const override { return "QuadEdge"; } |
- |
- const Attribute* inPosition() const { return fInPosition; } |
- const Attribute* inQuadEdge() const { return fInQuadEdge; } |
- GrColor color() const { return fColor; } |
- bool colorIgnored() const { return GrColor_ILLEGAL == fColor; } |
- const SkMatrix& localMatrix() const { return fLocalMatrix; } |
- bool usesLocalCoords() const { return fUsesLocalCoords; } |
- |
- class GLProcessor : public GrGLGeometryProcessor { |
- public: |
- GLProcessor(const GrGeometryProcessor&, |
- const GrBatchTracker&) |
- : fColor(GrColor_ILLEGAL) {} |
- |
- void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { |
- const QuadEdgeEffect& qe = args.fGP.cast<QuadEdgeEffect>(); |
- GrGLGPBuilder* pb = args.fPB; |
- GrGLVertexBuilder* vsBuilder = pb->getVertexShaderBuilder(); |
- |
- // emit attributes |
- vsBuilder->emitAttributes(qe); |
- |
- GrGLVertToFrag v(kVec4f_GrSLType); |
- args.fPB->addVarying("QuadEdge", &v); |
- vsBuilder->codeAppendf("%s = %s;", v.vsOut(), qe.inQuadEdge()->fName); |
- |
- // Setup pass through color |
- if (!qe.colorIgnored()) { |
- this->setupUniformColor(pb, args.fOutputColor, &fColorUniform); |
- } |
- |
- // Setup position |
- this->setupPosition(pb, gpArgs, qe.inPosition()->fName); |
- |
- // emit transforms |
- this->emitTransforms(args.fPB, gpArgs->fPositionVar, qe.inPosition()->fName, |
- qe.localMatrix(), args.fTransformsIn, args.fTransformsOut); |
- |
- GrGLFragmentBuilder* fsBuilder = args.fPB->getFragmentShaderBuilder(); |
- |
- SkAssertResult(fsBuilder->enableFeature( |
- GrGLFragmentShaderBuilder::kStandardDerivatives_GLSLFeature)); |
- fsBuilder->codeAppendf("float edgeAlpha;"); |
- |
- // keep the derivative instructions outside the conditional |
- fsBuilder->codeAppendf("vec2 duvdx = dFdx(%s.xy);", v.fsIn()); |
- fsBuilder->codeAppendf("vec2 duvdy = dFdy(%s.xy);", v.fsIn()); |
- fsBuilder->codeAppendf("if (%s.z > 0.0 && %s.w > 0.0) {", v.fsIn(), v.fsIn()); |
- // today we know z and w are in device space. We could use derivatives |
- fsBuilder->codeAppendf("edgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);", v.fsIn(), |
- v.fsIn()); |
- fsBuilder->codeAppendf ("} else {"); |
- fsBuilder->codeAppendf("vec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y," |
- " 2.0*%s.x*duvdy.x - duvdy.y);", |
- v.fsIn(), v.fsIn()); |
- fsBuilder->codeAppendf("edgeAlpha = (%s.x*%s.x - %s.y);", v.fsIn(), v.fsIn(), |
- v.fsIn()); |
- fsBuilder->codeAppendf("edgeAlpha = " |
- "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);}"); |
- |
- fsBuilder->codeAppendf("%s = vec4(edgeAlpha);", args.fOutputCoverage); |
- } |
- |
- static inline void GenKey(const GrGeometryProcessor& gp, |
- const GrBatchTracker& bt, |
- const GrGLSLCaps&, |
- GrProcessorKeyBuilder* b) { |
- const QuadEdgeEffect& qee = gp.cast<QuadEdgeEffect>(); |
- uint32_t key = 0; |
- key |= qee.usesLocalCoords() && qee.localMatrix().hasPerspective() ? 0x1 : 0x0; |
- key |= qee.colorIgnored() ? 0x2 : 0x0; |
- b->add32(key); |
- } |
- |
- virtual void setData(const GrGLProgramDataManager& pdman, |
- const GrPrimitiveProcessor& gp, |
- const GrBatchTracker& bt) override { |
- const QuadEdgeEffect& qe = gp.cast<QuadEdgeEffect>(); |
- if (qe.color() != fColor) { |
- GrGLfloat c[4]; |
- GrColorToRGBAFloat(qe.color(), c); |
- pdman.set4fv(fColorUniform, 1, c); |
- fColor = qe.color(); |
- } |
- } |
- |
- void setTransformData(const GrPrimitiveProcessor& primProc, |
- const GrGLProgramDataManager& pdman, |
- int index, |
- const SkTArray<const GrCoordTransform*, true>& transforms) override { |
- this->setTransformDataHelper<QuadEdgeEffect>(primProc, pdman, index, transforms); |
- } |
- |
- private: |
- GrColor fColor; |
- UniformHandle fColorUniform; |
- |
- typedef GrGLGeometryProcessor INHERITED; |
- }; |
- |
- virtual void getGLProcessorKey(const GrBatchTracker& bt, |
- const GrGLSLCaps& caps, |
- GrProcessorKeyBuilder* b) const override { |
- GLProcessor::GenKey(*this, bt, caps, b); |
- } |
- |
- virtual GrGLPrimitiveProcessor* createGLInstance(const GrBatchTracker& bt, |
- const GrGLSLCaps&) const override { |
- return new GLProcessor(*this, bt); |
- } |
- |
-private: |
- QuadEdgeEffect(GrColor color, const SkMatrix& localMatrix, bool usesLocalCoords) |
- : fColor(color) |
- , fLocalMatrix(localMatrix) |
- , fUsesLocalCoords(usesLocalCoords) { |
- this->initClassID<QuadEdgeEffect>(); |
- fInPosition = &this->addVertexAttrib(Attribute("inPosition", kVec2f_GrVertexAttribType)); |
- fInQuadEdge = &this->addVertexAttrib(Attribute("inQuadEdge", kVec4f_GrVertexAttribType)); |
- } |
- |
- const Attribute* fInPosition; |
- const Attribute* fInQuadEdge; |
- GrColor fColor; |
- SkMatrix fLocalMatrix; |
- bool fUsesLocalCoords; |
- |
- GR_DECLARE_GEOMETRY_PROCESSOR_TEST; |
- |
- typedef GrGeometryProcessor INHERITED; |
-}; |
- |
-GR_DEFINE_GEOMETRY_PROCESSOR_TEST(QuadEdgeEffect); |
- |
-const GrGeometryProcessor* QuadEdgeEffect::TestCreate(GrProcessorTestData* d) { |
- // Doesn't work without derivative instructions. |
- return d->fCaps->shaderCaps()->shaderDerivativeSupport() ? |
- QuadEdgeEffect::Create(GrRandomColor(d->fRandom), |
- GrTest::TestMatrix(d->fRandom), |
- d->fRandom->nextBool()) : nullptr; |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-bool GrAAConvexPathRenderer::onCanDrawPath(const CanDrawPathArgs& args) const { |
- return (args.fShaderCaps->shaderDerivativeSupport() && args.fAntiAlias && |
- args.fStroke->isFillStyle() && !args.fPath->isInverseFillType() && |
- args.fPath->isConvex()); |
-} |
- |
-// extract the result vertices and indices from the GrAAConvexTessellator |
-static void extract_verts(const GrAAConvexTessellator& tess, |
- void* vertices, |
- size_t vertexStride, |
- GrColor color, |
- uint16_t* idxs, |
- bool tweakAlphaForCoverage) { |
- intptr_t verts = reinterpret_cast<intptr_t>(vertices); |
- |
- for (int i = 0; i < tess.numPts(); ++i) { |
- *((SkPoint*)((intptr_t)verts + i * vertexStride)) = tess.point(i); |
- } |
- |
- // Make 'verts' point to the colors |
- verts += sizeof(SkPoint); |
- for (int i = 0; i < tess.numPts(); ++i) { |
- if (tweakAlphaForCoverage) { |
- SkASSERT(SkScalarRoundToInt(255.0f * tess.coverage(i)) <= 255); |
- unsigned scale = SkScalarRoundToInt(255.0f * tess.coverage(i)); |
- GrColor scaledColor = (0xff == scale) ? color : SkAlphaMulQ(color, scale); |
- *reinterpret_cast<GrColor*>(verts + i * vertexStride) = scaledColor; |
- } else { |
- *reinterpret_cast<GrColor*>(verts + i * vertexStride) = color; |
- *reinterpret_cast<float*>(verts + i * vertexStride + sizeof(GrColor)) = |
- tess.coverage(i); |
- } |
- } |
- |
- for (int i = 0; i < tess.numIndices(); ++i) { |
- idxs[i] = tess.index(i); |
- } |
-} |
- |
-static const GrGeometryProcessor* create_fill_gp(bool tweakAlphaForCoverage, |
- const SkMatrix& viewMatrix, |
- bool usesLocalCoords, |
- bool coverageIgnored) { |
- using namespace GrDefaultGeoProcFactory; |
- |
- Color color(Color::kAttribute_Type); |
- Coverage::Type coverageType; |
- // TODO remove coverage if coverage is ignored |
- /*if (coverageIgnored) { |
- coverageType = Coverage::kNone_Type; |
- } else*/ if (tweakAlphaForCoverage) { |
- coverageType = Coverage::kSolid_Type; |
- } else { |
- coverageType = Coverage::kAttribute_Type; |
- } |
- Coverage coverage(coverageType); |
- LocalCoords localCoords(usesLocalCoords ? LocalCoords::kUsePosition_Type : |
- LocalCoords::kUnused_Type); |
- return CreateForDeviceSpace(color, coverage, localCoords, viewMatrix); |
-} |
- |
-class AAConvexPathBatch : public GrVertexBatch { |
-public: |
- struct Geometry { |
- GrColor fColor; |
- SkMatrix fViewMatrix; |
- SkPath fPath; |
- }; |
- |
- static GrDrawBatch* Create(const Geometry& geometry) { return new AAConvexPathBatch(geometry); } |
- |
- const char* name() const override { return "AAConvexBatch"; } |
- |
- void getInvariantOutputColor(GrInitInvariantOutput* out) const override { |
- // When this is called on a batch, there is only one geometry bundle |
- out->setKnownFourComponents(fGeoData[0].fColor); |
- } |
- void getInvariantOutputCoverage(GrInitInvariantOutput* out) const override { |
- out->setUnknownSingleComponent(); |
- } |
- |
-private: |
- |
- void initBatchTracker(const GrPipelineOptimizations& opt) override { |
- // Handle any color overrides |
- if (!opt.readsColor()) { |
- fGeoData[0].fColor = GrColor_ILLEGAL; |
- } |
- opt.getOverrideColorIfSet(&fGeoData[0].fColor); |
- |
- // setup batch properties |
- fBatch.fColorIgnored = !opt.readsColor(); |
- fBatch.fColor = fGeoData[0].fColor; |
- fBatch.fUsesLocalCoords = opt.readsLocalCoords(); |
- fBatch.fCoverageIgnored = !opt.readsCoverage(); |
- fBatch.fLinesOnly = SkPath::kLine_SegmentMask == fGeoData[0].fPath.getSegmentMasks(); |
- fBatch.fCanTweakAlphaForCoverage = opt.canTweakAlphaForCoverage(); |
- } |
- |
- void prepareLinesOnlyDraws(Target* target) { |
- bool canTweakAlphaForCoverage = this->canTweakAlphaForCoverage(); |
- |
- // Setup GrGeometryProcessor |
- SkAutoTUnref<const GrGeometryProcessor> gp(create_fill_gp(canTweakAlphaForCoverage, |
- this->viewMatrix(), |
- this->usesLocalCoords(), |
- this->coverageIgnored())); |
- if (!gp) { |
- SkDebugf("Could not create GrGeometryProcessor\n"); |
- return; |
- } |
- |
- target->initDraw(gp, this->pipeline()); |
- |
- size_t vertexStride = gp->getVertexStride(); |
- |
- SkASSERT(canTweakAlphaForCoverage ? |
- vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorAttr) : |
- vertexStride == sizeof(GrDefaultGeoProcFactory::PositionColorCoverageAttr)); |
- |
- GrAAConvexTessellator tess; |
- |
- int instanceCount = fGeoData.count(); |
- |
- for (int i = 0; i < instanceCount; i++) { |
- tess.rewind(); |
- |
- Geometry& args = fGeoData[i]; |
- |
- if (!tess.tessellate(args.fViewMatrix, args.fPath)) { |
- continue; |
- } |
- |
- const GrVertexBuffer* vertexBuffer; |
- int firstVertex; |
- |
- void* verts = target->makeVertexSpace(vertexStride, tess.numPts(), &vertexBuffer, |
- &firstVertex); |
- if (!verts) { |
- SkDebugf("Could not allocate vertices\n"); |
- return; |
- } |
- |
- const GrIndexBuffer* indexBuffer; |
- int firstIndex; |
- |
- uint16_t* idxs = target->makeIndexSpace(tess.numIndices(), &indexBuffer, &firstIndex); |
- if (!idxs) { |
- SkDebugf("Could not allocate indices\n"); |
- return; |
- } |
- |
- extract_verts(tess, verts, vertexStride, args.fColor, idxs, canTweakAlphaForCoverage); |
- |
- GrVertices info; |
- info.initIndexed(kTriangles_GrPrimitiveType, |
- vertexBuffer, indexBuffer, |
- firstVertex, firstIndex, |
- tess.numPts(), tess.numIndices()); |
- target->draw(info); |
- } |
- } |
- |
- void onPrepareDraws(Target* target) override { |
-#ifndef SK_IGNORE_LINEONLY_AA_CONVEX_PATH_OPTS |
- if (this->linesOnly()) { |
- this->prepareLinesOnlyDraws(target); |
- return; |
- } |
-#endif |
- |
- int instanceCount = fGeoData.count(); |
- |
- SkMatrix invert; |
- if (this->usesLocalCoords() && !this->viewMatrix().invert(&invert)) { |
- SkDebugf("Could not invert viewmatrix\n"); |
- return; |
- } |
- |
- // Setup GrGeometryProcessor |
- SkAutoTUnref<GrGeometryProcessor> quadProcessor( |
- QuadEdgeEffect::Create(this->color(), invert, this->usesLocalCoords())); |
- |
- target->initDraw(quadProcessor, this->pipeline()); |
- |
- // TODO generate all segments for all paths and use one vertex buffer |
- for (int i = 0; i < instanceCount; i++) { |
- Geometry& args = fGeoData[i]; |
- |
- // We use the fact that SkPath::transform path does subdivision based on |
- // perspective. Otherwise, we apply the view matrix when copying to the |
- // segment representation. |
- const SkMatrix* viewMatrix = &args.fViewMatrix; |
- if (viewMatrix->hasPerspective()) { |
- args.fPath.transform(*viewMatrix); |
- viewMatrix = &SkMatrix::I(); |
- } |
- |
- int vertexCount; |
- int indexCount; |
- enum { |
- kPreallocSegmentCnt = 512 / sizeof(Segment), |
- kPreallocDrawCnt = 4, |
- }; |
- SkSTArray<kPreallocSegmentCnt, Segment, true> segments; |
- SkPoint fanPt; |
- |
- if (!get_segments(args.fPath, *viewMatrix, &segments, &fanPt, &vertexCount, |
- &indexCount)) { |
- continue; |
- } |
- |
- const GrVertexBuffer* vertexBuffer; |
- int firstVertex; |
- |
- size_t vertexStride = quadProcessor->getVertexStride(); |
- QuadVertex* verts = reinterpret_cast<QuadVertex*>(target->makeVertexSpace( |
- vertexStride, vertexCount, &vertexBuffer, &firstVertex)); |
- |
- if (!verts) { |
- SkDebugf("Could not allocate vertices\n"); |
- return; |
- } |
- |
- const GrIndexBuffer* indexBuffer; |
- int firstIndex; |
- |
- uint16_t *idxs = target->makeIndexSpace(indexCount, &indexBuffer, &firstIndex); |
- if (!idxs) { |
- SkDebugf("Could not allocate indices\n"); |
- return; |
- } |
- |
- SkSTArray<kPreallocDrawCnt, Draw, true> draws; |
- create_vertices(segments, fanPt, &draws, verts, idxs); |
- |
- GrVertices vertices; |
- |
- for (int i = 0; i < draws.count(); ++i) { |
- const Draw& draw = draws[i]; |
- vertices.initIndexed(kTriangles_GrPrimitiveType, vertexBuffer, indexBuffer, |
- firstVertex, firstIndex, draw.fVertexCnt, draw.fIndexCnt); |
- target->draw(vertices); |
- firstVertex += draw.fVertexCnt; |
- firstIndex += draw.fIndexCnt; |
- } |
- } |
- } |
- |
- SkSTArray<1, Geometry, true>* geoData() { return &fGeoData; } |
- |
- AAConvexPathBatch(const Geometry& geometry) { |
- this->initClassID<AAConvexPathBatch>(); |
- fGeoData.push_back(geometry); |
- |
- // compute bounds |
- fBounds = geometry.fPath.getBounds(); |
- geometry.fViewMatrix.mapRect(&fBounds); |
- } |
- |
- bool onCombineIfPossible(GrBatch* t, const GrCaps& caps) override { |
- AAConvexPathBatch* that = t->cast<AAConvexPathBatch>(); |
- if (!GrPipeline::CanCombine(*this->pipeline(), this->bounds(), *that->pipeline(), |
- that->bounds(), caps)) { |
- return false; |
- } |
- |
- if (this->color() != that->color()) { |
- return false; |
- } |
- |
- SkASSERT(this->usesLocalCoords() == that->usesLocalCoords()); |
- if (this->usesLocalCoords() && !this->viewMatrix().cheapEqualTo(that->viewMatrix())) { |
- return false; |
- } |
- |
- if (this->linesOnly() != that->linesOnly()) { |
- return false; |
- } |
- |
- // In the event of two batches, one who can tweak, one who cannot, we just fall back to |
- // not tweaking |
- if (this->canTweakAlphaForCoverage() != that->canTweakAlphaForCoverage()) { |
- fBatch.fCanTweakAlphaForCoverage = false; |
- } |
- |
- fGeoData.push_back_n(that->geoData()->count(), that->geoData()->begin()); |
- this->joinBounds(that->bounds()); |
- return true; |
- } |
- |
- GrColor color() const { return fBatch.fColor; } |
- bool linesOnly() const { return fBatch.fLinesOnly; } |
- bool usesLocalCoords() const { return fBatch.fUsesLocalCoords; } |
- bool canTweakAlphaForCoverage() const { return fBatch.fCanTweakAlphaForCoverage; } |
- const SkMatrix& viewMatrix() const { return fGeoData[0].fViewMatrix; } |
- bool coverageIgnored() const { return fBatch.fCoverageIgnored; } |
- |
- struct BatchTracker { |
- GrColor fColor; |
- bool fUsesLocalCoords; |
- bool fColorIgnored; |
- bool fCoverageIgnored; |
- bool fLinesOnly; |
- bool fCanTweakAlphaForCoverage; |
- }; |
- |
- BatchTracker fBatch; |
- SkSTArray<1, Geometry, true> fGeoData; |
-}; |
- |
-bool GrAAConvexPathRenderer::onDrawPath(const DrawPathArgs& args) { |
- if (args.fPath->isEmpty()) { |
- return true; |
- } |
- |
- AAConvexPathBatch::Geometry geometry; |
- geometry.fColor = args.fColor; |
- geometry.fViewMatrix = *args.fViewMatrix; |
- geometry.fPath = *args.fPath; |
- |
- SkAutoTUnref<GrDrawBatch> batch(AAConvexPathBatch::Create(geometry)); |
- args.fTarget->drawBatch(*args.fPipelineBuilder, batch); |
- |
- return true; |
- |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////////////////////////// |
- |
-#ifdef GR_TEST_UTILS |
- |
-DRAW_BATCH_TEST_DEFINE(AAConvexPathBatch) { |
- AAConvexPathBatch::Geometry geometry; |
- geometry.fColor = GrRandomColor(random); |
- geometry.fViewMatrix = GrTest::TestMatrixInvertible(random); |
- geometry.fPath = GrTest::TestPathConvex(random); |
- |
- return AAConvexPathBatch::Create(geometry); |
-} |
- |
-#endif |