Index: src/compiler/live-range-separator.cc |
diff --git a/src/compiler/live-range-separator.cc b/src/compiler/live-range-separator.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..94b159787c368c224f64515642c343f978e4995b |
--- /dev/null |
+++ b/src/compiler/live-range-separator.cc |
@@ -0,0 +1,172 @@ |
+// Copyright 2015 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "src/compiler/live-range-separator.h" |
+#include "src/compiler/register-allocator.h" |
+ |
+namespace v8 { |
+namespace internal { |
+namespace compiler { |
+ |
+ |
+#define TRACE(...) \ |
+ do { \ |
+ if (FLAG_trace_alloc) PrintF(__VA_ARGS__); \ |
+ } while (false) |
+ |
+ |
+namespace { |
+ |
+// Starting from a deferred block, find the last consecutive deferred block. |
+RpoNumber GetLastDeferredBlock(const InstructionBlock *block, |
+ const InstructionSequence *code) { |
+ DCHECK(block->IsDeferred()); |
+ RpoNumber first = block->rpo_number(); |
+ |
+ RpoNumber last = first; |
+ for (int i = first.ToInt(); i < code->InstructionBlockCount(); ++i) { |
+ RpoNumber at_i = RpoNumber::FromInt(i); |
+ const InstructionBlock *block_at_i = code->InstructionBlockAt(at_i); |
+ if (!block_at_i->IsDeferred()) break; |
+ last = at_i; |
+ } |
+ |
+ return last; |
+} |
+ |
+ |
+// Delimits consecutive deferred block sequences. |
+void AssociateDeferredBlockSequences(InstructionSequence *code) { |
+ for (int blk_id = 0; blk_id < code->InstructionBlockCount(); ++blk_id) { |
+ InstructionBlock *block = |
+ code->InstructionBlockAt(RpoNumber::FromInt(blk_id)); |
+ if (!block->IsDeferred()) continue; |
+ RpoNumber last = GetLastDeferredBlock(block, code); |
+ block->set_last_deferred(last); |
+ // We know last is still deferred, and that last + 1, is not (or is an |
+ // invalid index). So skip over last + 1 and continue from last + 2. This |
+ // way, we visit each block exactly once, and the total complexity of this |
+ // function is O(n), n being jthe number of blocks. |
+ blk_id = last.ToInt() + 1; |
+ } |
+} |
+ |
+ |
+// If the live range has a liveness hole right between start and end, |
+// we don't need to splinter it. |
+bool IsIntervalAlreadyExcluded(const LiveRange *range, LifetimePosition start, |
+ LifetimePosition end) { |
+ for (UseInterval *interval = range->first_interval(); interval != nullptr; |
+ interval = interval->next()) { |
+ if (interval->start() <= start && start < interval->end()) return false; |
+ if (interval->start() < end && end <= interval->end()) return false; |
+ } |
+ return true; |
+} |
+ |
+ |
+void CreateSplinter(LiveRange *range, RegisterAllocationData *data, |
+ LifetimePosition first_cut, LifetimePosition last_cut) { |
+ DCHECK(!range->IsChild()); |
+ DCHECK(!range->IsSplinter()); |
+ // We can ignore ranges that live solely in deferred blocks. |
+ // If a range ends right at the end of a deferred block, it is marked by |
+ // the range builder as ending at gap start of the next block - since the |
+ // end is a position where the variable isn't live. We need to take that |
+ // into consideration. |
+ LifetimePosition max_allowed_end = last_cut.NextFullStart(); |
+ |
+ if (first_cut <= range->Start() && max_allowed_end >= range->End()) { |
+ return; |
+ } |
+ |
+ LifetimePosition start = Max(first_cut, range->Start()); |
+ LifetimePosition end = Min(last_cut, range->End()); |
+ // Skip ranges that have a hole where the deferred block(s) are. |
+ if (IsIntervalAlreadyExcluded(range, start, end)) return; |
+ |
+ if (start < end) { |
+ // Ensure the original range has a spill range associated, before it gets |
+ // splintered. Splinters will point to it. This way, when attempting to |
+ // reuse spill slots of splinters, during allocation, we avoid clobbering |
+ // such slots. |
+ if (range->MayRequireSpillRange()) { |
+ data->CreateSpillRangeForLiveRange(range); |
+ } |
+ LiveRange *result = data->NewChildRangeFor(range); |
+ Zone *zone = data->allocation_zone(); |
+ range->Splinter(start, end, result, zone); |
+ } |
+} |
+ |
+ |
+// Splinter all ranges live inside successive deferred blocks. |
+// No control flow analysis is performed. After the register allocation, we will |
+// merge the splinters back into the original ranges, and then rely on the |
+// range connector to properly connect them. |
+void SplinterRangesInDeferredBlocks(RegisterAllocationData *data) { |
+ InstructionSequence *code = data->code(); |
+ int code_block_count = code->InstructionBlockCount(); |
+ Zone *zone = data->allocation_zone(); |
+ ZoneVector<BitVector *> &in_sets = data->live_in_sets(); |
+ |
+ for (int i = 0; i < code_block_count; ++i) { |
+ InstructionBlock *block = code->InstructionBlockAt(RpoNumber::FromInt(i)); |
+ if (!block->IsDeferred()) continue; |
+ |
+ RpoNumber last_deferred = block->last_deferred(); |
+ i = last_deferred.ToInt(); |
+ |
+ LifetimePosition first_cut = LifetimePosition::GapFromInstructionIndex( |
+ block->first_instruction_index()); |
+ |
+ LifetimePosition last_cut = LifetimePosition::GapFromInstructionIndex( |
+ static_cast<int>(code->instructions().size())); |
+ |
+ const BitVector *in_set = in_sets[i]; |
+ InstructionBlock *last = code->InstructionBlockAt(last_deferred); |
+ const BitVector *out_set = LiveRangeBuilder::ComputeLiveOut(last, data); |
+ last_cut = LifetimePosition::GapFromInstructionIndex( |
+ last->last_instruction_index()); |
+ |
+ BitVector ranges_to_splinter(*in_set, zone); |
+ ranges_to_splinter.Union(*out_set); |
+ BitVector::Iterator iterator(&ranges_to_splinter); |
+ |
+ while (!iterator.Done()) { |
+ int range_id = iterator.Current(); |
+ iterator.Advance(); |
+ |
+ LiveRange *range = data->live_ranges()[range_id]; |
+ CreateSplinter(range, data, first_cut, last_cut); |
+ } |
+ } |
+} |
+} // namespace |
+ |
+ |
+void LiveRangeSeparator::Splinter() { |
+ AssociateDeferredBlockSequences(data()->code()); |
+ SplinterRangesInDeferredBlocks(data()); |
+} |
+ |
+ |
+void LiveRangeMerger::Merge() { |
+ int live_range_count = static_cast<int>(data()->live_ranges().size()); |
+ for (int i = 0; i < live_range_count; ++i) { |
+ LiveRange *range = data()->live_ranges()[i]; |
+ if (range == nullptr || range->IsEmpty() || range->IsChild() || |
+ !range->IsSplinter()) { |
+ continue; |
+ } |
+ LiveRange *splinter_parent = range->splintered_from(); |
+ |
+ splinter_parent->Merge(range, data()); |
+ } |
+} |
+ |
+ |
+} // namespace compiler |
+} // namespace internal |
+} // namespace v8 |