Index: src/core/SkPoint3.cpp |
diff --git a/src/core/SkPoint3.cpp b/src/core/SkPoint3.cpp |
deleted file mode 100644 |
index 3b5586b067077b4bcf03f37d31ac65e43ef043af..0000000000000000000000000000000000000000 |
--- a/src/core/SkPoint3.cpp |
+++ /dev/null |
@@ -1,80 +0,0 @@ |
-/* |
- * Copyright 2015 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkPoint3.h" |
- |
-// Returns the square of the Euclidian distance to (x,y,z). |
-static inline float get_length_squared(float x, float y, float z) { |
- return x * x + y * y + z * z; |
-} |
- |
-// Calculates the square of the Euclidian distance to (x,y,z) and stores it in |
-// *lengthSquared. Returns true if the distance is judged to be "nearly zero". |
-// |
-// This logic is encapsulated in a helper method to make it explicit that we |
-// always perform this check in the same manner, to avoid inconsistencies |
-// (see http://code.google.com/p/skia/issues/detail?id=560 ). |
-static inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) { |
- *lengthSquared = get_length_squared(x, y, z); |
- return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero); |
-} |
- |
-SkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) { |
- float magSq = get_length_squared(x, y, z); |
- if (SkScalarIsFinite(magSq)) { |
- return sk_float_sqrt(magSq); |
- } else { |
- double xx = x; |
- double yy = y; |
- double zz = z; |
- return (float)sqrt(xx * xx + yy * yy + zz * zz); |
- } |
-} |
- |
-/* |
- * We have to worry about 2 tricky conditions: |
- * 1. underflow of magSq (compared against nearlyzero^2) |
- * 2. overflow of magSq (compared w/ isfinite) |
- * |
- * If we underflow, we return false. If we overflow, we compute again using |
- * doubles, which is much slower (3x in a desktop test) but will not overflow. |
- */ |
-bool SkPoint3::normalize() { |
- float magSq; |
- if (is_length_nearly_zero(fX, fY, fZ, &magSq)) { |
- this->set(0, 0, 0); |
- return false; |
- } |
- |
- float scale; |
- if (SkScalarIsFinite(magSq)) { |
- scale = 1.0f / sk_float_sqrt(magSq); |
- } else { |
- // our magSq step overflowed to infinity, so use doubles instead. |
- // much slower, but needed when x, y or z is very large, otherwise we |
- // divide by inf. and return (0,0,0) vector. |
- double xx = fX; |
- double yy = fY; |
- double zz = fZ; |
-#ifdef SK_CPU_FLUSH_TO_ZERO |
- // The iOS ARM processor discards small denormalized numbers to go faster. |
- // Casting this to a float would cause the scale to go to zero. Keeping it |
- // as a double for the multiply keeps the scale non-zero. |
- double dscale = 1.0f / sqrt(xx * xx + yy * yy + zz * zz); |
- fX = x * dscale; |
- fY = y * dscale; |
- fZ = z * dscale; |
- return true; |
-#else |
- scale = (float)(1.0f / sqrt(xx * xx + yy * yy + zz * zz)); |
-#endif |
- } |
- fX *= scale; |
- fY *= scale; |
- fZ *= scale; |
- return true; |
-} |