| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license | |
| 5 * that can be found in the LICENSE file in the root of the source | |
| 6 * tree. An additional intellectual property rights grant can be found | |
| 7 * in the file PATENTS. All contributing project authors may | |
| 8 * be found in the AUTHORS file in the root of the source tree. | |
| 9 */ | |
| 10 | |
| 11 #include <math.h> | |
| 12 #include "./vp9_rtcd.h" | |
| 13 #include "vpx_ports/mem.h" | |
| 14 #include "vp9/encoder/vp9_ssim.h" | |
| 15 | |
| 16 void vp9_ssim_parms_16x16_c(uint8_t *s, int sp, uint8_t *r, | |
| 17 int rp, unsigned long *sum_s, unsigned long *sum_r, | |
| 18 unsigned long *sum_sq_s, unsigned long *sum_sq_r, | |
| 19 unsigned long *sum_sxr) { | |
| 20 int i, j; | |
| 21 for (i = 0; i < 16; i++, s += sp, r += rp) { | |
| 22 for (j = 0; j < 16; j++) { | |
| 23 *sum_s += s[j]; | |
| 24 *sum_r += r[j]; | |
| 25 *sum_sq_s += s[j] * s[j]; | |
| 26 *sum_sq_r += r[j] * r[j]; | |
| 27 *sum_sxr += s[j] * r[j]; | |
| 28 } | |
| 29 } | |
| 30 } | |
| 31 void vp9_ssim_parms_8x8_c(uint8_t *s, int sp, uint8_t *r, int rp, | |
| 32 unsigned long *sum_s, unsigned long *sum_r, | |
| 33 unsigned long *sum_sq_s, unsigned long *sum_sq_r, | |
| 34 unsigned long *sum_sxr) { | |
| 35 int i, j; | |
| 36 for (i = 0; i < 8; i++, s += sp, r += rp) { | |
| 37 for (j = 0; j < 8; j++) { | |
| 38 *sum_s += s[j]; | |
| 39 *sum_r += r[j]; | |
| 40 *sum_sq_s += s[j] * s[j]; | |
| 41 *sum_sq_r += r[j] * r[j]; | |
| 42 *sum_sxr += s[j] * r[j]; | |
| 43 } | |
| 44 } | |
| 45 } | |
| 46 | |
| 47 #if CONFIG_VP9_HIGHBITDEPTH | |
| 48 void vp9_highbd_ssim_parms_8x8_c(uint16_t *s, int sp, uint16_t *r, int rp, | |
| 49 uint32_t *sum_s, uint32_t *sum_r, | |
| 50 uint32_t *sum_sq_s, uint32_t *sum_sq_r, | |
| 51 uint32_t *sum_sxr) { | |
| 52 int i, j; | |
| 53 for (i = 0; i < 8; i++, s += sp, r += rp) { | |
| 54 for (j = 0; j < 8; j++) { | |
| 55 *sum_s += s[j]; | |
| 56 *sum_r += r[j]; | |
| 57 *sum_sq_s += s[j] * s[j]; | |
| 58 *sum_sq_r += r[j] * r[j]; | |
| 59 *sum_sxr += s[j] * r[j]; | |
| 60 } | |
| 61 } | |
| 62 } | |
| 63 #endif // CONFIG_VP9_HIGHBITDEPTH | |
| 64 | |
| 65 static const int64_t cc1 = 26634; // (64^2*(.01*255)^2 | |
| 66 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2 | |
| 67 | |
| 68 static double similarity(unsigned long sum_s, unsigned long sum_r, | |
| 69 unsigned long sum_sq_s, unsigned long sum_sq_r, | |
| 70 unsigned long sum_sxr, int count) { | |
| 71 int64_t ssim_n, ssim_d; | |
| 72 int64_t c1, c2; | |
| 73 | |
| 74 // scale the constants by number of pixels | |
| 75 c1 = (cc1 * count * count) >> 12; | |
| 76 c2 = (cc2 * count * count) >> 12; | |
| 77 | |
| 78 ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t) 2 * count * sum_sxr - | |
| 79 (int64_t) 2 * sum_s * sum_r + c2); | |
| 80 | |
| 81 ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) * | |
| 82 ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s + | |
| 83 (int64_t)count * sum_sq_r - (int64_t) sum_r * sum_r + c2); | |
| 84 | |
| 85 return ssim_n * 1.0 / ssim_d; | |
| 86 } | |
| 87 | |
| 88 static double ssim_8x8(uint8_t *s, int sp, uint8_t *r, int rp) { | |
| 89 unsigned long sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; | |
| 90 vp9_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, | |
| 91 &sum_sxr); | |
| 92 return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64); | |
| 93 } | |
| 94 | |
| 95 #if CONFIG_VP9_HIGHBITDEPTH | |
| 96 static double highbd_ssim_8x8(uint16_t *s, int sp, uint16_t *r, int rp, | |
| 97 unsigned int bd) { | |
| 98 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; | |
| 99 const int oshift = bd - 8; | |
| 100 vp9_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, | |
| 101 &sum_sxr); | |
| 102 return similarity(sum_s >> oshift, | |
| 103 sum_r >> oshift, | |
| 104 sum_sq_s >> (2 * oshift), | |
| 105 sum_sq_r >> (2 * oshift), | |
| 106 sum_sxr >> (2 * oshift), | |
| 107 64); | |
| 108 } | |
| 109 #endif // CONFIG_VP9_HIGHBITDEPTH | |
| 110 | |
| 111 // We are using a 8x8 moving window with starting location of each 8x8 window | |
| 112 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap | |
| 113 // block boundaries to penalize blocking artifacts. | |
| 114 double vp9_ssim2(uint8_t *img1, uint8_t *img2, int stride_img1, | |
| 115 int stride_img2, int width, int height) { | |
| 116 int i, j; | |
| 117 int samples = 0; | |
| 118 double ssim_total = 0; | |
| 119 | |
| 120 // sample point start with each 4x4 location | |
| 121 for (i = 0; i <= height - 8; | |
| 122 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { | |
| 123 for (j = 0; j <= width - 8; j += 4) { | |
| 124 double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2); | |
| 125 ssim_total += v; | |
| 126 samples++; | |
| 127 } | |
| 128 } | |
| 129 ssim_total /= samples; | |
| 130 return ssim_total; | |
| 131 } | |
| 132 | |
| 133 #if CONFIG_VP9_HIGHBITDEPTH | |
| 134 double vp9_highbd_ssim2(uint8_t *img1, uint8_t *img2, int stride_img1, | |
| 135 int stride_img2, int width, int height, | |
| 136 unsigned int bd) { | |
| 137 int i, j; | |
| 138 int samples = 0; | |
| 139 double ssim_total = 0; | |
| 140 | |
| 141 // sample point start with each 4x4 location | |
| 142 for (i = 0; i <= height - 8; | |
| 143 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { | |
| 144 for (j = 0; j <= width - 8; j += 4) { | |
| 145 double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1, | |
| 146 CONVERT_TO_SHORTPTR(img2 + j), stride_img2, | |
| 147 bd); | |
| 148 ssim_total += v; | |
| 149 samples++; | |
| 150 } | |
| 151 } | |
| 152 ssim_total /= samples; | |
| 153 return ssim_total; | |
| 154 } | |
| 155 #endif // CONFIG_VP9_HIGHBITDEPTH | |
| 156 | |
| 157 double vp9_calc_ssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, | |
| 158 double *weight) { | |
| 159 double a, b, c; | |
| 160 double ssimv; | |
| 161 | |
| 162 a = vp9_ssim2(source->y_buffer, dest->y_buffer, | |
| 163 source->y_stride, dest->y_stride, | |
| 164 source->y_crop_width, source->y_crop_height); | |
| 165 | |
| 166 b = vp9_ssim2(source->u_buffer, dest->u_buffer, | |
| 167 source->uv_stride, dest->uv_stride, | |
| 168 source->uv_crop_width, source->uv_crop_height); | |
| 169 | |
| 170 c = vp9_ssim2(source->v_buffer, dest->v_buffer, | |
| 171 source->uv_stride, dest->uv_stride, | |
| 172 source->uv_crop_width, source->uv_crop_height); | |
| 173 | |
| 174 ssimv = a * .8 + .1 * (b + c); | |
| 175 | |
| 176 *weight = 1; | |
| 177 | |
| 178 return ssimv; | |
| 179 } | |
| 180 | |
| 181 double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, | |
| 182 double *ssim_y, double *ssim_u, double *ssim_v) { | |
| 183 double ssim_all = 0; | |
| 184 double a, b, c; | |
| 185 | |
| 186 a = vp9_ssim2(source->y_buffer, dest->y_buffer, | |
| 187 source->y_stride, dest->y_stride, | |
| 188 source->y_crop_width, source->y_crop_height); | |
| 189 | |
| 190 b = vp9_ssim2(source->u_buffer, dest->u_buffer, | |
| 191 source->uv_stride, dest->uv_stride, | |
| 192 source->uv_crop_width, source->uv_crop_height); | |
| 193 | |
| 194 c = vp9_ssim2(source->v_buffer, dest->v_buffer, | |
| 195 source->uv_stride, dest->uv_stride, | |
| 196 source->uv_crop_width, source->uv_crop_height); | |
| 197 *ssim_y = a; | |
| 198 *ssim_u = b; | |
| 199 *ssim_v = c; | |
| 200 ssim_all = (a * 4 + b + c) / 6; | |
| 201 | |
| 202 return ssim_all; | |
| 203 } | |
| 204 | |
| 205 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity | |
| 206 // | |
| 207 // Re working out the math -> | |
| 208 // | |
| 209 // ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) / | |
| 210 // ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2)) | |
| 211 // | |
| 212 // mean(x) = sum(x) / n | |
| 213 // | |
| 214 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n) | |
| 215 // | |
| 216 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n) | |
| 217 // | |
| 218 // ssim(x,y) = | |
| 219 // (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) / | |
| 220 // (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) * | |
| 221 // ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+ | |
| 222 // (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2))) | |
| 223 // | |
| 224 // factoring out n*n | |
| 225 // | |
| 226 // ssim(x,y) = | |
| 227 // (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) / | |
| 228 // (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) * | |
| 229 // (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2)) | |
| 230 // | |
| 231 // Replace c1 with n*n * c1 for the final step that leads to this code: | |
| 232 // The final step scales by 12 bits so we don't lose precision in the constants. | |
| 233 | |
| 234 double ssimv_similarity(Ssimv *sv, int64_t n) { | |
| 235 // Scale the constants by number of pixels. | |
| 236 const int64_t c1 = (cc1 * n * n) >> 12; | |
| 237 const int64_t c2 = (cc2 * n * n) >> 12; | |
| 238 | |
| 239 const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) / | |
| 240 (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1); | |
| 241 | |
| 242 // Since these variables are unsigned sums, convert to double so | |
| 243 // math is done in double arithmetic. | |
| 244 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) | |
| 245 / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r | |
| 246 - sv->sum_r * sv->sum_r + c2); | |
| 247 | |
| 248 return l * v; | |
| 249 } | |
| 250 | |
| 251 // The first term of the ssim metric is a luminance factor. | |
| 252 // | |
| 253 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1) | |
| 254 // | |
| 255 // This luminance factor is super sensitive to the dark side of luminance | |
| 256 // values and completely insensitive on the white side. check out 2 sets | |
| 257 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60 | |
| 258 // 2*250*252/ (250^2+252^2) => .99999997 | |
| 259 // | |
| 260 // As a result in this tweaked version of the calculation in which the | |
| 261 // luminance is taken as percentage off from peak possible. | |
| 262 // | |
| 263 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count | |
| 264 // | |
| 265 double ssimv_similarity2(Ssimv *sv, int64_t n) { | |
| 266 // Scale the constants by number of pixels. | |
| 267 const int64_t c1 = (cc1 * n * n) >> 12; | |
| 268 const int64_t c2 = (cc2 * n * n) >> 12; | |
| 269 | |
| 270 const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n; | |
| 271 const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1); | |
| 272 | |
| 273 // Since these variables are unsigned, sums convert to double so | |
| 274 // math is done in double arithmetic. | |
| 275 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) | |
| 276 / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + | |
| 277 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); | |
| 278 | |
| 279 return l * v; | |
| 280 } | |
| 281 void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, int img2_pitch, | |
| 282 Ssimv *sv) { | |
| 283 vp9_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, | |
| 284 &sv->sum_s, &sv->sum_r, &sv->sum_sq_s, &sv->sum_sq_r, | |
| 285 &sv->sum_sxr); | |
| 286 } | |
| 287 | |
| 288 double vp9_get_ssim_metrics(uint8_t *img1, int img1_pitch, | |
| 289 uint8_t *img2, int img2_pitch, | |
| 290 int width, int height, | |
| 291 Ssimv *sv2, Metrics *m, | |
| 292 int do_inconsistency) { | |
| 293 double dssim_total = 0; | |
| 294 double ssim_total = 0; | |
| 295 double ssim2_total = 0; | |
| 296 double inconsistency_total = 0; | |
| 297 int i, j; | |
| 298 int c = 0; | |
| 299 double norm; | |
| 300 double old_ssim_total = 0; | |
| 301 vp9_clear_system_state(); | |
| 302 // We can sample points as frequently as we like start with 1 per 4x4. | |
| 303 for (i = 0; i < height; i += 4, | |
| 304 img1 += img1_pitch * 4, img2 += img2_pitch * 4) { | |
| 305 for (j = 0; j < width; j += 4, ++c) { | |
| 306 Ssimv sv = {0}; | |
| 307 double ssim; | |
| 308 double ssim2; | |
| 309 double dssim; | |
| 310 uint32_t var_new; | |
| 311 uint32_t var_old; | |
| 312 uint32_t mean_new; | |
| 313 uint32_t mean_old; | |
| 314 double ssim_new; | |
| 315 double ssim_old; | |
| 316 | |
| 317 // Not sure there's a great way to handle the edge pixels | |
| 318 // in ssim when using a window. Seems biased against edge pixels | |
| 319 // however you handle this. This uses only samples that are | |
| 320 // fully in the frame. | |
| 321 if (j + 8 <= width && i + 8 <= height) { | |
| 322 ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv); | |
| 323 } | |
| 324 | |
| 325 ssim = ssimv_similarity(&sv, 64); | |
| 326 ssim2 = ssimv_similarity2(&sv, 64); | |
| 327 | |
| 328 sv.ssim = ssim2; | |
| 329 | |
| 330 // dssim is calculated to use as an actual error metric and | |
| 331 // is scaled up to the same range as sum square error. | |
| 332 // Since we are subsampling every 16th point maybe this should be | |
| 333 // *16 ? | |
| 334 dssim = 255 * 255 * (1 - ssim2) / 2; | |
| 335 | |
| 336 // Here I introduce a new error metric: consistency-weighted | |
| 337 // SSIM-inconsistency. This metric isolates frames where the | |
| 338 // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much | |
| 339 // sharper or blurrier than the others. Higher values indicate a | |
| 340 // temporally inconsistent SSIM. There are two ideas at work: | |
| 341 // | |
| 342 // 1) 'SSIM-inconsistency': the total inconsistency value | |
| 343 // reflects how much SSIM values are changing between this | |
| 344 // source / reference frame pair and the previous pair. | |
| 345 // | |
| 346 // 2) 'consistency-weighted': weights de-emphasize areas in the | |
| 347 // frame where the scene content has changed. Changes in scene | |
| 348 // content are detected via changes in local variance and local | |
| 349 // mean. | |
| 350 // | |
| 351 // Thus the overall measure reflects how inconsistent the SSIM | |
| 352 // values are, over consistent regions of the frame. | |
| 353 // | |
| 354 // The metric has three terms: | |
| 355 // | |
| 356 // term 1 -> uses change in scene Variance to weight error score | |
| 357 // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2) | |
| 358 // larger changes from one frame to the next mean we care | |
| 359 // less about consistency. | |
| 360 // | |
| 361 // term 2 -> uses change in local scene luminance to weight error | |
| 362 // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2) | |
| 363 // larger changes from one frame to the next mean we care | |
| 364 // less about consistency. | |
| 365 // | |
| 366 // term3 -> measures inconsistency in ssim scores between frames | |
| 367 // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2). | |
| 368 // | |
| 369 // This term compares the ssim score for the same location in 2 | |
| 370 // subsequent frames. | |
| 371 var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64; | |
| 372 var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64; | |
| 373 mean_new = sv.sum_s; | |
| 374 mean_old = sv2[c].sum_s; | |
| 375 ssim_new = sv.ssim; | |
| 376 ssim_old = sv2[c].ssim; | |
| 377 | |
| 378 if (do_inconsistency) { | |
| 379 // We do the metric once for every 4x4 block in the image. Since | |
| 380 // we are scaling the error to SSE for use in a psnr calculation | |
| 381 // 1.0 = 4x4x255x255 the worst error we can possibly have. | |
| 382 static const double kScaling = 4. * 4 * 255 * 255; | |
| 383 | |
| 384 // The constants have to be non 0 to avoid potential divide by 0 | |
| 385 // issues other than that they affect kind of a weighting between | |
| 386 // the terms. No testing of what the right terms should be has been | |
| 387 // done. | |
| 388 static const double c1 = 1, c2 = 1, c3 = 1; | |
| 389 | |
| 390 // This measures how much consistent variance is in two consecutive | |
| 391 // source frames. 1.0 means they have exactly the same variance. | |
| 392 const double variance_term = (2.0 * var_old * var_new + c1) / | |
| 393 (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1); | |
| 394 | |
| 395 // This measures how consistent the local mean are between two | |
| 396 // consecutive frames. 1.0 means they have exactly the same mean. | |
| 397 const double mean_term = (2.0 * mean_old * mean_new + c2) / | |
| 398 (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2); | |
| 399 | |
| 400 // This measures how consistent the ssims of two | |
| 401 // consecutive frames is. 1.0 means they are exactly the same. | |
| 402 double ssim_term = pow((2.0 * ssim_old * ssim_new + c3) / | |
| 403 (ssim_old * ssim_old + ssim_new * ssim_new + c3), | |
| 404 5); | |
| 405 | |
| 406 double this_inconsistency; | |
| 407 | |
| 408 // Floating point math sometimes makes this > 1 by a tiny bit. | |
| 409 // We want the metric to scale between 0 and 1.0 so we can convert | |
| 410 // it to an snr scaled value. | |
| 411 if (ssim_term > 1) | |
| 412 ssim_term = 1; | |
| 413 | |
| 414 // This converts the consistency metric to an inconsistency metric | |
| 415 // ( so we can scale it like psnr to something like sum square error. | |
| 416 // The reason for the variance and mean terms is the assumption that | |
| 417 // if there are big changes in the source we shouldn't penalize | |
| 418 // inconsistency in ssim scores a bit less as it will be less visible | |
| 419 // to the user. | |
| 420 this_inconsistency = (1 - ssim_term) * variance_term * mean_term; | |
| 421 | |
| 422 this_inconsistency *= kScaling; | |
| 423 inconsistency_total += this_inconsistency; | |
| 424 } | |
| 425 sv2[c] = sv; | |
| 426 ssim_total += ssim; | |
| 427 ssim2_total += ssim2; | |
| 428 dssim_total += dssim; | |
| 429 | |
| 430 old_ssim_total += ssim_old; | |
| 431 } | |
| 432 old_ssim_total += 0; | |
| 433 } | |
| 434 | |
| 435 norm = 1. / (width / 4) / (height / 4); | |
| 436 ssim_total *= norm; | |
| 437 ssim2_total *= norm; | |
| 438 m->ssim2 = ssim2_total; | |
| 439 m->ssim = ssim_total; | |
| 440 if (old_ssim_total == 0) | |
| 441 inconsistency_total = 0; | |
| 442 | |
| 443 m->ssimc = inconsistency_total; | |
| 444 | |
| 445 m->dssim = dssim_total; | |
| 446 return inconsistency_total; | |
| 447 } | |
| 448 | |
| 449 | |
| 450 #if CONFIG_VP9_HIGHBITDEPTH | |
| 451 double vp9_highbd_calc_ssim(YV12_BUFFER_CONFIG *source, | |
| 452 YV12_BUFFER_CONFIG *dest, | |
| 453 double *weight, unsigned int bd) { | |
| 454 double a, b, c; | |
| 455 double ssimv; | |
| 456 | |
| 457 a = vp9_highbd_ssim2(source->y_buffer, dest->y_buffer, | |
| 458 source->y_stride, dest->y_stride, | |
| 459 source->y_crop_width, source->y_crop_height, bd); | |
| 460 | |
| 461 b = vp9_highbd_ssim2(source->u_buffer, dest->u_buffer, | |
| 462 source->uv_stride, dest->uv_stride, | |
| 463 source->uv_crop_width, source->uv_crop_height, bd); | |
| 464 | |
| 465 c = vp9_highbd_ssim2(source->v_buffer, dest->v_buffer, | |
| 466 source->uv_stride, dest->uv_stride, | |
| 467 source->uv_crop_width, source->uv_crop_height, bd); | |
| 468 | |
| 469 ssimv = a * .8 + .1 * (b + c); | |
| 470 | |
| 471 *weight = 1; | |
| 472 | |
| 473 return ssimv; | |
| 474 } | |
| 475 | |
| 476 double vp9_highbd_calc_ssimg(YV12_BUFFER_CONFIG *source, | |
| 477 YV12_BUFFER_CONFIG *dest, double *ssim_y, | |
| 478 double *ssim_u, double *ssim_v, unsigned int bd) { | |
| 479 double ssim_all = 0; | |
| 480 double a, b, c; | |
| 481 | |
| 482 a = vp9_highbd_ssim2(source->y_buffer, dest->y_buffer, | |
| 483 source->y_stride, dest->y_stride, | |
| 484 source->y_crop_width, source->y_crop_height, bd); | |
| 485 | |
| 486 b = vp9_highbd_ssim2(source->u_buffer, dest->u_buffer, | |
| 487 source->uv_stride, dest->uv_stride, | |
| 488 source->uv_crop_width, source->uv_crop_height, bd); | |
| 489 | |
| 490 c = vp9_highbd_ssim2(source->v_buffer, dest->v_buffer, | |
| 491 source->uv_stride, dest->uv_stride, | |
| 492 source->uv_crop_width, source->uv_crop_height, bd); | |
| 493 *ssim_y = a; | |
| 494 *ssim_u = b; | |
| 495 *ssim_v = c; | |
| 496 ssim_all = (a * 4 + b + c) / 6; | |
| 497 | |
| 498 return ssim_all; | |
| 499 } | |
| 500 #endif // CONFIG_VP9_HIGHBITDEPTH | |
| OLD | NEW |