Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(62)

Side by Side Diff: source/libvpx/vp9/encoder/vp9_ssim.c

Issue 1302353004: libvpx: Pull from upstream (Closed) Base URL: https://chromium.googlesource.com/chromium/deps/libvpx.git@master
Patch Set: Created 5 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_ssim.h ('k') | source/libvpx/vp9/encoder/vp9_svc_layercontext.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <math.h>
12 #include "./vp9_rtcd.h"
13 #include "vpx_ports/mem.h"
14 #include "vp9/encoder/vp9_ssim.h"
15
16 void vp9_ssim_parms_16x16_c(uint8_t *s, int sp, uint8_t *r,
17 int rp, unsigned long *sum_s, unsigned long *sum_r,
18 unsigned long *sum_sq_s, unsigned long *sum_sq_r,
19 unsigned long *sum_sxr) {
20 int i, j;
21 for (i = 0; i < 16; i++, s += sp, r += rp) {
22 for (j = 0; j < 16; j++) {
23 *sum_s += s[j];
24 *sum_r += r[j];
25 *sum_sq_s += s[j] * s[j];
26 *sum_sq_r += r[j] * r[j];
27 *sum_sxr += s[j] * r[j];
28 }
29 }
30 }
31 void vp9_ssim_parms_8x8_c(uint8_t *s, int sp, uint8_t *r, int rp,
32 unsigned long *sum_s, unsigned long *sum_r,
33 unsigned long *sum_sq_s, unsigned long *sum_sq_r,
34 unsigned long *sum_sxr) {
35 int i, j;
36 for (i = 0; i < 8; i++, s += sp, r += rp) {
37 for (j = 0; j < 8; j++) {
38 *sum_s += s[j];
39 *sum_r += r[j];
40 *sum_sq_s += s[j] * s[j];
41 *sum_sq_r += r[j] * r[j];
42 *sum_sxr += s[j] * r[j];
43 }
44 }
45 }
46
47 #if CONFIG_VP9_HIGHBITDEPTH
48 void vp9_highbd_ssim_parms_8x8_c(uint16_t *s, int sp, uint16_t *r, int rp,
49 uint32_t *sum_s, uint32_t *sum_r,
50 uint32_t *sum_sq_s, uint32_t *sum_sq_r,
51 uint32_t *sum_sxr) {
52 int i, j;
53 for (i = 0; i < 8; i++, s += sp, r += rp) {
54 for (j = 0; j < 8; j++) {
55 *sum_s += s[j];
56 *sum_r += r[j];
57 *sum_sq_s += s[j] * s[j];
58 *sum_sq_r += r[j] * r[j];
59 *sum_sxr += s[j] * r[j];
60 }
61 }
62 }
63 #endif // CONFIG_VP9_HIGHBITDEPTH
64
65 static const int64_t cc1 = 26634; // (64^2*(.01*255)^2
66 static const int64_t cc2 = 239708; // (64^2*(.03*255)^2
67
68 static double similarity(unsigned long sum_s, unsigned long sum_r,
69 unsigned long sum_sq_s, unsigned long sum_sq_r,
70 unsigned long sum_sxr, int count) {
71 int64_t ssim_n, ssim_d;
72 int64_t c1, c2;
73
74 // scale the constants by number of pixels
75 c1 = (cc1 * count * count) >> 12;
76 c2 = (cc2 * count * count) >> 12;
77
78 ssim_n = (2 * sum_s * sum_r + c1) * ((int64_t) 2 * count * sum_sxr -
79 (int64_t) 2 * sum_s * sum_r + c2);
80
81 ssim_d = (sum_s * sum_s + sum_r * sum_r + c1) *
82 ((int64_t)count * sum_sq_s - (int64_t)sum_s * sum_s +
83 (int64_t)count * sum_sq_r - (int64_t) sum_r * sum_r + c2);
84
85 return ssim_n * 1.0 / ssim_d;
86 }
87
88 static double ssim_8x8(uint8_t *s, int sp, uint8_t *r, int rp) {
89 unsigned long sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
90 vp9_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
91 &sum_sxr);
92 return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64);
93 }
94
95 #if CONFIG_VP9_HIGHBITDEPTH
96 static double highbd_ssim_8x8(uint16_t *s, int sp, uint16_t *r, int rp,
97 unsigned int bd) {
98 uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0;
99 const int oshift = bd - 8;
100 vp9_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r,
101 &sum_sxr);
102 return similarity(sum_s >> oshift,
103 sum_r >> oshift,
104 sum_sq_s >> (2 * oshift),
105 sum_sq_r >> (2 * oshift),
106 sum_sxr >> (2 * oshift),
107 64);
108 }
109 #endif // CONFIG_VP9_HIGHBITDEPTH
110
111 // We are using a 8x8 moving window with starting location of each 8x8 window
112 // on the 4x4 pixel grid. Such arrangement allows the windows to overlap
113 // block boundaries to penalize blocking artifacts.
114 double vp9_ssim2(uint8_t *img1, uint8_t *img2, int stride_img1,
115 int stride_img2, int width, int height) {
116 int i, j;
117 int samples = 0;
118 double ssim_total = 0;
119
120 // sample point start with each 4x4 location
121 for (i = 0; i <= height - 8;
122 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
123 for (j = 0; j <= width - 8; j += 4) {
124 double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2);
125 ssim_total += v;
126 samples++;
127 }
128 }
129 ssim_total /= samples;
130 return ssim_total;
131 }
132
133 #if CONFIG_VP9_HIGHBITDEPTH
134 double vp9_highbd_ssim2(uint8_t *img1, uint8_t *img2, int stride_img1,
135 int stride_img2, int width, int height,
136 unsigned int bd) {
137 int i, j;
138 int samples = 0;
139 double ssim_total = 0;
140
141 // sample point start with each 4x4 location
142 for (i = 0; i <= height - 8;
143 i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) {
144 for (j = 0; j <= width - 8; j += 4) {
145 double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1,
146 CONVERT_TO_SHORTPTR(img2 + j), stride_img2,
147 bd);
148 ssim_total += v;
149 samples++;
150 }
151 }
152 ssim_total /= samples;
153 return ssim_total;
154 }
155 #endif // CONFIG_VP9_HIGHBITDEPTH
156
157 double vp9_calc_ssim(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
158 double *weight) {
159 double a, b, c;
160 double ssimv;
161
162 a = vp9_ssim2(source->y_buffer, dest->y_buffer,
163 source->y_stride, dest->y_stride,
164 source->y_crop_width, source->y_crop_height);
165
166 b = vp9_ssim2(source->u_buffer, dest->u_buffer,
167 source->uv_stride, dest->uv_stride,
168 source->uv_crop_width, source->uv_crop_height);
169
170 c = vp9_ssim2(source->v_buffer, dest->v_buffer,
171 source->uv_stride, dest->uv_stride,
172 source->uv_crop_width, source->uv_crop_height);
173
174 ssimv = a * .8 + .1 * (b + c);
175
176 *weight = 1;
177
178 return ssimv;
179 }
180
181 double vp9_calc_ssimg(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest,
182 double *ssim_y, double *ssim_u, double *ssim_v) {
183 double ssim_all = 0;
184 double a, b, c;
185
186 a = vp9_ssim2(source->y_buffer, dest->y_buffer,
187 source->y_stride, dest->y_stride,
188 source->y_crop_width, source->y_crop_height);
189
190 b = vp9_ssim2(source->u_buffer, dest->u_buffer,
191 source->uv_stride, dest->uv_stride,
192 source->uv_crop_width, source->uv_crop_height);
193
194 c = vp9_ssim2(source->v_buffer, dest->v_buffer,
195 source->uv_stride, dest->uv_stride,
196 source->uv_crop_width, source->uv_crop_height);
197 *ssim_y = a;
198 *ssim_u = b;
199 *ssim_v = c;
200 ssim_all = (a * 4 + b + c) / 6;
201
202 return ssim_all;
203 }
204
205 // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity
206 //
207 // Re working out the math ->
208 //
209 // ssim(x,y) = (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) /
210 // ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2))
211 //
212 // mean(x) = sum(x) / n
213 //
214 // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n)
215 //
216 // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n)
217 //
218 // ssim(x,y) =
219 // (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) /
220 // (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) *
221 // ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+
222 // (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2)))
223 //
224 // factoring out n*n
225 //
226 // ssim(x,y) =
227 // (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) /
228 // (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) *
229 // (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2))
230 //
231 // Replace c1 with n*n * c1 for the final step that leads to this code:
232 // The final step scales by 12 bits so we don't lose precision in the constants.
233
234 double ssimv_similarity(Ssimv *sv, int64_t n) {
235 // Scale the constants by number of pixels.
236 const int64_t c1 = (cc1 * n * n) >> 12;
237 const int64_t c2 = (cc2 * n * n) >> 12;
238
239 const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) /
240 (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1);
241
242 // Since these variables are unsigned sums, convert to double so
243 // math is done in double arithmetic.
244 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
245 / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + n * sv->sum_sq_r
246 - sv->sum_r * sv->sum_r + c2);
247
248 return l * v;
249 }
250
251 // The first term of the ssim metric is a luminance factor.
252 //
253 // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1)
254 //
255 // This luminance factor is super sensitive to the dark side of luminance
256 // values and completely insensitive on the white side. check out 2 sets
257 // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60
258 // 2*250*252/ (250^2+252^2) => .99999997
259 //
260 // As a result in this tweaked version of the calculation in which the
261 // luminance is taken as percentage off from peak possible.
262 //
263 // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count
264 //
265 double ssimv_similarity2(Ssimv *sv, int64_t n) {
266 // Scale the constants by number of pixels.
267 const int64_t c1 = (cc1 * n * n) >> 12;
268 const int64_t c2 = (cc2 * n * n) >> 12;
269
270 const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n;
271 const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1);
272
273 // Since these variables are unsigned, sums convert to double so
274 // math is done in double arithmetic.
275 const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2)
276 / (n * sv->sum_sq_s - sv->sum_s * sv->sum_s +
277 n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2);
278
279 return l * v;
280 }
281 void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, int img2_pitch,
282 Ssimv *sv) {
283 vp9_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch,
284 &sv->sum_s, &sv->sum_r, &sv->sum_sq_s, &sv->sum_sq_r,
285 &sv->sum_sxr);
286 }
287
288 double vp9_get_ssim_metrics(uint8_t *img1, int img1_pitch,
289 uint8_t *img2, int img2_pitch,
290 int width, int height,
291 Ssimv *sv2, Metrics *m,
292 int do_inconsistency) {
293 double dssim_total = 0;
294 double ssim_total = 0;
295 double ssim2_total = 0;
296 double inconsistency_total = 0;
297 int i, j;
298 int c = 0;
299 double norm;
300 double old_ssim_total = 0;
301 vp9_clear_system_state();
302 // We can sample points as frequently as we like start with 1 per 4x4.
303 for (i = 0; i < height; i += 4,
304 img1 += img1_pitch * 4, img2 += img2_pitch * 4) {
305 for (j = 0; j < width; j += 4, ++c) {
306 Ssimv sv = {0};
307 double ssim;
308 double ssim2;
309 double dssim;
310 uint32_t var_new;
311 uint32_t var_old;
312 uint32_t mean_new;
313 uint32_t mean_old;
314 double ssim_new;
315 double ssim_old;
316
317 // Not sure there's a great way to handle the edge pixels
318 // in ssim when using a window. Seems biased against edge pixels
319 // however you handle this. This uses only samples that are
320 // fully in the frame.
321 if (j + 8 <= width && i + 8 <= height) {
322 ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv);
323 }
324
325 ssim = ssimv_similarity(&sv, 64);
326 ssim2 = ssimv_similarity2(&sv, 64);
327
328 sv.ssim = ssim2;
329
330 // dssim is calculated to use as an actual error metric and
331 // is scaled up to the same range as sum square error.
332 // Since we are subsampling every 16th point maybe this should be
333 // *16 ?
334 dssim = 255 * 255 * (1 - ssim2) / 2;
335
336 // Here I introduce a new error metric: consistency-weighted
337 // SSIM-inconsistency. This metric isolates frames where the
338 // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much
339 // sharper or blurrier than the others. Higher values indicate a
340 // temporally inconsistent SSIM. There are two ideas at work:
341 //
342 // 1) 'SSIM-inconsistency': the total inconsistency value
343 // reflects how much SSIM values are changing between this
344 // source / reference frame pair and the previous pair.
345 //
346 // 2) 'consistency-weighted': weights de-emphasize areas in the
347 // frame where the scene content has changed. Changes in scene
348 // content are detected via changes in local variance and local
349 // mean.
350 //
351 // Thus the overall measure reflects how inconsistent the SSIM
352 // values are, over consistent regions of the frame.
353 //
354 // The metric has three terms:
355 //
356 // term 1 -> uses change in scene Variance to weight error score
357 // 2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2)
358 // larger changes from one frame to the next mean we care
359 // less about consistency.
360 //
361 // term 2 -> uses change in local scene luminance to weight error
362 // 2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2)
363 // larger changes from one frame to the next mean we care
364 // less about consistency.
365 //
366 // term3 -> measures inconsistency in ssim scores between frames
367 // 1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2).
368 //
369 // This term compares the ssim score for the same location in 2
370 // subsequent frames.
371 var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64;
372 var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64;
373 mean_new = sv.sum_s;
374 mean_old = sv2[c].sum_s;
375 ssim_new = sv.ssim;
376 ssim_old = sv2[c].ssim;
377
378 if (do_inconsistency) {
379 // We do the metric once for every 4x4 block in the image. Since
380 // we are scaling the error to SSE for use in a psnr calculation
381 // 1.0 = 4x4x255x255 the worst error we can possibly have.
382 static const double kScaling = 4. * 4 * 255 * 255;
383
384 // The constants have to be non 0 to avoid potential divide by 0
385 // issues other than that they affect kind of a weighting between
386 // the terms. No testing of what the right terms should be has been
387 // done.
388 static const double c1 = 1, c2 = 1, c3 = 1;
389
390 // This measures how much consistent variance is in two consecutive
391 // source frames. 1.0 means they have exactly the same variance.
392 const double variance_term = (2.0 * var_old * var_new + c1) /
393 (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1);
394
395 // This measures how consistent the local mean are between two
396 // consecutive frames. 1.0 means they have exactly the same mean.
397 const double mean_term = (2.0 * mean_old * mean_new + c2) /
398 (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2);
399
400 // This measures how consistent the ssims of two
401 // consecutive frames is. 1.0 means they are exactly the same.
402 double ssim_term = pow((2.0 * ssim_old * ssim_new + c3) /
403 (ssim_old * ssim_old + ssim_new * ssim_new + c3),
404 5);
405
406 double this_inconsistency;
407
408 // Floating point math sometimes makes this > 1 by a tiny bit.
409 // We want the metric to scale between 0 and 1.0 so we can convert
410 // it to an snr scaled value.
411 if (ssim_term > 1)
412 ssim_term = 1;
413
414 // This converts the consistency metric to an inconsistency metric
415 // ( so we can scale it like psnr to something like sum square error.
416 // The reason for the variance and mean terms is the assumption that
417 // if there are big changes in the source we shouldn't penalize
418 // inconsistency in ssim scores a bit less as it will be less visible
419 // to the user.
420 this_inconsistency = (1 - ssim_term) * variance_term * mean_term;
421
422 this_inconsistency *= kScaling;
423 inconsistency_total += this_inconsistency;
424 }
425 sv2[c] = sv;
426 ssim_total += ssim;
427 ssim2_total += ssim2;
428 dssim_total += dssim;
429
430 old_ssim_total += ssim_old;
431 }
432 old_ssim_total += 0;
433 }
434
435 norm = 1. / (width / 4) / (height / 4);
436 ssim_total *= norm;
437 ssim2_total *= norm;
438 m->ssim2 = ssim2_total;
439 m->ssim = ssim_total;
440 if (old_ssim_total == 0)
441 inconsistency_total = 0;
442
443 m->ssimc = inconsistency_total;
444
445 m->dssim = dssim_total;
446 return inconsistency_total;
447 }
448
449
450 #if CONFIG_VP9_HIGHBITDEPTH
451 double vp9_highbd_calc_ssim(YV12_BUFFER_CONFIG *source,
452 YV12_BUFFER_CONFIG *dest,
453 double *weight, unsigned int bd) {
454 double a, b, c;
455 double ssimv;
456
457 a = vp9_highbd_ssim2(source->y_buffer, dest->y_buffer,
458 source->y_stride, dest->y_stride,
459 source->y_crop_width, source->y_crop_height, bd);
460
461 b = vp9_highbd_ssim2(source->u_buffer, dest->u_buffer,
462 source->uv_stride, dest->uv_stride,
463 source->uv_crop_width, source->uv_crop_height, bd);
464
465 c = vp9_highbd_ssim2(source->v_buffer, dest->v_buffer,
466 source->uv_stride, dest->uv_stride,
467 source->uv_crop_width, source->uv_crop_height, bd);
468
469 ssimv = a * .8 + .1 * (b + c);
470
471 *weight = 1;
472
473 return ssimv;
474 }
475
476 double vp9_highbd_calc_ssimg(YV12_BUFFER_CONFIG *source,
477 YV12_BUFFER_CONFIG *dest, double *ssim_y,
478 double *ssim_u, double *ssim_v, unsigned int bd) {
479 double ssim_all = 0;
480 double a, b, c;
481
482 a = vp9_highbd_ssim2(source->y_buffer, dest->y_buffer,
483 source->y_stride, dest->y_stride,
484 source->y_crop_width, source->y_crop_height, bd);
485
486 b = vp9_highbd_ssim2(source->u_buffer, dest->u_buffer,
487 source->uv_stride, dest->uv_stride,
488 source->uv_crop_width, source->uv_crop_height, bd);
489
490 c = vp9_highbd_ssim2(source->v_buffer, dest->v_buffer,
491 source->uv_stride, dest->uv_stride,
492 source->uv_crop_width, source->uv_crop_height, bd);
493 *ssim_y = a;
494 *ssim_u = b;
495 *ssim_v = c;
496 ssim_all = (a * 4 + b + c) / 6;
497
498 return ssim_all;
499 }
500 #endif // CONFIG_VP9_HIGHBITDEPTH
OLDNEW
« no previous file with comments | « source/libvpx/vp9/encoder/vp9_ssim.h ('k') | source/libvpx/vp9/encoder/vp9_svc_layercontext.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698