OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright (c) 2015 The Native Client Authors. All rights reserved. | |
3 * Use of this source code is governed by a BSD-style license that can be | |
4 * found in the LICENSE file. | |
5 */ | |
6 | |
7 #include <pthread.h> | |
8 #include <semaphore.h> | |
9 | |
10 #include "native_client/src/include/nacl_assert.h" | |
11 #include "native_client/src/untrusted/irt/irt.h" | |
12 #include "native_client/src/untrusted/nacl/nacl_irt.h" | |
13 #include "native_client/src/untrusted/nacl/nacl_thread.h" | |
14 | |
15 #define CHECK_OK(expr) ASSERT_EQ(expr, 0) | |
16 | |
17 namespace { | |
18 | |
19 struct nacl_irt_thread_v0_2 libnacl_irt_thread_v0_2; | |
20 struct nacl_irt_async_signal_handling libnacl_irt_async_signal_handling; | |
21 | |
22 volatile int g_signal_count; | |
23 volatile int g_signal_arrived; | |
24 volatile int g_test_running; | |
25 nacl_irt_tid_t g_child_tid; | |
26 void *g_expected_tls; | |
27 sem_t g_sem; | |
28 | |
29 int thread_create_wrapper(void (*start_func)(void), void *stack, | |
30 void *thread_ptr) { | |
31 return libnacl_irt_thread_v0_2.thread_create(start_func, stack, thread_ptr, | |
32 &g_child_tid); | |
33 } | |
34 | |
35 int set_async_signal_handler(NaClIrtAsyncSignalHandler handler) { | |
36 return libnacl_irt_async_signal_handling.set_async_signal_handler(handler); | |
37 } | |
38 | |
39 int send_async_signal(nacl_irt_tid_t tid) { | |
40 return libnacl_irt_async_signal_handling.send_async_signal(tid); | |
41 } | |
42 | |
43 /* | |
44 * Check that sending a signal before initializing signal support will result in | |
45 * an error. | |
46 */ | |
47 void test_send_signal_before_set_handler() { | |
48 int retval = send_async_signal(0); | |
49 ASSERT_EQ(retval, ESRCH); | |
50 } | |
51 | |
52 /* | |
53 * Check that nacl_tls_get() is async-signal-safe. | |
54 */ | |
55 void tls_get_signal_handler(NaClExceptionContext *exc) { | |
56 if (!g_test_running) | |
57 return; | |
58 ASSERT_EQ(nacl_tls_get(), g_expected_tls); | |
59 g_signal_count++; | |
60 g_signal_arrived = 1; | |
61 } | |
62 | |
63 void *tls_get_thread_func(void *arg) { | |
64 g_expected_tls = nacl_tls_get(); | |
65 CHECK_OK(sem_post(&g_sem)); | |
66 while (g_test_running) { | |
67 ASSERT_EQ(nacl_tls_get(), g_expected_tls); | |
68 if (__sync_bool_compare_and_swap(&g_signal_arrived, 1, 0)) { | |
69 CHECK_OK(sem_post(&g_sem)); | |
70 } | |
71 } | |
72 return NULL; | |
73 } | |
74 | |
75 void test_async_safe_tls_get() { | |
76 CHECK_OK(sem_init(&g_sem, 0, 0)); | |
77 CHECK_OK(set_async_signal_handler(tls_get_signal_handler)); | |
78 | |
79 pthread_t tid; | |
80 g_signal_count = 0; | |
81 g_signal_arrived = 0; | |
82 g_test_running = true; | |
83 CHECK_OK(pthread_create(&tid, NULL, tls_get_thread_func, NULL)); | |
84 | |
85 CHECK_OK(sem_wait(&g_sem)); | |
86 const int kSignalCount = 1000; | |
87 for (int i = 0; i < kSignalCount; i++) { | |
88 CHECK_OK(send_async_signal(g_child_tid)); | |
89 CHECK_OK(sem_wait(&g_sem)); | |
90 } | |
91 g_test_running = false; | |
92 /* Send a last signal to make sure any waiting syscalls get interrupted. */ | |
93 CHECK_OK(send_async_signal(g_child_tid)); | |
94 CHECK_OK(pthread_join(tid, NULL)); | |
95 ASSERT_EQ(g_signal_count, kSignalCount); | |
96 CHECK_OK(sem_destroy(&g_sem)); | |
97 } | |
98 | |
99 #if !defined(__arm__) | |
100 /* This test is broken on QEMU. */ | |
101 | |
102 /* | |
103 * Check that both futex_wake() and futex_wait_abs() are signal-async-safe. | |
104 */ | |
105 void futex_signal_handler(NaClExceptionContext *exc) { | |
106 int count = 0; | |
107 ASSERT_EQ(__sync_bool_compare_and_swap(&g_signal_arrived, 0, 1), 1); | |
108 CHECK_OK(__libnacl_irt_futex.futex_wake(&g_signal_arrived, INT_MAX, &count)); | |
109 /* | |
110 * |count| is always 0 since the thread waiting is now running the signal | |
111 * handler, so it did not actually count as a wakeup. | |
112 */ | |
113 ASSERT_EQ(count, 0); | |
114 if (g_test_running) | |
115 g_signal_count++; | |
116 } | |
117 | |
118 void *futex_thread_func(void *arg) { | |
119 CHECK_OK(sem_post(&g_sem)); | |
120 struct timespec timeout; | |
121 /* | |
122 * Make the timeout be the current time plus 10 seconds. This timeout should | |
123 * never kick in, but if it does it means we deadlocked, so it's better to | |
124 * assert than letting the job itself time out. | |
125 */ | |
126 clock_gettime(CLOCK_REALTIME, &timeout); | |
127 timeout.tv_sec += 10; | |
128 while (g_test_running) { | |
129 int retval = __libnacl_irt_futex.futex_wait_abs(&g_signal_arrived, 0, | |
130 &timeout); | |
131 if (retval == EWOULDBLOCK) { | |
132 /* | |
133 * The signal handler executed before we could wait and changed the value | |
134 * of |g_signal_arrived|. | |
135 */ | |
136 } else { | |
137 /* | |
138 * futex_wait_abs, when provided with a non-NULL timeout argument, can be | |
139 * interrupted and will set errno to EINTR. This can happen even if the | |
140 * SA_RESTART flag was used. | |
141 */ | |
142 ASSERT_EQ(retval, EINTR); | |
143 } | |
144 ASSERT_EQ(__sync_bool_compare_and_swap(&g_signal_arrived, 1, 0), 1); | |
145 /* | |
146 * Have to test again since we could have gone sleeping again after the last | |
147 * iteration. | |
148 */ | |
149 if (g_test_running) | |
150 CHECK_OK(sem_post(&g_sem)); | |
151 } | |
152 return NULL; | |
153 } | |
154 | |
155 void test_async_safe_futex() { | |
156 CHECK_OK(sem_init(&g_sem, 0, 0)); | |
157 CHECK_OK(set_async_signal_handler(futex_signal_handler)); | |
158 | |
159 pthread_t tid; | |
160 g_signal_count = 0; | |
161 g_signal_arrived = 0; | |
162 g_test_running = true; | |
163 CHECK_OK(pthread_create(&tid, NULL, futex_thread_func, NULL)); | |
164 | |
165 CHECK_OK(sem_wait(&g_sem)); | |
166 const int kSignalCount = 1000; | |
167 for (int i = 0; i < kSignalCount; i++) { | |
168 CHECK_OK(send_async_signal(g_child_tid)); | |
169 CHECK_OK(sem_wait(&g_sem)); | |
170 } | |
171 g_test_running = false; | |
172 /* Send a last signal to make sure any waiting syscalls get interrupted. */ | |
173 CHECK_OK(send_async_signal(g_child_tid)); | |
174 CHECK_OK(pthread_join(tid, NULL)); | |
175 ASSERT_EQ(g_signal_count, kSignalCount); | |
176 CHECK_OK(sem_destroy(&g_sem)); | |
177 } | |
178 | |
179 #endif | |
180 | |
181 /* | |
182 * Check that futex_wait_abs() with no timeout is restarted. | |
183 * As opposed to the above test with futex, the signal handler does not try to | |
184 * wake the thread up, since it will sometimes be called _after_ the | |
185 * futex_wait_abs() returns. | |
186 */ | |
187 void futex_wait_signal_handler(NaClExceptionContext *exc) { | |
188 ASSERT_EQ(__sync_bool_compare_and_swap(&g_signal_arrived, 0, 1), 1); | |
189 } | |
190 | |
191 void *futex_wait_thread_func(void *arg) { | |
192 volatile int *futex = (volatile int *)arg; | |
193 CHECK_OK(sem_post(&g_sem)); | |
194 while (g_test_running) { | |
195 /* | |
196 * Unfortunately, Linux sometimes can return 0 (instead of EINTR) on | |
197 * futex_wait_abs() when it is spuriously woken up. | |
198 */ | |
199 while (*futex == 0) { | |
200 int retval = __libnacl_irt_futex.futex_wait_abs(futex, 0, NULL); | |
201 if (retval != EWOULDBLOCK) | |
202 ASSERT_EQ(retval, 0); | |
203 } | |
204 ASSERT_EQ(__sync_bool_compare_and_swap(futex, 1, 0), 1); | |
205 | |
206 /* | |
207 * Have to test again since we could have gone sleeping again after the last | |
208 * iteration. | |
209 */ | |
210 if (g_test_running) { | |
211 ASSERT_EQ(__sync_bool_compare_and_swap(&g_signal_arrived, 1, 0), 1); | |
212 g_signal_count++; | |
213 CHECK_OK(sem_post(&g_sem)); | |
214 } | |
215 } | |
216 return NULL; | |
217 } | |
218 | |
219 void test_futex_wait_restart() { | |
220 CHECK_OK(sem_init(&g_sem, 0, 0)); | |
221 CHECK_OK(set_async_signal_handler(futex_wait_signal_handler)); | |
222 | |
223 pthread_t tid; | |
224 g_signal_count = 0; | |
225 g_signal_arrived = 0; | |
226 volatile int futex = 0; | |
227 g_test_running = true; | |
228 CHECK_OK(pthread_create(&tid, NULL, futex_wait_thread_func, (void *)&futex)); | |
229 | |
230 CHECK_OK(sem_wait(&g_sem)); | |
231 const int kSignalCount = 1000; | |
232 int count = 0; | |
233 for (int i = 0; i < kSignalCount; i++) { | |
234 /* Yield to the other process to try and get it in the desired state. */ | |
235 sched_yield(); | |
236 CHECK_OK(send_async_signal(g_child_tid)); | |
237 sched_yield(); | |
238 | |
239 /* Wake it up using futex. This time, |count| may be 1. */ | |
240 ASSERT_EQ(__sync_bool_compare_and_swap(&futex, 0, 1), 1); | |
241 CHECK_OK(__libnacl_irt_futex.futex_wake(&futex, INT_MAX, &count)); | |
242 ASSERT_LE(count, 1); | |
243 | |
244 CHECK_OK(sem_wait(&g_sem)); | |
245 } | |
246 g_test_running = false; | |
247 /* | |
248 * Wake the thread up again in case it waited again. | |
249 */ | |
250 __sync_bool_compare_and_swap(&futex, 0, 1); | |
251 CHECK_OK(__libnacl_irt_futex.futex_wake(&futex, INT_MAX, &count)); | |
252 CHECK_OK(pthread_join(tid, NULL)); | |
253 ASSERT_EQ(g_signal_count, kSignalCount); | |
254 CHECK_OK(sem_destroy(&g_sem)); | |
255 } | |
256 | |
257 /* | |
258 * Check that send_async_signal() is async-signal-safe. | |
259 */ | |
260 void signal_signal_handler(NaClExceptionContext *exc) { | |
261 if (!g_test_running) | |
262 return; | |
263 if (++g_signal_count % 2 == 1) { | |
264 CHECK_OK(send_async_signal(g_child_tid)); | |
265 g_signal_arrived = 1; | |
266 } | |
267 } | |
268 | |
269 void *signal_thread_func(void *arg) { | |
270 CHECK_OK(sem_post(&g_sem)); | |
271 struct timespec req, rem; | |
272 /* | |
273 * In case we are unlucky and the signal arrives before the first sleep, limit | |
274 * the time sleeping to 10 msec. | |
275 */ | |
276 req.tv_sec = 0; | |
277 req.tv_nsec = 10000000; | |
278 while (g_test_running) { | |
279 while (g_test_running && !g_signal_arrived) { | |
280 int retval = nanosleep(&req, &rem); | |
281 if (retval != 0) | |
282 ASSERT_EQ(errno, EINTR); | |
283 } | |
284 /* | |
285 * Have to test again since we could have gone sleeping again after the last | |
286 * iteration. | |
287 */ | |
288 if (!g_test_running) | |
289 break; | |
290 g_signal_arrived = 0; | |
291 CHECK_OK(sem_post(&g_sem)); | |
292 } | |
293 return NULL; | |
294 } | |
295 | |
296 void test_async_safe_signal() { | |
297 CHECK_OK(sem_init(&g_sem, 0, 0)); | |
298 CHECK_OK(set_async_signal_handler(signal_signal_handler)); | |
299 | |
300 pthread_t tid; | |
301 g_test_running = true; | |
302 g_signal_count = 0; | |
303 g_signal_arrived = 0; | |
304 CHECK_OK(pthread_create(&tid, NULL, signal_thread_func, NULL)); | |
305 | |
306 CHECK_OK(sem_wait(&g_sem)); | |
307 const int kSignalCount = 1000; | |
308 for (int i = 0; i < kSignalCount; i++) { | |
309 CHECK_OK(send_async_signal(g_child_tid)); | |
310 CHECK_OK(sem_wait(&g_sem)); | |
311 } | |
312 g_test_running = false; | |
313 /* Send a last signal to make sure any waiting syscalls get interrupted. */ | |
314 CHECK_OK(send_async_signal(g_child_tid)); | |
315 CHECK_OK(pthread_join(tid, NULL)); | |
316 ASSERT_EQ(g_signal_count, 2 * kSignalCount); | |
317 CHECK_OK(sem_destroy(&g_sem)); | |
318 } | |
319 | |
320 /* | |
321 * Check that passing 0 as |tid| to send_async_signal() works and | |
322 * sends a signal to the main thread. | |
323 */ | |
324 void main_signal_handler(NaClExceptionContext *exc) { | |
325 g_signal_count = 1; | |
326 } | |
327 | |
328 void test_main_signal() { | |
329 CHECK_OK(set_async_signal_handler(main_signal_handler)); | |
330 | |
331 g_signal_count = 0; | |
332 CHECK_OK(send_async_signal(NACL_IRT_MAIN_THREAD_TID)); | |
333 ASSERT_EQ(g_signal_count, 1); | |
334 } | |
335 | |
336 void run_test(const char *test_name, void (*test_func)(void)) { | |
337 printf("Running %s...\n", test_name); | |
338 test_func(); | |
339 } | |
340 | |
341 } // namespace | |
342 | |
343 #define RUN_TEST(test_func) (run_test(#test_func, test_func)) | |
344 | |
345 int main(void) { | |
346 size_t bytes; | |
347 bytes = nacl_interface_query(NACL_IRT_THREAD_v0_2, &libnacl_irt_thread_v0_2, | |
348 sizeof(libnacl_irt_thread_v0_2)); | |
349 ASSERT_EQ(bytes, sizeof(libnacl_irt_thread_v0_2)); | |
350 | |
351 bytes = nacl_interface_query(NACL_IRT_ASYNC_SIGNAL_HANDLING_v0_1, | |
352 &libnacl_irt_async_signal_handling, | |
353 sizeof(libnacl_irt_async_signal_handling)); | |
354 ASSERT_EQ(bytes, sizeof(libnacl_irt_async_signal_handling)); | |
355 | |
356 /* | |
357 * In order to avoid modifying the libpthread implementation to save the | |
358 * native tid, wrap that functionality so the tid is stored in a global | |
359 * variable. | |
360 */ | |
361 __libnacl_irt_thread.thread_create = &thread_create_wrapper; | |
362 | |
363 RUN_TEST(test_send_signal_before_set_handler); | |
364 | |
365 RUN_TEST(test_async_safe_tls_get); | |
366 #if !defined(__arm__) | |
367 /* | |
368 * Signals are sometimes delivered after the futex_wait syscall returns (as | |
369 * opposed to interrupting it), which breaks this test. | |
370 * | |
371 * This problem only seems to happen in QEMU. | |
372 */ | |
373 RUN_TEST(test_async_safe_futex); | |
374 #endif | |
375 RUN_TEST(test_futex_wait_restart); | |
376 RUN_TEST(test_async_safe_signal); | |
377 RUN_TEST(test_main_signal); | |
378 | |
379 printf("Done\n"); | |
380 | |
381 return 0; | |
382 } | |
OLD | NEW |