| Index: src/atomicops_internals_arm_gcc.h
|
| diff --git a/src/atomicops_internals_arm_gcc.h b/src/atomicops_internals_arm_gcc.h
|
| index 6c30256d93dea601b5d3592250c303dbae0dadeb..918920d02ae66e5723c0bb9993473be49f66036b 100644
|
| --- a/src/atomicops_internals_arm_gcc.h
|
| +++ b/src/atomicops_internals_arm_gcc.h
|
| @@ -32,46 +32,197 @@
|
| #ifndef V8_ATOMICOPS_INTERNALS_ARM_GCC_H_
|
| #define V8_ATOMICOPS_INTERNALS_ARM_GCC_H_
|
|
|
| +#if defined(__QNXNTO__)
|
| +#include <sys/cpuinline.h>
|
| +#endif
|
| +
|
| namespace v8 {
|
| namespace internal {
|
|
|
| -// 0xffff0fc0 is the hard coded address of a function provided by
|
| -// the kernel which implements an atomic compare-exchange. On older
|
| -// ARM architecture revisions (pre-v6) this may be implemented using
|
| -// a syscall. This address is stable, and in active use (hard coded)
|
| -// by at least glibc-2.7 and the Android C library.
|
| -typedef Atomic32 (*LinuxKernelCmpxchgFunc)(Atomic32 old_value,
|
| - Atomic32 new_value,
|
| - volatile Atomic32* ptr);
|
| -LinuxKernelCmpxchgFunc pLinuxKernelCmpxchg __attribute__((weak)) =
|
| - (LinuxKernelCmpxchgFunc) 0xffff0fc0;
|
| +// Memory barriers on ARM are funky, but the kernel is here to help:
|
| +//
|
| +// * ARMv5 didn't support SMP, there is no memory barrier instruction at
|
| +// all on this architecture, or when targeting its machine code.
|
| +//
|
| +// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by
|
| +// writing a random value to a very specific coprocessor register.
|
| +//
|
| +// * On ARMv7, the "dmb" instruction is used to perform a full memory
|
| +// barrier (though writing to the co-processor will still work).
|
| +// However, on single core devices (e.g. Nexus One, or Nexus S),
|
| +// this instruction will take up to 200 ns, which is huge, even though
|
| +// it's completely un-needed on these devices.
|
| +//
|
| +// * There is no easy way to determine at runtime if the device is
|
| +// single or multi-core. However, the kernel provides a useful helper
|
| +// function at a fixed memory address (0xffff0fa0), which will always
|
| +// perform a memory barrier in the most efficient way. I.e. on single
|
| +// core devices, this is an empty function that exits immediately.
|
| +// On multi-core devices, it implements a full memory barrier.
|
| +//
|
| +// * This source could be compiled to ARMv5 machine code that runs on a
|
| +// multi-core ARMv6 or ARMv7 device. In this case, memory barriers
|
| +// are needed for correct execution. Always call the kernel helper, even
|
| +// when targeting ARMv5TE.
|
| +//
|
|
|
| -typedef void (*LinuxKernelMemoryBarrierFunc)(void);
|
| -LinuxKernelMemoryBarrierFunc pLinuxKernelMemoryBarrier __attribute__((weak)) =
|
| - (LinuxKernelMemoryBarrierFunc) 0xffff0fa0;
|
| +inline void MemoryBarrier() {
|
| +#if defined(__linux__) || defined(__ANDROID__)
|
| + // Note: This is a function call, which is also an implicit compiler barrier.
|
| + typedef void (*KernelMemoryBarrierFunc)();
|
| + ((KernelMemoryBarrierFunc)0xffff0fa0)();
|
| +#elif defined(__QNXNTO__)
|
| + __cpu_membarrier();
|
| +#else
|
| +#error MemoryBarrier() is not implemented on this platform.
|
| +#endif
|
| +}
|
|
|
| +// An ARM toolchain would only define one of these depending on which
|
| +// variant of the target architecture is being used. This tests against
|
| +// any known ARMv6 or ARMv7 variant, where it is possible to directly
|
| +// use ldrex/strex instructions to implement fast atomic operations.
|
| +#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \
|
| + defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \
|
| + defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \
|
| + defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \
|
| + defined(__ARM_ARCH_6KZ__) || defined(__ARM_ARCH_6T2__)
|
|
|
| inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
| Atomic32 old_value,
|
| Atomic32 new_value) {
|
| - Atomic32 prev_value = *ptr;
|
| + Atomic32 prev_value;
|
| + int reloop;
|
| do {
|
| - if (!pLinuxKernelCmpxchg(old_value, new_value,
|
| - const_cast<Atomic32*>(ptr))) {
|
| - return old_value;
|
| - }
|
| - prev_value = *ptr;
|
| - } while (prev_value == old_value);
|
| + // The following is equivalent to:
|
| + //
|
| + // prev_value = LDREX(ptr)
|
| + // reloop = 0
|
| + // if (prev_value != old_value)
|
| + // reloop = STREX(ptr, new_value)
|
| + __asm__ __volatile__(" ldrex %0, [%3]\n"
|
| + " mov %1, #0\n"
|
| + " cmp %0, %4\n"
|
| +#ifdef __thumb2__
|
| + " it eq\n"
|
| +#endif
|
| + " strexeq %1, %5, [%3]\n"
|
| + : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr)
|
| + : "r"(ptr), "r"(old_value), "r"(new_value)
|
| + : "cc", "memory");
|
| + } while (reloop != 0);
|
| return prev_value;
|
| }
|
|
|
| +inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
| + Atomic32 old_value,
|
| + Atomic32 new_value) {
|
| + Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
| + MemoryBarrier();
|
| + return result;
|
| +}
|
| +
|
| +inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
| + Atomic32 old_value,
|
| + Atomic32 new_value) {
|
| + MemoryBarrier();
|
| + return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
| +}
|
| +
|
| +inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr,
|
| + Atomic32 increment) {
|
| + Atomic32 value;
|
| + int reloop;
|
| + do {
|
| + // Equivalent to:
|
| + //
|
| + // value = LDREX(ptr)
|
| + // value += increment
|
| + // reloop = STREX(ptr, value)
|
| + //
|
| + __asm__ __volatile__(" ldrex %0, [%3]\n"
|
| + " add %0, %0, %4\n"
|
| + " strex %1, %0, [%3]\n"
|
| + : "=&r"(value), "=&r"(reloop), "+m"(*ptr)
|
| + : "r"(ptr), "r"(increment)
|
| + : "cc", "memory");
|
| + } while (reloop);
|
| + return value;
|
| +}
|
| +
|
| +inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
| + Atomic32 increment) {
|
| + // TODO(digit): Investigate if it's possible to implement this with
|
| + // a single MemoryBarrier() operation between the LDREX and STREX.
|
| + // See http://crbug.com/246514
|
| + MemoryBarrier();
|
| + Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment);
|
| + MemoryBarrier();
|
| + return result;
|
| +}
|
| +
|
| +inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
| + Atomic32 new_value) {
|
| + Atomic32 old_value;
|
| + int reloop;
|
| + do {
|
| + // old_value = LDREX(ptr)
|
| + // reloop = STREX(ptr, new_value)
|
| + __asm__ __volatile__(" ldrex %0, [%3]\n"
|
| + " strex %1, %4, [%3]\n"
|
| + : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr)
|
| + : "r"(ptr), "r"(new_value)
|
| + : "cc", "memory");
|
| + } while (reloop != 0);
|
| + return old_value;
|
| +}
|
| +
|
| +// This tests against any known ARMv5 variant.
|
| +#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \
|
| + defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__)
|
| +
|
| +// The kernel also provides a helper function to perform an atomic
|
| +// compare-and-swap operation at the hard-wired address 0xffff0fc0.
|
| +// On ARMv5, this is implemented by a special code path that the kernel
|
| +// detects and treats specially when thread pre-emption happens.
|
| +// On ARMv6 and higher, it uses LDREX/STREX instructions instead.
|
| +//
|
| +// Note that this always perform a full memory barrier, there is no
|
| +// need to add calls MemoryBarrier() before or after it. It also
|
| +// returns 0 on success, and 1 on exit.
|
| +//
|
| +// Available and reliable since Linux 2.6.24. Both Android and ChromeOS
|
| +// use newer kernel revisions, so this should not be a concern.
|
| +namespace {
|
| +
|
| +inline int LinuxKernelCmpxchg(Atomic32 old_value,
|
| + Atomic32 new_value,
|
| + volatile Atomic32* ptr) {
|
| + typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*);
|
| + return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr);
|
| +}
|
| +
|
| +} // namespace
|
| +
|
| +inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr,
|
| + Atomic32 old_value,
|
| + Atomic32 new_value) {
|
| + Atomic32 prev_value;
|
| + for (;;) {
|
| + prev_value = *ptr;
|
| + if (prev_value != old_value)
|
| + return prev_value;
|
| + if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
|
| + return old_value;
|
| + }
|
| +}
|
| +
|
| inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr,
|
| Atomic32 new_value) {
|
| Atomic32 old_value;
|
| do {
|
| old_value = *ptr;
|
| - } while (pLinuxKernelCmpxchg(old_value, new_value,
|
| - const_cast<Atomic32*>(ptr)));
|
| + } while (LinuxKernelCmpxchg(old_value, new_value, ptr));
|
| return old_value;
|
| }
|
|
|
| @@ -86,8 +237,7 @@ inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
| // Atomic exchange the old value with an incremented one.
|
| Atomic32 old_value = *ptr;
|
| Atomic32 new_value = old_value + increment;
|
| - if (pLinuxKernelCmpxchg(old_value, new_value,
|
| - const_cast<Atomic32*>(ptr)) == 0) {
|
| + if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) {
|
| // The exchange took place as expected.
|
| return new_value;
|
| }
|
| @@ -98,23 +248,46 @@ inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr,
|
| inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr,
|
| Atomic32 old_value,
|
| Atomic32 new_value) {
|
| - return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
| + Atomic32 prev_value;
|
| + for (;;) {
|
| + prev_value = *ptr;
|
| + if (prev_value != old_value) {
|
| + // Always ensure acquire semantics.
|
| + MemoryBarrier();
|
| + return prev_value;
|
| + }
|
| + if (!LinuxKernelCmpxchg(old_value, new_value, ptr))
|
| + return old_value;
|
| + }
|
| }
|
|
|
| inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr,
|
| Atomic32 old_value,
|
| Atomic32 new_value) {
|
| - return NoBarrier_CompareAndSwap(ptr, old_value, new_value);
|
| + // This could be implemented as:
|
| + // MemoryBarrier();
|
| + // return NoBarrier_CompareAndSwap();
|
| + //
|
| + // But would use 3 barriers per succesful CAS. To save performance,
|
| + // use Acquire_CompareAndSwap(). Its implementation guarantees that:
|
| + // - A succesful swap uses only 2 barriers (in the kernel helper).
|
| + // - An early return due to (prev_value != old_value) performs
|
| + // a memory barrier with no store, which is equivalent to the
|
| + // generic implementation above.
|
| + return Acquire_CompareAndSwap(ptr, old_value, new_value);
|
| }
|
|
|
| +#else
|
| +# error "Your CPU's ARM architecture is not supported yet"
|
| +#endif
|
| +
|
| +// NOTE: Atomicity of the following load and store operations is only
|
| +// guaranteed in case of 32-bit alignement of |ptr| values.
|
| +
|
| inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) {
|
| *ptr = value;
|
| }
|
|
|
| -inline void MemoryBarrier() {
|
| - pLinuxKernelMemoryBarrier();
|
| -}
|
| -
|
| inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) {
|
| *ptr = value;
|
| MemoryBarrier();
|
| @@ -125,9 +298,7 @@ inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) {
|
| *ptr = value;
|
| }
|
|
|
| -inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) {
|
| - return *ptr;
|
| -}
|
| +inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; }
|
|
|
| inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) {
|
| Atomic32 value = *ptr;
|
|
|