Index: src/atomicops_internals_arm_gcc.h |
diff --git a/src/atomicops_internals_arm_gcc.h b/src/atomicops_internals_arm_gcc.h |
index 6c30256d93dea601b5d3592250c303dbae0dadeb..918920d02ae66e5723c0bb9993473be49f66036b 100644 |
--- a/src/atomicops_internals_arm_gcc.h |
+++ b/src/atomicops_internals_arm_gcc.h |
@@ -32,46 +32,197 @@ |
#ifndef V8_ATOMICOPS_INTERNALS_ARM_GCC_H_ |
#define V8_ATOMICOPS_INTERNALS_ARM_GCC_H_ |
+#if defined(__QNXNTO__) |
+#include <sys/cpuinline.h> |
+#endif |
+ |
namespace v8 { |
namespace internal { |
-// 0xffff0fc0 is the hard coded address of a function provided by |
-// the kernel which implements an atomic compare-exchange. On older |
-// ARM architecture revisions (pre-v6) this may be implemented using |
-// a syscall. This address is stable, and in active use (hard coded) |
-// by at least glibc-2.7 and the Android C library. |
-typedef Atomic32 (*LinuxKernelCmpxchgFunc)(Atomic32 old_value, |
- Atomic32 new_value, |
- volatile Atomic32* ptr); |
-LinuxKernelCmpxchgFunc pLinuxKernelCmpxchg __attribute__((weak)) = |
- (LinuxKernelCmpxchgFunc) 0xffff0fc0; |
+// Memory barriers on ARM are funky, but the kernel is here to help: |
+// |
+// * ARMv5 didn't support SMP, there is no memory barrier instruction at |
+// all on this architecture, or when targeting its machine code. |
+// |
+// * Some ARMv6 CPUs support SMP. A full memory barrier can be produced by |
+// writing a random value to a very specific coprocessor register. |
+// |
+// * On ARMv7, the "dmb" instruction is used to perform a full memory |
+// barrier (though writing to the co-processor will still work). |
+// However, on single core devices (e.g. Nexus One, or Nexus S), |
+// this instruction will take up to 200 ns, which is huge, even though |
+// it's completely un-needed on these devices. |
+// |
+// * There is no easy way to determine at runtime if the device is |
+// single or multi-core. However, the kernel provides a useful helper |
+// function at a fixed memory address (0xffff0fa0), which will always |
+// perform a memory barrier in the most efficient way. I.e. on single |
+// core devices, this is an empty function that exits immediately. |
+// On multi-core devices, it implements a full memory barrier. |
+// |
+// * This source could be compiled to ARMv5 machine code that runs on a |
+// multi-core ARMv6 or ARMv7 device. In this case, memory barriers |
+// are needed for correct execution. Always call the kernel helper, even |
+// when targeting ARMv5TE. |
+// |
-typedef void (*LinuxKernelMemoryBarrierFunc)(void); |
-LinuxKernelMemoryBarrierFunc pLinuxKernelMemoryBarrier __attribute__((weak)) = |
- (LinuxKernelMemoryBarrierFunc) 0xffff0fa0; |
+inline void MemoryBarrier() { |
+#if defined(__linux__) || defined(__ANDROID__) |
+ // Note: This is a function call, which is also an implicit compiler barrier. |
+ typedef void (*KernelMemoryBarrierFunc)(); |
+ ((KernelMemoryBarrierFunc)0xffff0fa0)(); |
+#elif defined(__QNXNTO__) |
+ __cpu_membarrier(); |
+#else |
+#error MemoryBarrier() is not implemented on this platform. |
+#endif |
+} |
+// An ARM toolchain would only define one of these depending on which |
+// variant of the target architecture is being used. This tests against |
+// any known ARMv6 or ARMv7 variant, where it is possible to directly |
+// use ldrex/strex instructions to implement fast atomic operations. |
+#if defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || \ |
+ defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || \ |
+ defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || \ |
+ defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || \ |
+ defined(__ARM_ARCH_6KZ__) || defined(__ARM_ARCH_6T2__) |
inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
Atomic32 old_value, |
Atomic32 new_value) { |
- Atomic32 prev_value = *ptr; |
+ Atomic32 prev_value; |
+ int reloop; |
do { |
- if (!pLinuxKernelCmpxchg(old_value, new_value, |
- const_cast<Atomic32*>(ptr))) { |
- return old_value; |
- } |
- prev_value = *ptr; |
- } while (prev_value == old_value); |
+ // The following is equivalent to: |
+ // |
+ // prev_value = LDREX(ptr) |
+ // reloop = 0 |
+ // if (prev_value != old_value) |
+ // reloop = STREX(ptr, new_value) |
+ __asm__ __volatile__(" ldrex %0, [%3]\n" |
+ " mov %1, #0\n" |
+ " cmp %0, %4\n" |
+#ifdef __thumb2__ |
+ " it eq\n" |
+#endif |
+ " strexeq %1, %5, [%3]\n" |
+ : "=&r"(prev_value), "=&r"(reloop), "+m"(*ptr) |
+ : "r"(ptr), "r"(old_value), "r"(new_value) |
+ : "cc", "memory"); |
+ } while (reloop != 0); |
return prev_value; |
} |
+inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
+ Atomic32 old_value, |
+ Atomic32 new_value) { |
+ Atomic32 result = NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
+ MemoryBarrier(); |
+ return result; |
+} |
+ |
+inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
+ Atomic32 old_value, |
+ Atomic32 new_value) { |
+ MemoryBarrier(); |
+ return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
+} |
+ |
+inline Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, |
+ Atomic32 increment) { |
+ Atomic32 value; |
+ int reloop; |
+ do { |
+ // Equivalent to: |
+ // |
+ // value = LDREX(ptr) |
+ // value += increment |
+ // reloop = STREX(ptr, value) |
+ // |
+ __asm__ __volatile__(" ldrex %0, [%3]\n" |
+ " add %0, %0, %4\n" |
+ " strex %1, %0, [%3]\n" |
+ : "=&r"(value), "=&r"(reloop), "+m"(*ptr) |
+ : "r"(ptr), "r"(increment) |
+ : "cc", "memory"); |
+ } while (reloop); |
+ return value; |
+} |
+ |
+inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
+ Atomic32 increment) { |
+ // TODO(digit): Investigate if it's possible to implement this with |
+ // a single MemoryBarrier() operation between the LDREX and STREX. |
+ // See http://crbug.com/246514 |
+ MemoryBarrier(); |
+ Atomic32 result = NoBarrier_AtomicIncrement(ptr, increment); |
+ MemoryBarrier(); |
+ return result; |
+} |
+ |
+inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
+ Atomic32 new_value) { |
+ Atomic32 old_value; |
+ int reloop; |
+ do { |
+ // old_value = LDREX(ptr) |
+ // reloop = STREX(ptr, new_value) |
+ __asm__ __volatile__(" ldrex %0, [%3]\n" |
+ " strex %1, %4, [%3]\n" |
+ : "=&r"(old_value), "=&r"(reloop), "+m"(*ptr) |
+ : "r"(ptr), "r"(new_value) |
+ : "cc", "memory"); |
+ } while (reloop != 0); |
+ return old_value; |
+} |
+ |
+// This tests against any known ARMv5 variant. |
+#elif defined(__ARM_ARCH_5__) || defined(__ARM_ARCH_5T__) || \ |
+ defined(__ARM_ARCH_5TE__) || defined(__ARM_ARCH_5TEJ__) |
+ |
+// The kernel also provides a helper function to perform an atomic |
+// compare-and-swap operation at the hard-wired address 0xffff0fc0. |
+// On ARMv5, this is implemented by a special code path that the kernel |
+// detects and treats specially when thread pre-emption happens. |
+// On ARMv6 and higher, it uses LDREX/STREX instructions instead. |
+// |
+// Note that this always perform a full memory barrier, there is no |
+// need to add calls MemoryBarrier() before or after it. It also |
+// returns 0 on success, and 1 on exit. |
+// |
+// Available and reliable since Linux 2.6.24. Both Android and ChromeOS |
+// use newer kernel revisions, so this should not be a concern. |
+namespace { |
+ |
+inline int LinuxKernelCmpxchg(Atomic32 old_value, |
+ Atomic32 new_value, |
+ volatile Atomic32* ptr) { |
+ typedef int (*KernelCmpxchgFunc)(Atomic32, Atomic32, volatile Atomic32*); |
+ return ((KernelCmpxchgFunc)0xffff0fc0)(old_value, new_value, ptr); |
+} |
+ |
+} // namespace |
+ |
+inline Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, |
+ Atomic32 old_value, |
+ Atomic32 new_value) { |
+ Atomic32 prev_value; |
+ for (;;) { |
+ prev_value = *ptr; |
+ if (prev_value != old_value) |
+ return prev_value; |
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) |
+ return old_value; |
+ } |
+} |
+ |
inline Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, |
Atomic32 new_value) { |
Atomic32 old_value; |
do { |
old_value = *ptr; |
- } while (pLinuxKernelCmpxchg(old_value, new_value, |
- const_cast<Atomic32*>(ptr))); |
+ } while (LinuxKernelCmpxchg(old_value, new_value, ptr)); |
return old_value; |
} |
@@ -86,8 +237,7 @@ inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
// Atomic exchange the old value with an incremented one. |
Atomic32 old_value = *ptr; |
Atomic32 new_value = old_value + increment; |
- if (pLinuxKernelCmpxchg(old_value, new_value, |
- const_cast<Atomic32*>(ptr)) == 0) { |
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) { |
// The exchange took place as expected. |
return new_value; |
} |
@@ -98,23 +248,46 @@ inline Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, |
inline Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, |
Atomic32 old_value, |
Atomic32 new_value) { |
- return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
+ Atomic32 prev_value; |
+ for (;;) { |
+ prev_value = *ptr; |
+ if (prev_value != old_value) { |
+ // Always ensure acquire semantics. |
+ MemoryBarrier(); |
+ return prev_value; |
+ } |
+ if (!LinuxKernelCmpxchg(old_value, new_value, ptr)) |
+ return old_value; |
+ } |
} |
inline Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, |
Atomic32 old_value, |
Atomic32 new_value) { |
- return NoBarrier_CompareAndSwap(ptr, old_value, new_value); |
+ // This could be implemented as: |
+ // MemoryBarrier(); |
+ // return NoBarrier_CompareAndSwap(); |
+ // |
+ // But would use 3 barriers per succesful CAS. To save performance, |
+ // use Acquire_CompareAndSwap(). Its implementation guarantees that: |
+ // - A succesful swap uses only 2 barriers (in the kernel helper). |
+ // - An early return due to (prev_value != old_value) performs |
+ // a memory barrier with no store, which is equivalent to the |
+ // generic implementation above. |
+ return Acquire_CompareAndSwap(ptr, old_value, new_value); |
} |
+#else |
+# error "Your CPU's ARM architecture is not supported yet" |
+#endif |
+ |
+// NOTE: Atomicity of the following load and store operations is only |
+// guaranteed in case of 32-bit alignement of |ptr| values. |
+ |
inline void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value) { |
*ptr = value; |
} |
-inline void MemoryBarrier() { |
- pLinuxKernelMemoryBarrier(); |
-} |
- |
inline void Acquire_Store(volatile Atomic32* ptr, Atomic32 value) { |
*ptr = value; |
MemoryBarrier(); |
@@ -125,9 +298,7 @@ inline void Release_Store(volatile Atomic32* ptr, Atomic32 value) { |
*ptr = value; |
} |
-inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { |
- return *ptr; |
-} |
+inline Atomic32 NoBarrier_Load(volatile const Atomic32* ptr) { return *ptr; } |
inline Atomic32 Acquire_Load(volatile const Atomic32* ptr) { |
Atomic32 value = *ptr; |