Index: third_party/libwebp/enc/analysis.c |
diff --git a/third_party/libwebp/enc/analysis.c b/third_party/libwebp/enc/analysis.c |
index 22cfb492e72be396a7a610a215e8e599664734da..221e9d064c47a5647eaa5e055899886ed3d38d4b 100644 |
--- a/third_party/libwebp/enc/analysis.c |
+++ b/third_party/libwebp/enc/analysis.c |
@@ -23,10 +23,6 @@ extern "C" { |
#define MAX_ITERS_K_MEANS 6 |
-static int ClipAlpha(int alpha) { |
- return alpha < 0 ? 0 : alpha > 255 ? 255 : alpha; |
-} |
- |
//------------------------------------------------------------------------------ |
// Smooth the segment map by replacing isolated block by the majority of its |
// neighbours. |
@@ -72,50 +68,10 @@ static void SmoothSegmentMap(VP8Encoder* const enc) { |
} |
//------------------------------------------------------------------------------ |
-// Finalize Segment probability based on the coding tree |
- |
-static int GetProba(int a, int b) { |
- int proba; |
- const int total = a + b; |
- if (total == 0) return 255; // that's the default probability. |
- proba = (255 * a + total / 2) / total; |
- return proba; |
-} |
- |
-static void SetSegmentProbas(VP8Encoder* const enc) { |
- int p[NUM_MB_SEGMENTS] = { 0 }; |
- int n; |
- |
- for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { |
- const VP8MBInfo* const mb = &enc->mb_info_[n]; |
- p[mb->segment_]++; |
- } |
- if (enc->pic_->stats) { |
- for (n = 0; n < NUM_MB_SEGMENTS; ++n) { |
- enc->pic_->stats->segment_size[n] = p[n]; |
- } |
- } |
- if (enc->segment_hdr_.num_segments_ > 1) { |
- uint8_t* const probas = enc->proba_.segments_; |
- probas[0] = GetProba(p[0] + p[1], p[2] + p[3]); |
- probas[1] = GetProba(p[0], p[1]); |
- probas[2] = GetProba(p[2], p[3]); |
- |
- enc->segment_hdr_.update_map_ = |
- (probas[0] != 255) || (probas[1] != 255) || (probas[2] != 255); |
- enc->segment_hdr_.size_ = |
- p[0] * (VP8BitCost(0, probas[0]) + VP8BitCost(0, probas[1])) + |
- p[1] * (VP8BitCost(0, probas[0]) + VP8BitCost(1, probas[1])) + |
- p[2] * (VP8BitCost(1, probas[0]) + VP8BitCost(0, probas[2])) + |
- p[3] * (VP8BitCost(1, probas[0]) + VP8BitCost(1, probas[2])); |
- } else { |
- enc->segment_hdr_.update_map_ = 0; |
- enc->segment_hdr_.size_ = 0; |
- } |
-} |
+// set segment susceptibility alpha_ / beta_ |
static WEBP_INLINE int clip(int v, int m, int M) { |
- return v < m ? m : v > M ? M : v; |
+ return (v < m) ? m : (v > M) ? M : v; |
} |
static void SetSegmentAlphas(VP8Encoder* const enc, |
@@ -142,22 +98,63 @@ static void SetSegmentAlphas(VP8Encoder* const enc, |
} |
//------------------------------------------------------------------------------ |
+// Compute susceptibility based on DCT-coeff histograms: |
+// the higher, the "easier" the macroblock is to compress. |
+ |
+#define MAX_ALPHA 255 // 8b of precision for susceptibilities. |
+#define ALPHA_SCALE (2 * MAX_ALPHA) // scaling factor for alpha. |
+#define DEFAULT_ALPHA (-1) |
+#define IS_BETTER_ALPHA(alpha, best_alpha) ((alpha) > (best_alpha)) |
+ |
+static int FinalAlphaValue(int alpha) { |
+ alpha = MAX_ALPHA - alpha; |
+ return clip(alpha, 0, MAX_ALPHA); |
+} |
+ |
+static int GetAlpha(const VP8Histogram* const histo) { |
+ int max_value = 0, last_non_zero = 1; |
+ int k; |
+ int alpha; |
+ for (k = 0; k <= MAX_COEFF_THRESH; ++k) { |
+ const int value = histo->distribution[k]; |
+ if (value > 0) { |
+ if (value > max_value) max_value = value; |
+ last_non_zero = k; |
+ } |
+ } |
+ // 'alpha' will later be clipped to [0..MAX_ALPHA] range, clamping outer |
+ // values which happen to be mostly noise. This leaves the maximum precision |
+ // for handling the useful small values which contribute most. |
+ alpha = (max_value > 1) ? ALPHA_SCALE * last_non_zero / max_value : 0; |
+ return alpha; |
+} |
+ |
+static void MergeHistograms(const VP8Histogram* const in, |
+ VP8Histogram* const out) { |
+ int i; |
+ for (i = 0; i <= MAX_COEFF_THRESH; ++i) { |
+ out->distribution[i] += in->distribution[i]; |
+ } |
+} |
+ |
+//------------------------------------------------------------------------------ |
// Simplified k-Means, to assign Nb segments based on alpha-histogram |
-static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { |
+static void AssignSegments(VP8Encoder* const enc, |
+ const int alphas[MAX_ALPHA + 1]) { |
const int nb = enc->segment_hdr_.num_segments_; |
int centers[NUM_MB_SEGMENTS]; |
int weighted_average = 0; |
- int map[256]; |
+ int map[MAX_ALPHA + 1]; |
int a, n, k; |
- int min_a = 0, max_a = 255, range_a; |
+ int min_a = 0, max_a = MAX_ALPHA, range_a; |
// 'int' type is ok for histo, and won't overflow |
int accum[NUM_MB_SEGMENTS], dist_accum[NUM_MB_SEGMENTS]; |
// bracket the input |
- for (n = 0; n < 256 && alphas[n] == 0; ++n) {} |
+ for (n = 0; n <= MAX_ALPHA && alphas[n] == 0; ++n) {} |
min_a = n; |
- for (n = 255; n > min_a && alphas[n] == 0; --n) {} |
+ for (n = MAX_ALPHA; n > min_a && alphas[n] == 0; --n) {} |
max_a = n; |
range_a = max_a - min_a; |
@@ -210,7 +207,7 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { |
VP8MBInfo* const mb = &enc->mb_info_[n]; |
const int alpha = mb->alpha_; |
mb->segment_ = map[alpha]; |
- mb->alpha_ = centers[map[alpha]]; // just for the record. |
+ mb->alpha_ = centers[map[alpha]]; // for the record. |
} |
if (nb > 1) { |
@@ -218,7 +215,6 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { |
if (smooth) SmoothSegmentMap(enc); |
} |
- SetSegmentProbas(enc); // Assign final proba |
SetSegmentAlphas(enc, centers, weighted_average); // pick some alphas. |
} |
@@ -227,24 +223,32 @@ static void AssignSegments(VP8Encoder* const enc, const int alphas[256]) { |
// susceptibility and set best modes for this macroblock. |
// Segment assignment is done later. |
-// Number of modes to inspect for alpha_ evaluation. For high-quality settings, |
-// we don't need to test all the possible modes during the analysis phase. |
+// Number of modes to inspect for alpha_ evaluation. For high-quality settings |
+// (method >= FAST_ANALYSIS_METHOD) we don't need to test all the possible modes |
+// during the analysis phase. |
+#define FAST_ANALYSIS_METHOD 4 // method above which we do partial analysis |
#define MAX_INTRA16_MODE 2 |
#define MAX_INTRA4_MODE 2 |
#define MAX_UV_MODE 2 |
static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { |
- const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA16_MODE : 4; |
+ const int max_mode = |
+ (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA16_MODE |
+ : NUM_PRED_MODES; |
int mode; |
- int best_alpha = -1; |
+ int best_alpha = DEFAULT_ALPHA; |
int best_mode = 0; |
VP8MakeLuma16Preds(it); |
for (mode = 0; mode < max_mode; ++mode) { |
- const int alpha = VP8CollectHistogram(it->yuv_in_ + Y_OFF, |
- it->yuv_p_ + VP8I16ModeOffsets[mode], |
- 0, 16); |
- if (alpha > best_alpha) { |
+ VP8Histogram histo = { { 0 } }; |
+ int alpha; |
+ |
+ VP8CollectHistogram(it->yuv_in_ + Y_OFF, |
+ it->yuv_p_ + VP8I16ModeOffsets[mode], |
+ 0, 16, &histo); |
+ alpha = GetAlpha(&histo); |
+ if (IS_BETTER_ALPHA(alpha, best_alpha)) { |
best_alpha = alpha; |
best_mode = mode; |
} |
@@ -256,46 +260,63 @@ static int MBAnalyzeBestIntra16Mode(VP8EncIterator* const it) { |
static int MBAnalyzeBestIntra4Mode(VP8EncIterator* const it, |
int best_alpha) { |
uint8_t modes[16]; |
- const int max_mode = (it->enc_->method_ >= 3) ? MAX_INTRA4_MODE : NUM_BMODES; |
- int i4_alpha = 0; |
+ const int max_mode = |
+ (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_INTRA4_MODE |
+ : NUM_BMODES; |
+ int i4_alpha; |
+ VP8Histogram total_histo = { { 0 } }; |
+ int cur_histo = 0; |
+ |
VP8IteratorStartI4(it); |
do { |
int mode; |
- int best_mode_alpha = -1; |
+ int best_mode_alpha = DEFAULT_ALPHA; |
+ VP8Histogram histos[2]; |
const uint8_t* const src = it->yuv_in_ + Y_OFF + VP8Scan[it->i4_]; |
VP8MakeIntra4Preds(it); |
for (mode = 0; mode < max_mode; ++mode) { |
- const int alpha = VP8CollectHistogram(src, |
- it->yuv_p_ + VP8I4ModeOffsets[mode], |
- 0, 1); |
- if (alpha > best_mode_alpha) { |
+ int alpha; |
+ |
+ memset(&histos[cur_histo], 0, sizeof(histos[cur_histo])); |
+ VP8CollectHistogram(src, it->yuv_p_ + VP8I4ModeOffsets[mode], |
+ 0, 1, &histos[cur_histo]); |
+ alpha = GetAlpha(&histos[cur_histo]); |
+ if (IS_BETTER_ALPHA(alpha, best_mode_alpha)) { |
best_mode_alpha = alpha; |
modes[it->i4_] = mode; |
+ cur_histo ^= 1; // keep track of best histo so far. |
} |
} |
- i4_alpha += best_mode_alpha; |
+ // accumulate best histogram |
+ MergeHistograms(&histos[cur_histo ^ 1], &total_histo); |
// Note: we reuse the original samples for predictors |
} while (VP8IteratorRotateI4(it, it->yuv_in_ + Y_OFF)); |
- if (i4_alpha > best_alpha) { |
+ i4_alpha = GetAlpha(&total_histo); |
+ if (IS_BETTER_ALPHA(i4_alpha, best_alpha)) { |
VP8SetIntra4Mode(it, modes); |
- best_alpha = ClipAlpha(i4_alpha); |
+ best_alpha = i4_alpha; |
} |
return best_alpha; |
} |
static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { |
- int best_alpha = -1; |
+ int best_alpha = DEFAULT_ALPHA; |
int best_mode = 0; |
- const int max_mode = (it->enc_->method_ >= 3) ? MAX_UV_MODE : 4; |
+ const int max_mode = |
+ (it->enc_->method_ >= FAST_ANALYSIS_METHOD) ? MAX_UV_MODE |
+ : NUM_PRED_MODES; |
int mode; |
VP8MakeChroma8Preds(it); |
for (mode = 0; mode < max_mode; ++mode) { |
- const int alpha = VP8CollectHistogram(it->yuv_in_ + U_OFF, |
- it->yuv_p_ + VP8UVModeOffsets[mode], |
- 16, 16 + 4 + 4); |
- if (alpha > best_alpha) { |
+ VP8Histogram histo = { { 0 } }; |
+ int alpha; |
+ VP8CollectHistogram(it->yuv_in_ + U_OFF, |
+ it->yuv_p_ + VP8UVModeOffsets[mode], |
+ 16, 16 + 4 + 4, &histo); |
+ alpha = GetAlpha(&histo); |
+ if (IS_BETTER_ALPHA(alpha, best_alpha)) { |
best_alpha = alpha; |
best_mode = mode; |
} |
@@ -305,7 +326,8 @@ static int MBAnalyzeBestUVMode(VP8EncIterator* const it) { |
} |
static void MBAnalyze(VP8EncIterator* const it, |
- int alphas[256], int* const uv_alpha) { |
+ int alphas[MAX_ALPHA + 1], |
+ int* const alpha, int* const uv_alpha) { |
const VP8Encoder* const enc = it->enc_; |
int best_alpha, best_uv_alpha; |
@@ -314,7 +336,7 @@ static void MBAnalyze(VP8EncIterator* const it, |
VP8SetSegment(it, 0); // default segment, spec-wise. |
best_alpha = MBAnalyzeBestIntra16Mode(it); |
- if (enc->method_ != 3) { |
+ if (enc->method_ >= 5) { |
// We go and make a fast decision for intra4/intra16. |
// It's usually not a good and definitive pick, but helps seeding the stats |
// about level bit-cost. |
@@ -324,10 +346,22 @@ static void MBAnalyze(VP8EncIterator* const it, |
best_uv_alpha = MBAnalyzeBestUVMode(it); |
// Final susceptibility mix |
- best_alpha = (best_alpha + best_uv_alpha + 1) / 2; |
+ best_alpha = (3 * best_alpha + best_uv_alpha + 2) >> 2; |
+ best_alpha = FinalAlphaValue(best_alpha); |
alphas[best_alpha]++; |
+ it->mb_->alpha_ = best_alpha; // for later remapping. |
+ |
+ // Accumulate for later complexity analysis. |
+ *alpha += best_alpha; // mixed susceptibility (not just luma) |
*uv_alpha += best_uv_alpha; |
- it->mb_->alpha_ = best_alpha; // Informative only. |
+} |
+ |
+static void DefaultMBInfo(VP8MBInfo* const mb) { |
+ mb->type_ = 1; // I16x16 |
+ mb->uv_mode_ = 0; |
+ mb->skip_ = 0; // not skipped |
+ mb->segment_ = 0; // default segment |
+ mb->alpha_ = 0; |
} |
//------------------------------------------------------------------------------ |
@@ -340,22 +374,43 @@ static void MBAnalyze(VP8EncIterator* const it, |
// and decide intra4/intra16, but that's usually almost always a bad choice at |
// this stage. |
+static void ResetAllMBInfo(VP8Encoder* const enc) { |
+ int n; |
+ for (n = 0; n < enc->mb_w_ * enc->mb_h_; ++n) { |
+ DefaultMBInfo(&enc->mb_info_[n]); |
+ } |
+ // Default susceptibilities. |
+ enc->dqm_[0].alpha_ = 0; |
+ enc->dqm_[0].beta_ = 0; |
+ // Note: we can't compute this alpha_ / uv_alpha_. |
+ WebPReportProgress(enc->pic_, enc->percent_ + 20, &enc->percent_); |
+} |
+ |
int VP8EncAnalyze(VP8Encoder* const enc) { |
int ok = 1; |
- int alphas[256] = { 0 }; |
- VP8EncIterator it; |
- |
- VP8IteratorInit(enc, &it); |
+ const int do_segments = |
+ enc->config_->emulate_jpeg_size || // We need the complexity evaluation. |
+ (enc->segment_hdr_.num_segments_ > 1) || |
+ (enc->method_ == 0); // for method 0, we need preds_[] to be filled. |
+ enc->alpha_ = 0; |
enc->uv_alpha_ = 0; |
- do { |
- VP8IteratorImport(&it); |
- MBAnalyze(&it, alphas, &enc->uv_alpha_); |
- ok = VP8IteratorProgress(&it, 20); |
- // Let's pretend we have perfect lossless reconstruction. |
- } while (ok && VP8IteratorNext(&it, it.yuv_in_)); |
- enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_; |
- if (ok) AssignSegments(enc, alphas); |
- |
+ if (do_segments) { |
+ int alphas[MAX_ALPHA + 1] = { 0 }; |
+ VP8EncIterator it; |
+ |
+ VP8IteratorInit(enc, &it); |
+ do { |
+ VP8IteratorImport(&it); |
+ MBAnalyze(&it, alphas, &enc->alpha_, &enc->uv_alpha_); |
+ ok = VP8IteratorProgress(&it, 20); |
+ // Let's pretend we have perfect lossless reconstruction. |
+ } while (ok && VP8IteratorNext(&it, it.yuv_in_)); |
+ enc->alpha_ /= enc->mb_w_ * enc->mb_h_; |
+ enc->uv_alpha_ /= enc->mb_w_ * enc->mb_h_; |
+ if (ok) AssignSegments(enc, alphas); |
+ } else { // Use only one default segment. |
+ ResetAllMBInfo(enc); |
+ } |
return ok; |
} |