| Index: third_party/libwebp/dsp/yuv.h
|
| diff --git a/third_party/libwebp/dsp/yuv.h b/third_party/libwebp/dsp/yuv.h
|
| index 22cb25963cac91c2a74d359f33cfadb185192c1f..126404b667768b81da4cc55aff75ce91e32e2ed1 100644
|
| --- a/third_party/libwebp/dsp/yuv.h
|
| +++ b/third_party/libwebp/dsp/yuv.h
|
| @@ -7,6 +7,26 @@
|
| //
|
| // inline YUV<->RGB conversion function
|
| //
|
| +// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
|
| +// More information at: http://en.wikipedia.org/wiki/YCbCr
|
| +// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
|
| +// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
|
| +// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
|
| +// We use 16bit fixed point operations for RGB->YUV conversion.
|
| +//
|
| +// For the Y'CbCr to RGB conversion, the BT.601 specification reads:
|
| +// R = 1.164 * (Y-16) + 1.596 * (V-128)
|
| +// G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
|
| +// B = 1.164 * (Y-16) + 2.018 * (U-128)
|
| +// where Y is in the [16,235] range, and U/V in the [16,240] range.
|
| +// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
|
| +// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
|
| +// So in this case the formulae should be read as:
|
| +// R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624
|
| +// G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
|
| +// B = 1.164 * [Y + 1.733 * (U-128)] - 18.624
|
| +// once factorized. Here too, 16bit fixed precision is used.
|
| +//
|
| // Author: Skal (pascal.massimino@gmail.com)
|
|
|
| #ifndef WEBP_DSP_YUV_H_
|
| @@ -14,6 +34,19 @@
|
|
|
| #include "../dec/decode_vp8.h"
|
|
|
| +// Define the following to use the LUT-based code:
|
| +#define WEBP_YUV_USE_TABLE
|
| +
|
| +#if defined(WEBP_EXPERIMENTAL_FEATURES)
|
| +// Do NOT activate this feature for real compression. This is only experimental!
|
| +// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
|
| +// This colorspace is close to Rec.601's Y'CbCr model with the notable
|
| +// difference of allowing larger range for luma/chroma.
|
| +// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
|
| +// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
|
| +// #define USE_YUVj
|
| +#endif
|
| +
|
| //------------------------------------------------------------------------------
|
| // YUV -> RGB conversion
|
|
|
| @@ -22,9 +55,14 @@ extern "C" {
|
| #endif
|
|
|
| enum { YUV_FIX = 16, // fixed-point precision
|
| + YUV_HALF = 1 << (YUV_FIX - 1),
|
| + YUV_MASK = (256 << YUV_FIX) - 1,
|
| YUV_RANGE_MIN = -227, // min value of r/g/b output
|
| YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output
|
| };
|
| +
|
| +#ifdef WEBP_YUV_USE_TABLE
|
| +
|
| extern int16_t VP8kVToR[256], VP8kUToB[256];
|
| extern int32_t VP8kVToG[256], VP8kUToG[256];
|
| extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN];
|
| @@ -40,21 +78,32 @@ static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
|
| rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
| }
|
|
|
| -static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
| - uint8_t* const rgb) {
|
| +static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
|
| + uint8_t* const bgr) {
|
| const int r_off = VP8kVToR[v];
|
| const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| const int b_off = VP8kUToB[u];
|
| - rgb[0] = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
|
| - (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
|
| - rgb[1] = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
|
| - (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
|
| + bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
| + bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
|
| + bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
|
| }
|
|
|
| -static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
|
| - uint8_t* const argb) {
|
| - argb[0] = 0xff;
|
| - VP8YuvToRgb(y, u, v, argb + 1);
|
| +static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
| + uint8_t* const rgb) {
|
| + const int r_off = VP8kVToR[v];
|
| + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| + const int b_off = VP8kUToB[u];
|
| + const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) |
|
| + (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5));
|
| + const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) |
|
| + (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3));
|
| +#ifdef WEBP_SWAP_16BIT_CSP
|
| + rgb[0] = gb;
|
| + rgb[1] = rg;
|
| +#else
|
| + rgb[0] = rg;
|
| + rgb[1] = gb;
|
| +#endif
|
| }
|
|
|
| static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
| @@ -62,20 +111,104 @@ static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
| const int r_off = VP8kVToR[v];
|
| const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| const int b_off = VP8kUToB[u];
|
| - // Don't update alpha (last 4 bits of argb[1])
|
| - argb[0] = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
|
| - VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
|
| - argb[1] = 0x0f | (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4);
|
| + const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) |
|
| + VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]);
|
| + const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f;
|
| +#ifdef WEBP_SWAP_16BIT_CSP
|
| + argb[0] = ba;
|
| + argb[1] = rg;
|
| +#else
|
| + argb[0] = rg;
|
| + argb[1] = ba;
|
| +#endif
|
| +}
|
| +
|
| +#else // Table-free version (slower on x86)
|
| +
|
| +// These constants are 16b fixed-point version of ITU-R BT.601 constants
|
| +#define kYScale 76309 // 1.164 = 255 / 219
|
| +#define kVToR 104597 // 1.596 = 255 / 112 * 0.701
|
| +#define kUToG 25674 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
|
| +#define kVToG 53278 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
|
| +#define kUToB 132201 // 2.018 = 255 / 112 * 0.886
|
| +#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF)
|
| +#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF)
|
| +#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF)
|
| +
|
| +static WEBP_INLINE uint8_t VP8Clip8(int v) {
|
| + return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX)
|
| + : (v < 0) ? 0u : 255u;
|
| +}
|
| +
|
| +static WEBP_INLINE uint8_t VP8ClipN(int v, int N) { // clip to N bits
|
| + return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N)))
|
| + : (v < 0) ? 0u : (255u >> (8 - N));
|
| +}
|
| +
|
| +static WEBP_INLINE int VP8YUVToR(int y, int v) {
|
| + return kYScale * y + kVToR * v + kRCst;
|
| +}
|
| +
|
| +static WEBP_INLINE int VP8YUVToG(int y, int u, int v) {
|
| + return kYScale * y - kUToG * u - kVToG * v + kGCst;
|
| +}
|
| +
|
| +static WEBP_INLINE int VP8YUVToB(int y, int u) {
|
| + return kYScale * y + kUToB * u + kBCst;
|
| +}
|
| +
|
| +static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v,
|
| + uint8_t* const rgb) {
|
| + rgb[0] = VP8Clip8(VP8YUVToR(y, v));
|
| + rgb[1] = VP8Clip8(VP8YUVToG(y, u, v));
|
| + rgb[2] = VP8Clip8(VP8YUVToB(y, u));
|
| }
|
|
|
| static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v,
|
| uint8_t* const bgr) {
|
| - const int r_off = VP8kVToR[v];
|
| - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX;
|
| - const int b_off = VP8kUToB[u];
|
| - bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN];
|
| - bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN];
|
| - bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN];
|
| + bgr[0] = VP8Clip8(VP8YUVToB(y, u));
|
| + bgr[1] = VP8Clip8(VP8YUVToG(y, u, v));
|
| + bgr[2] = VP8Clip8(VP8YUVToR(y, v));
|
| +}
|
| +
|
| +static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v,
|
| + uint8_t* const rgb) {
|
| + const int r = VP8Clip8(VP8YUVToR(y, u));
|
| + const int g = VP8ClipN(VP8YUVToG(y, u, v), 6);
|
| + const int b = VP8ClipN(VP8YUVToB(y, v), 5);
|
| + const uint8_t rg = (r & 0xf8) | (g >> 3);
|
| + const uint8_t gb = (g << 5) | b;
|
| +#ifdef WEBP_SWAP_16BIT_CSP
|
| + rgb[0] = gb;
|
| + rgb[1] = rg;
|
| +#else
|
| + rgb[0] = rg;
|
| + rgb[1] = gb;
|
| +#endif
|
| +}
|
| +
|
| +static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v,
|
| + uint8_t* const argb) {
|
| + const int r = VP8Clip8(VP8YUVToR(y, u));
|
| + const int g = VP8ClipN(VP8YUVToG(y, u, v), 4);
|
| + const int b = VP8Clip8(VP8YUVToB(y, v));
|
| + const uint8_t rg = (r & 0xf0) | g;
|
| + const uint8_t ba = b | 0x0f; // overwrite the lower 4 bits
|
| +#ifdef WEBP_SWAP_16BIT_CSP
|
| + argb[0] = ba;
|
| + argb[1] = rg;
|
| +#else
|
| + argb[0] = rg;
|
| + argb[1] = ba;
|
| +#endif
|
| +}
|
| +
|
| +#endif // WEBP_YUV_USE_TABLE
|
| +
|
| +static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v,
|
| + uint8_t* const argb) {
|
| + argb[0] = 0xff;
|
| + VP8YuvToRgb(y, u, v, argb + 1);
|
| }
|
|
|
| static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v,
|
| @@ -90,28 +223,19 @@ static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v,
|
| rgba[3] = 0xff;
|
| }
|
|
|
| -static WEBP_INLINE uint32_t VP8Clip4Bits(uint8_t c) {
|
| - const uint32_t v = (c + 8) >> 4;
|
| - return (v > 15) ? 15 : v;
|
| -}
|
| -
|
| // Must be called before everything, to initialize the tables.
|
| void VP8YUVInit(void);
|
|
|
| //------------------------------------------------------------------------------
|
| // RGB -> YUV conversion
|
| -// The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
|
| -// More information at: http://en.wikipedia.org/wiki/YCbCr
|
| -// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
|
| -// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
|
| -// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
|
| -// We use 16bit fixed point operations.
|
|
|
| static WEBP_INLINE int VP8ClipUV(int v) {
|
| - v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2);
|
| - return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255;
|
| + v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2);
|
| + return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255;
|
| }
|
|
|
| +#ifndef USE_YUVj
|
| +
|
| static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
|
| const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX);
|
| const int luma = 16839 * r + 33059 * g + 6420 * b;
|
| @@ -119,13 +243,38 @@ static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
|
| }
|
|
|
| static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
|
| - return VP8ClipUV(-9719 * r - 19081 * g + 28800 * b);
|
| + const int u = -9719 * r - 19081 * g + 28800 * b;
|
| + return VP8ClipUV(u);
|
| +}
|
| +
|
| +static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
|
| + const int v = +28800 * r - 24116 * g - 4684 * b;
|
| + return VP8ClipUV(v);
|
| +}
|
| +
|
| +#else
|
| +
|
| +// This JPEG-YUV colorspace, only for comparison!
|
| +// These are also 16-bit precision coefficients from Rec.601, but with full
|
| +// [0..255] output range.
|
| +static WEBP_INLINE int VP8RGBToY(int r, int g, int b) {
|
| + const int kRound = (1 << (YUV_FIX - 1));
|
| + const int luma = 19595 * r + 38470 * g + 7471 * b;
|
| + return (luma + kRound) >> YUV_FIX; // no need to clip
|
| +}
|
| +
|
| +static WEBP_INLINE int VP8RGBToU(int r, int g, int b) {
|
| + const int u = -11058 * r - 21710 * g + 32768 * b;
|
| + return VP8ClipUV(u);
|
| }
|
|
|
| static WEBP_INLINE int VP8RGBToV(int r, int g, int b) {
|
| - return VP8ClipUV(+28800 * r - 24116 * g - 4684 * b);
|
| + const int v = 32768 * r - 27439 * g - 5329 * b;
|
| + return VP8ClipUV(v);
|
| }
|
|
|
| +#endif // USE_YUVj
|
| +
|
| #if defined(__cplusplus) || defined(c_plusplus)
|
| } // extern "C"
|
| #endif
|
|
|