Index: third_party/libwebp/dsp/yuv.h |
diff --git a/third_party/libwebp/dsp/yuv.h b/third_party/libwebp/dsp/yuv.h |
index 22cb25963cac91c2a74d359f33cfadb185192c1f..126404b667768b81da4cc55aff75ce91e32e2ed1 100644 |
--- a/third_party/libwebp/dsp/yuv.h |
+++ b/third_party/libwebp/dsp/yuv.h |
@@ -7,6 +7,26 @@ |
// |
// inline YUV<->RGB conversion function |
// |
+// The exact naming is Y'CbCr, following the ITU-R BT.601 standard. |
+// More information at: http://en.wikipedia.org/wiki/YCbCr |
+// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 |
+// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 |
+// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 |
+// We use 16bit fixed point operations for RGB->YUV conversion. |
+// |
+// For the Y'CbCr to RGB conversion, the BT.601 specification reads: |
+// R = 1.164 * (Y-16) + 1.596 * (V-128) |
+// G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128) |
+// B = 1.164 * (Y-16) + 2.018 * (U-128) |
+// where Y is in the [16,235] range, and U/V in the [16,240] range. |
+// In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor |
+// "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table. |
+// So in this case the formulae should be read as: |
+// R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624 |
+// G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624 |
+// B = 1.164 * [Y + 1.733 * (U-128)] - 18.624 |
+// once factorized. Here too, 16bit fixed precision is used. |
+// |
// Author: Skal (pascal.massimino@gmail.com) |
#ifndef WEBP_DSP_YUV_H_ |
@@ -14,6 +34,19 @@ |
#include "../dec/decode_vp8.h" |
+// Define the following to use the LUT-based code: |
+#define WEBP_YUV_USE_TABLE |
+ |
+#if defined(WEBP_EXPERIMENTAL_FEATURES) |
+// Do NOT activate this feature for real compression. This is only experimental! |
+// This flag is for comparison purpose against JPEG's "YUVj" natural colorspace. |
+// This colorspace is close to Rec.601's Y'CbCr model with the notable |
+// difference of allowing larger range for luma/chroma. |
+// See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its |
+// difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion |
+// #define USE_YUVj |
+#endif |
+ |
//------------------------------------------------------------------------------ |
// YUV -> RGB conversion |
@@ -22,9 +55,14 @@ extern "C" { |
#endif |
enum { YUV_FIX = 16, // fixed-point precision |
+ YUV_HALF = 1 << (YUV_FIX - 1), |
+ YUV_MASK = (256 << YUV_FIX) - 1, |
YUV_RANGE_MIN = -227, // min value of r/g/b output |
YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output |
}; |
+ |
+#ifdef WEBP_YUV_USE_TABLE |
+ |
extern int16_t VP8kVToR[256], VP8kUToB[256]; |
extern int32_t VP8kVToG[256], VP8kUToG[256]; |
extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; |
@@ -40,21 +78,32 @@ static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v, |
rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
} |
-static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, |
- uint8_t* const rgb) { |
+static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const bgr) { |
const int r_off = VP8kVToR[v]; |
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
const int b_off = VP8kUToB[u]; |
- rgb[0] = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | |
- (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); |
- rgb[1] = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | |
- (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); |
+ bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
+ bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; |
+ bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; |
} |
-static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, |
- uint8_t* const argb) { |
- argb[0] = 0xff; |
- VP8YuvToRgb(y, u, v, argb + 1); |
+static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const rgb) { |
+ const int r_off = VP8kVToR[v]; |
+ const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
+ const int b_off = VP8kUToB[u]; |
+ const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | |
+ (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); |
+ const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | |
+ (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ rgb[0] = gb; |
+ rgb[1] = rg; |
+#else |
+ rgb[0] = rg; |
+ rgb[1] = gb; |
+#endif |
} |
static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, |
@@ -62,20 +111,104 @@ static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, |
const int r_off = VP8kVToR[v]; |
const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
const int b_off = VP8kUToB[u]; |
- // Don't update alpha (last 4 bits of argb[1]) |
- argb[0] = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | |
- VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); |
- argb[1] = 0x0f | (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4); |
+ const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | |
+ VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); |
+ const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f; |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ argb[0] = ba; |
+ argb[1] = rg; |
+#else |
+ argb[0] = rg; |
+ argb[1] = ba; |
+#endif |
+} |
+ |
+#else // Table-free version (slower on x86) |
+ |
+// These constants are 16b fixed-point version of ITU-R BT.601 constants |
+#define kYScale 76309 // 1.164 = 255 / 219 |
+#define kVToR 104597 // 1.596 = 255 / 112 * 0.701 |
+#define kUToG 25674 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587 |
+#define kVToG 53278 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587 |
+#define kUToB 132201 // 2.018 = 255 / 112 * 0.886 |
+#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF) |
+#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF) |
+#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF) |
+ |
+static WEBP_INLINE uint8_t VP8Clip8(int v) { |
+ return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX) |
+ : (v < 0) ? 0u : 255u; |
+} |
+ |
+static WEBP_INLINE uint8_t VP8ClipN(int v, int N) { // clip to N bits |
+ return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N))) |
+ : (v < 0) ? 0u : (255u >> (8 - N)); |
+} |
+ |
+static WEBP_INLINE int VP8YUVToR(int y, int v) { |
+ return kYScale * y + kVToR * v + kRCst; |
+} |
+ |
+static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { |
+ return kYScale * y - kUToG * u - kVToG * v + kGCst; |
+} |
+ |
+static WEBP_INLINE int VP8YUVToB(int y, int u) { |
+ return kYScale * y + kUToB * u + kBCst; |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const rgb) { |
+ rgb[0] = VP8Clip8(VP8YUVToR(y, v)); |
+ rgb[1] = VP8Clip8(VP8YUVToG(y, u, v)); |
+ rgb[2] = VP8Clip8(VP8YUVToB(y, u)); |
} |
static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v, |
uint8_t* const bgr) { |
- const int r_off = VP8kVToR[v]; |
- const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; |
- const int b_off = VP8kUToB[u]; |
- bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; |
- bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; |
- bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; |
+ bgr[0] = VP8Clip8(VP8YUVToB(y, u)); |
+ bgr[1] = VP8Clip8(VP8YUVToG(y, u, v)); |
+ bgr[2] = VP8Clip8(VP8YUVToR(y, v)); |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const rgb) { |
+ const int r = VP8Clip8(VP8YUVToR(y, u)); |
+ const int g = VP8ClipN(VP8YUVToG(y, u, v), 6); |
+ const int b = VP8ClipN(VP8YUVToB(y, v), 5); |
+ const uint8_t rg = (r & 0xf8) | (g >> 3); |
+ const uint8_t gb = (g << 5) | b; |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ rgb[0] = gb; |
+ rgb[1] = rg; |
+#else |
+ rgb[0] = rg; |
+ rgb[1] = gb; |
+#endif |
+} |
+ |
+static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const argb) { |
+ const int r = VP8Clip8(VP8YUVToR(y, u)); |
+ const int g = VP8ClipN(VP8YUVToG(y, u, v), 4); |
+ const int b = VP8Clip8(VP8YUVToB(y, v)); |
+ const uint8_t rg = (r & 0xf0) | g; |
+ const uint8_t ba = b | 0x0f; // overwrite the lower 4 bits |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ argb[0] = ba; |
+ argb[1] = rg; |
+#else |
+ argb[0] = rg; |
+ argb[1] = ba; |
+#endif |
+} |
+ |
+#endif // WEBP_YUV_USE_TABLE |
+ |
+static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, |
+ uint8_t* const argb) { |
+ argb[0] = 0xff; |
+ VP8YuvToRgb(y, u, v, argb + 1); |
} |
static WEBP_INLINE void VP8YuvToBgra(uint8_t y, uint8_t u, uint8_t v, |
@@ -90,28 +223,19 @@ static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, |
rgba[3] = 0xff; |
} |
-static WEBP_INLINE uint32_t VP8Clip4Bits(uint8_t c) { |
- const uint32_t v = (c + 8) >> 4; |
- return (v > 15) ? 15 : v; |
-} |
- |
// Must be called before everything, to initialize the tables. |
void VP8YUVInit(void); |
//------------------------------------------------------------------------------ |
// RGB -> YUV conversion |
-// The exact naming is Y'CbCr, following the ITU-R BT.601 standard. |
-// More information at: http://en.wikipedia.org/wiki/YCbCr |
-// Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 |
-// U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 |
-// V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 |
-// We use 16bit fixed point operations. |
static WEBP_INLINE int VP8ClipUV(int v) { |
- v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2); |
- return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255; |
+ v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2); |
+ return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255; |
} |
+#ifndef USE_YUVj |
+ |
static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { |
const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX); |
const int luma = 16839 * r + 33059 * g + 6420 * b; |
@@ -119,13 +243,38 @@ static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { |
} |
static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { |
- return VP8ClipUV(-9719 * r - 19081 * g + 28800 * b); |
+ const int u = -9719 * r - 19081 * g + 28800 * b; |
+ return VP8ClipUV(u); |
+} |
+ |
+static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { |
+ const int v = +28800 * r - 24116 * g - 4684 * b; |
+ return VP8ClipUV(v); |
+} |
+ |
+#else |
+ |
+// This JPEG-YUV colorspace, only for comparison! |
+// These are also 16-bit precision coefficients from Rec.601, but with full |
+// [0..255] output range. |
+static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { |
+ const int kRound = (1 << (YUV_FIX - 1)); |
+ const int luma = 19595 * r + 38470 * g + 7471 * b; |
+ return (luma + kRound) >> YUV_FIX; // no need to clip |
+} |
+ |
+static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { |
+ const int u = -11058 * r - 21710 * g + 32768 * b; |
+ return VP8ClipUV(u); |
} |
static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { |
- return VP8ClipUV(+28800 * r - 24116 * g - 4684 * b); |
+ const int v = 32768 * r - 27439 * g - 5329 * b; |
+ return VP8ClipUV(v); |
} |
+#endif // USE_YUVj |
+ |
#if defined(__cplusplus) || defined(c_plusplus) |
} // extern "C" |
#endif |