Index: third_party/libwebp/dsp/lossless.c |
diff --git a/third_party/libwebp/dsp/lossless.c b/third_party/libwebp/dsp/lossless.c |
index 472e641e450dd24ba80f11271abfe9ca9d929644..080b3e6328fedc72f23a15fabe068e95186f4602 100644 |
--- a/third_party/libwebp/dsp/lossless.c |
+++ b/third_party/libwebp/dsp/lossless.c |
@@ -11,25 +11,31 @@ |
// Jyrki Alakuijala (jyrki@google.com) |
// Urvang Joshi (urvang@google.com) |
+#include "./dsp.h" |
+ |
+// Define the following if target arch is sure to have SSE2 |
+// #define WEBP_TARGET_HAS_SSE2 |
+ |
#if defined(__cplusplus) || defined(c_plusplus) |
extern "C" { |
#endif |
+#if defined(WEBP_TARGET_HAS_SSE2) |
+#include <emmintrin.h> |
+#endif |
+ |
#include <math.h> |
#include <stdlib.h> |
#include "./lossless.h" |
#include "../dec/vp8li.h" |
-#include "../dsp/yuv.h" |
-#include "../dsp/dsp.h" |
-#include "../enc/histogram.h" |
+#include "./yuv.h" |
#define MAX_DIFF_COST (1e30f) |
// lookup table for small values of log2(int) |
#define APPROX_LOG_MAX 4096 |
#define LOG_2_RECIPROCAL 1.44269504088896338700465094007086 |
-#define LOG_LOOKUP_IDX_MAX 256 |
-static const float kLog2Table[LOG_LOOKUP_IDX_MAX] = { |
+const float kLog2Table[LOG_LOOKUP_IDX_MAX] = { |
0.0000000000000000f, 0.0000000000000000f, |
1.0000000000000000f, 1.5849625007211560f, |
2.0000000000000000f, 2.3219280948873621f, |
@@ -160,16 +166,97 @@ static const float kLog2Table[LOG_LOOKUP_IDX_MAX] = { |
7.9886846867721654f, 7.9943534368588577f |
}; |
-float VP8LFastLog2(int v) { |
- if (v < LOG_LOOKUP_IDX_MAX) { |
- return kLog2Table[v]; |
- } else if (v < APPROX_LOG_MAX) { |
+const float kSLog2Table[LOG_LOOKUP_IDX_MAX] = { |
+ 0.00000000f, 0.00000000f, 2.00000000f, 4.75488750f, |
+ 8.00000000f, 11.60964047f, 15.50977500f, 19.65148445f, |
+ 24.00000000f, 28.52932501f, 33.21928095f, 38.05374781f, |
+ 43.01955001f, 48.10571634f, 53.30296891f, 58.60335893f, |
+ 64.00000000f, 69.48686830f, 75.05865003f, 80.71062276f, |
+ 86.43856190f, 92.23866588f, 98.10749561f, 104.04192499f, |
+ 110.03910002f, 116.09640474f, 122.21143267f, 128.38196256f, |
+ 134.60593782f, 140.88144886f, 147.20671787f, 153.58008562f, |
+ 160.00000000f, 166.46500594f, 172.97373660f, 179.52490559f, |
+ 186.11730005f, 192.74977453f, 199.42124551f, 206.13068654f, |
+ 212.87712380f, 219.65963219f, 226.47733176f, 233.32938445f, |
+ 240.21499122f, 247.13338933f, 254.08384998f, 261.06567603f, |
+ 268.07820003f, 275.12078236f, 282.19280949f, 289.29369244f, |
+ 296.42286534f, 303.57978409f, 310.76392512f, 317.97478424f, |
+ 325.21187564f, 332.47473081f, 339.76289772f, 347.07593991f, |
+ 354.41343574f, 361.77497759f, 369.16017124f, 376.56863518f, |
+ 384.00000000f, 391.45390785f, 398.93001188f, 406.42797576f, |
+ 413.94747321f, 421.48818752f, 429.04981119f, 436.63204548f, |
+ 444.23460010f, 451.85719280f, 459.49954906f, 467.16140179f, |
+ 474.84249102f, 482.54256363f, 490.26137307f, 497.99867911f, |
+ 505.75424759f, 513.52785023f, 521.31926438f, 529.12827280f, |
+ 536.95466351f, 544.79822957f, 552.65876890f, 560.53608414f, |
+ 568.42998244f, 576.34027536f, 584.26677867f, 592.20931226f, |
+ 600.16769996f, 608.14176943f, 616.13135206f, 624.13628279f, |
+ 632.15640007f, 640.19154569f, 648.24156472f, 656.30630539f, |
+ 664.38561898f, 672.47935976f, 680.58738488f, 688.70955430f, |
+ 696.84573069f, 704.99577935f, 713.15956818f, 721.33696754f, |
+ 729.52785023f, 737.73209140f, 745.94956849f, 754.18016116f, |
+ 762.42375127f, 770.68022275f, 778.94946161f, 787.23135586f, |
+ 795.52579543f, 803.83267219f, 812.15187982f, 820.48331383f, |
+ 828.82687147f, 837.18245171f, 845.54995518f, 853.92928416f, |
+ 862.32034249f, 870.72303558f, 879.13727036f, 887.56295522f, |
+ 896.00000000f, 904.44831595f, 912.90781569f, 921.37841320f, |
+ 929.86002376f, 938.35256392f, 946.85595152f, 955.37010560f, |
+ 963.89494641f, 972.43039537f, 980.97637504f, 989.53280911f, |
+ 998.09962237f, 1006.67674069f, 1015.26409097f, 1023.86160116f, |
+ 1032.46920021f, 1041.08681805f, 1049.71438560f, 1058.35183469f, |
+ 1066.99909811f, 1075.65610955f, 1084.32280357f, 1092.99911564f, |
+ 1101.68498204f, 1110.38033993f, 1119.08512727f, 1127.79928282f, |
+ 1136.52274614f, 1145.25545758f, 1153.99735821f, 1162.74838989f, |
+ 1171.50849518f, 1180.27761738f, 1189.05570047f, 1197.84268914f, |
+ 1206.63852876f, 1215.44316535f, 1224.25654560f, 1233.07861684f, |
+ 1241.90932703f, 1250.74862473f, 1259.59645914f, 1268.45278005f, |
+ 1277.31753781f, 1286.19068338f, 1295.07216828f, 1303.96194457f, |
+ 1312.85996488f, 1321.76618236f, 1330.68055071f, 1339.60302413f, |
+ 1348.53355734f, 1357.47210556f, 1366.41862452f, 1375.37307041f, |
+ 1384.33539991f, 1393.30557020f, 1402.28353887f, 1411.26926400f, |
+ 1420.26270412f, 1429.26381818f, 1438.27256558f, 1447.28890615f, |
+ 1456.31280014f, 1465.34420819f, 1474.38309138f, 1483.42941118f, |
+ 1492.48312945f, 1501.54420843f, 1510.61261078f, 1519.68829949f, |
+ 1528.77123795f, 1537.86138993f, 1546.95871952f, 1556.06319119f, |
+ 1565.17476976f, 1574.29342040f, 1583.41910860f, 1592.55180020f, |
+ 1601.69146137f, 1610.83805860f, 1619.99155871f, 1629.15192882f, |
+ 1638.31913637f, 1647.49314911f, 1656.67393509f, 1665.86146266f, |
+ 1675.05570047f, 1684.25661744f, 1693.46418280f, 1702.67836605f, |
+ 1711.89913698f, 1721.12646563f, 1730.36032233f, 1739.60067768f, |
+ 1748.84750254f, 1758.10076802f, 1767.36044551f, 1776.62650662f, |
+ 1785.89892323f, 1795.17766747f, 1804.46271172f, 1813.75402857f, |
+ 1823.05159087f, 1832.35537170f, 1841.66534438f, 1850.98148244f, |
+ 1860.30375965f, 1869.63214999f, 1878.96662767f, 1888.30716711f, |
+ 1897.65374295f, 1907.00633003f, 1916.36490342f, 1925.72943838f, |
+ 1935.09991037f, 1944.47629506f, 1953.85856831f, 1963.24670620f, |
+ 1972.64068498f, 1982.04048108f, 1991.44607117f, 2000.85743204f, |
+ 2010.27454072f, 2019.69737440f, 2029.12591044f, 2038.56012640f |
+}; |
+ |
+float VP8LFastSLog2Slow(int v) { |
+ assert(v >= LOG_LOOKUP_IDX_MAX); |
+ if (v < APPROX_LOG_MAX) { |
int log_cnt = 0; |
+ const float v_f = (float)v; |
while (v >= LOG_LOOKUP_IDX_MAX) { |
++log_cnt; |
v = v >> 1; |
} |
- return kLog2Table[v] + (float)log_cnt; |
+ return v_f * (kLog2Table[v] + log_cnt); |
+ } else { |
+ return (float)(LOG_2_RECIPROCAL * v * log((double)v)); |
+ } |
+} |
+ |
+float VP8LFastLog2Slow(int v) { |
+ assert(v >= LOG_LOOKUP_IDX_MAX); |
+ if (v < APPROX_LOG_MAX) { |
+ int log_cnt = 0; |
+ while (v >= LOG_LOOKUP_IDX_MAX) { |
+ ++log_cnt; |
+ v = v >> 1; |
+ } |
+ return kLog2Table[v] + log_cnt; |
} else { |
return (float)(LOG_2_RECIPROCAL * log((double)v)); |
} |
@@ -198,6 +285,61 @@ static WEBP_INLINE uint32_t Average4(uint32_t a0, uint32_t a1, |
return Average2(Average2(a0, a1), Average2(a2, a3)); |
} |
+#if defined(WEBP_TARGET_HAS_SSE2) |
+static WEBP_INLINE uint32_t ClampedAddSubtractFull(uint32_t c0, uint32_t c1, |
+ uint32_t c2) { |
+ const __m128i zero = _mm_setzero_si128(); |
+ const __m128i C0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c0), zero); |
+ const __m128i C1 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c1), zero); |
+ const __m128i C2 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); |
+ const __m128i V1 = _mm_add_epi16(C0, C1); |
+ const __m128i V2 = _mm_sub_epi16(V1, C2); |
+ const __m128i b = _mm_packus_epi16(V2, V2); |
+ const uint32_t output = _mm_cvtsi128_si32(b); |
+ return output; |
+} |
+ |
+static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
+ uint32_t c2) { |
+ const uint32_t ave = Average2(c0, c1); |
+ const __m128i zero = _mm_setzero_si128(); |
+ const __m128i A0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(ave), zero); |
+ const __m128i B0 = _mm_unpacklo_epi8(_mm_cvtsi32_si128(c2), zero); |
+ const __m128i A1 = _mm_sub_epi16(A0, B0); |
+ const __m128i BgtA = _mm_cmpgt_epi16(B0, A0); |
+ const __m128i A2 = _mm_sub_epi16(A1, BgtA); |
+ const __m128i A3 = _mm_srai_epi16(A2, 1); |
+ const __m128i A4 = _mm_add_epi16(A0, A3); |
+ const __m128i A5 = _mm_packus_epi16(A4, A4); |
+ const uint32_t output = _mm_cvtsi128_si32(A5); |
+ return output; |
+} |
+ |
+static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
+ int pa_minus_pb; |
+ const __m128i zero = _mm_setzero_si128(); |
+ const __m128i A0 = _mm_cvtsi32_si128(a); |
+ const __m128i B0 = _mm_cvtsi32_si128(b); |
+ const __m128i C0 = _mm_cvtsi32_si128(c); |
+ const __m128i AC0 = _mm_subs_epu8(A0, C0); |
+ const __m128i CA0 = _mm_subs_epu8(C0, A0); |
+ const __m128i BC0 = _mm_subs_epu8(B0, C0); |
+ const __m128i CB0 = _mm_subs_epu8(C0, B0); |
+ const __m128i AC = _mm_or_si128(AC0, CA0); |
+ const __m128i BC = _mm_or_si128(BC0, CB0); |
+ const __m128i pa = _mm_unpacklo_epi8(AC, zero); // |a - c| |
+ const __m128i pb = _mm_unpacklo_epi8(BC, zero); // |b - c| |
+ const __m128i diff = _mm_sub_epi16(pb, pa); |
+ { |
+ int16_t out[8]; |
+ _mm_storeu_si128((__m128i*)out, diff); |
+ pa_minus_pb = out[0] + out[1] + out[2] + out[3]; |
+ } |
+ return (pa_minus_pb <= 0) ? a : b; |
+} |
+ |
+#else |
+ |
static WEBP_INLINE uint32_t Clip255(uint32_t a) { |
if (a < 256) { |
return a; |
@@ -239,9 +381,9 @@ static WEBP_INLINE uint32_t ClampedAddSubtractHalf(uint32_t c0, uint32_t c1, |
} |
static WEBP_INLINE int Sub3(int a, int b, int c) { |
- const int pa = b - c; |
- const int pb = a - c; |
- return abs(pa) - abs(pb); |
+ const int pb = b - c; |
+ const int pa = a - c; |
+ return abs(pb) - abs(pa); |
} |
static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
@@ -250,9 +392,9 @@ static WEBP_INLINE uint32_t Select(uint32_t a, uint32_t b, uint32_t c) { |
Sub3((a >> 16) & 0xff, (b >> 16) & 0xff, (c >> 16) & 0xff) + |
Sub3((a >> 8) & 0xff, (b >> 8) & 0xff, (c >> 8) & 0xff) + |
Sub3((a ) & 0xff, (b ) & 0xff, (c ) & 0xff); |
- |
return (pa_minus_pb <= 0) ? a : b; |
} |
+#endif |
//------------------------------------------------------------------------------ |
// Predictors |
@@ -340,35 +482,36 @@ static float PredictionCostSpatial(const int* counts, |
return (float)(-0.1 * bits); |
} |
-// Compute the Shanon's entropy: Sum(p*log2(p)) |
-static float ShannonEntropy(const int* const array, int n) { |
+// Compute the combined Shanon's entropy for distribution {X} and {X+Y} |
+static float CombinedShannonEntropy(const int* const X, |
+ const int* const Y, int n) { |
int i; |
- float retval = 0.f; |
- int sum = 0; |
+ double retval = 0.; |
+ int sumX = 0, sumXY = 0; |
for (i = 0; i < n; ++i) { |
- if (array[i] != 0) { |
- sum += array[i]; |
- retval -= VP8LFastSLog2(array[i]); |
+ const int x = X[i]; |
+ const int xy = X[i] + Y[i]; |
+ if (x != 0) { |
+ sumX += x; |
+ retval -= VP8LFastSLog2(x); |
+ } |
+ if (xy != 0) { |
+ sumXY += xy; |
+ retval -= VP8LFastSLog2(xy); |
} |
} |
- retval += VP8LFastSLog2(sum); |
- return retval; |
+ retval += VP8LFastSLog2(sumX) + VP8LFastSLog2(sumXY); |
+ return (float)retval; |
} |
static float PredictionCostSpatialHistogram(int accumulated[4][256], |
int tile[4][256]) { |
int i; |
- int k; |
- int combo[256]; |
double retval = 0; |
for (i = 0; i < 4; ++i) { |
- const double exp_val = 0.94; |
- retval += PredictionCostSpatial(&tile[i][0], 1, exp_val); |
- retval += ShannonEntropy(&tile[i][0], 256); |
- for (k = 0; k < 256; ++k) { |
- combo[k] = accumulated[i][k] + tile[i][k]; |
- } |
- retval += ShannonEntropy(&combo[0], 256); |
+ const double kExpValue = 0.94; |
+ retval += PredictionCostSpatial(tile[i], 1, kExpValue); |
+ retval += CombinedShannonEntropy(tile[i], accumulated[i], 256); |
} |
return (float)retval; |
} |
@@ -572,8 +715,21 @@ static void PredictorInverseTransform(const VP8LTransform* const transform, |
} |
void VP8LSubtractGreenFromBlueAndRed(uint32_t* argb_data, int num_pixs) { |
- int i; |
- for (i = 0; i < num_pixs; ++i) { |
+ int i = 0; |
+#if defined(WEBP_TARGET_HAS_SSE2) |
+ const __m128i mask = _mm_set1_epi32(0x0000ff00); |
+ for (; i + 4 < num_pixs; i += 4) { |
+ const __m128i in = _mm_loadu_si128((__m128i*)&argb_data[i]); |
+ const __m128i in_00g0 = _mm_and_si128(in, mask); // 00g0|00g0|... |
+ const __m128i in_0g00 = _mm_slli_epi32(in_00g0, 8); // 0g00|0g00|... |
+ const __m128i in_000g = _mm_srli_epi32(in_00g0, 8); // 000g|000g|... |
+ const __m128i in_0g0g = _mm_or_si128(in_0g00, in_000g); |
+ const __m128i out = _mm_sub_epi8(in, in_0g0g); |
+ _mm_storeu_si128((__m128i*)&argb_data[i], out); |
+ } |
+ // fallthrough and finish off with plain-C |
+#endif |
+ for (; i < num_pixs; ++i) { |
const uint32_t argb = argb_data[i]; |
const uint32_t green = (argb >> 8) & 0xff; |
const uint32_t new_r = (((argb >> 16) & 0xff) - green) & 0xff; |
@@ -588,9 +744,21 @@ static void AddGreenToBlueAndRed(const VP8LTransform* const transform, |
int y_start, int y_end, uint32_t* data) { |
const int width = transform->xsize_; |
const uint32_t* const data_end = data + (y_end - y_start) * width; |
+#if defined(WEBP_TARGET_HAS_SSE2) |
+ const __m128i mask = _mm_set1_epi32(0x0000ff00); |
+ for (; data + 4 < data_end; data += 4) { |
+ const __m128i in = _mm_loadu_si128((__m128i*)data); |
+ const __m128i in_00g0 = _mm_and_si128(in, mask); // 00g0|00g0|... |
+ const __m128i in_0g00 = _mm_slli_epi32(in_00g0, 8); // 0g00|0g00|... |
+ const __m128i in_000g = _mm_srli_epi32(in_00g0, 8); // 000g|000g|... |
+ const __m128i in_0g0g = _mm_or_si128(in_0g00, in_000g); |
+ const __m128i out = _mm_add_epi8(in, in_0g0g); |
+ _mm_storeu_si128((__m128i*)data, out); |
+ } |
+ // fallthrough and finish off with plain-C |
+#endif |
while (data < data_end) { |
const uint32_t argb = *data; |
- // "* 0001001u" is equivalent to "(green << 16) + green)" |
const uint32_t green = ((argb >> 8) & 0xff); |
uint32_t red_blue = (argb & 0x00ff00ffu); |
red_blue += (green << 16) | green; |
@@ -655,6 +823,25 @@ static WEBP_INLINE uint32_t TransformColor(const Multipliers* const m, |
return (argb & 0xff00ff00u) | (new_red << 16) | (new_blue); |
} |
+static WEBP_INLINE uint8_t TransformColorRed(uint8_t green_to_red, |
+ uint32_t argb) { |
+ const uint32_t green = argb >> 8; |
+ uint32_t new_red = argb >> 16; |
+ new_red -= ColorTransformDelta(green_to_red, green); |
+ return (new_red & 0xff); |
+} |
+ |
+static WEBP_INLINE uint8_t TransformColorBlue(uint8_t green_to_blue, |
+ uint8_t red_to_blue, |
+ uint32_t argb) { |
+ const uint32_t green = argb >> 8; |
+ const uint32_t red = argb >> 16; |
+ uint8_t new_blue = argb; |
+ new_blue -= ColorTransformDelta(green_to_blue, green); |
+ new_blue -= ColorTransformDelta(red_to_blue, red); |
+ return (new_blue & 0xff); |
+} |
+ |
static WEBP_INLINE int SkipRepeatedPixels(const uint32_t* const argb, |
int ix, int xsize) { |
const uint32_t v = argb[ix]; |
@@ -675,14 +862,10 @@ static WEBP_INLINE int SkipRepeatedPixels(const uint32_t* const argb, |
static float PredictionCostCrossColor(const int accumulated[256], |
const int counts[256]) { |
// Favor low entropy, locally and globally. |
- int i; |
- int combo[256]; |
- for (i = 0; i < 256; ++i) { |
- combo[i] = accumulated[i] + counts[i]; |
- } |
- return ShannonEntropy(combo, 256) + |
- ShannonEntropy(counts, 256) + |
- PredictionCostSpatial(counts, 3, 2.4); // Favor small absolute values. |
+ // Favor small absolute values for PredictionCostSpatial |
+ static const double kExpValue = 2.4; |
+ return CombinedShannonEntropy(counts, accumulated, 256) + |
+ PredictionCostSpatial(counts, 3, kExpValue); |
} |
static Multipliers GetBestColorTransformForTile( |
@@ -712,85 +895,75 @@ static Multipliers GetBestColorTransformForTile( |
if (all_y_max > ysize) { |
all_y_max = ysize; |
} |
+ |
for (green_to_red = -64; green_to_red <= 64; green_to_red += halfstep) { |
int histo[256] = { 0 }; |
int all_y; |
- Multipliers tx; |
- MultipliersClear(&tx); |
- tx.green_to_red_ = green_to_red & 0xff; |
for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { |
- uint32_t predict; |
int ix = all_y * xsize + tile_x_offset; |
int all_x; |
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
if (SkipRepeatedPixels(argb, ix, xsize)) { |
continue; |
} |
- predict = TransformColor(&tx, argb[ix], 0); |
- ++histo[(predict >> 16) & 0xff]; // red. |
+ ++histo[TransformColorRed(green_to_red, argb[ix])]; // red. |
} |
} |
cur_diff = PredictionCostCrossColor(&accumulated_red_histo[0], &histo[0]); |
- if (tx.green_to_red_ == prevX.green_to_red_) { |
+ if ((uint8_t)green_to_red == prevX.green_to_red_) { |
cur_diff -= 3; // favor keeping the areas locally similar |
} |
- if (tx.green_to_red_ == prevY.green_to_red_) { |
+ if ((uint8_t)green_to_red == prevY.green_to_red_) { |
cur_diff -= 3; // favor keeping the areas locally similar |
} |
- if (tx.green_to_red_ == 0) { |
+ if (green_to_red == 0) { |
cur_diff -= 3; |
} |
if (cur_diff < best_diff) { |
best_diff = cur_diff; |
- best_tx = tx; |
+ best_tx.green_to_red_ = green_to_red; |
} |
} |
best_diff = MAX_DIFF_COST; |
- green_to_red = best_tx.green_to_red_; |
for (green_to_blue = -32; green_to_blue <= 32; green_to_blue += step) { |
for (red_to_blue = -32; red_to_blue <= 32; red_to_blue += step) { |
int all_y; |
int histo[256] = { 0 }; |
- Multipliers tx; |
- tx.green_to_red_ = green_to_red; |
- tx.green_to_blue_ = green_to_blue; |
- tx.red_to_blue_ = red_to_blue; |
for (all_y = tile_y_offset; all_y < all_y_max; ++all_y) { |
- uint32_t predict; |
int all_x; |
int ix = all_y * xsize + tile_x_offset; |
for (all_x = tile_x_offset; all_x < all_x_max; ++all_x, ++ix) { |
if (SkipRepeatedPixels(argb, ix, xsize)) { |
continue; |
} |
- predict = TransformColor(&tx, argb[ix], 0); |
- ++histo[predict & 0xff]; // blue. |
+ ++histo[TransformColorBlue(green_to_blue, red_to_blue, argb[ix])]; |
} |
} |
cur_diff = |
- PredictionCostCrossColor(&accumulated_blue_histo[0], &histo[0]); |
- if (tx.green_to_blue_ == prevX.green_to_blue_) { |
+ PredictionCostCrossColor(&accumulated_blue_histo[0], &histo[0]); |
+ if ((uint8_t)green_to_blue == prevX.green_to_blue_) { |
cur_diff -= 3; // favor keeping the areas locally similar |
} |
- if (tx.green_to_blue_ == prevY.green_to_blue_) { |
+ if ((uint8_t)green_to_blue == prevY.green_to_blue_) { |
cur_diff -= 3; // favor keeping the areas locally similar |
} |
- if (tx.red_to_blue_ == prevX.red_to_blue_) { |
+ if ((uint8_t)red_to_blue == prevX.red_to_blue_) { |
cur_diff -= 3; // favor keeping the areas locally similar |
} |
- if (tx.red_to_blue_ == prevY.red_to_blue_) { |
+ if ((uint8_t)red_to_blue == prevY.red_to_blue_) { |
cur_diff -= 3; // favor keeping the areas locally similar |
} |
- if (tx.green_to_blue_ == 0) { |
+ if (green_to_blue == 0) { |
cur_diff -= 3; |
} |
- if (tx.red_to_blue_ == 0) { |
+ if (red_to_blue == 0) { |
cur_diff -= 3; |
} |
if (cur_diff < best_diff) { |
best_diff = cur_diff; |
- best_tx = tx; |
+ best_tx.green_to_blue_ = green_to_blue; |
+ best_tx.red_to_blue_ = red_to_blue; |
} |
} |
} |
@@ -935,7 +1108,7 @@ static void ColorIndexInverseTransform( |
uint32_t packed_pixels = 0; |
int x; |
for (x = 0; x < width; ++x) { |
- // We need to load fresh 'packed_pixels' once every 'bytes_per_pixels' |
+ // We need to load fresh 'packed_pixels' once every 'pixels_per_byte' |
// increments of x. Fortunately, pixels_per_byte is a power of 2, so |
// can just use a mask for that, instead of decrementing a counter. |
if ((x & count_mask) == 0) packed_pixels = ((*src++) >> 8) & 0xff; |
@@ -976,7 +1149,21 @@ void VP8LInverseTransform(const VP8LTransform* const transform, |
ColorSpaceInverseTransform(transform, row_start, row_end, out); |
break; |
case COLOR_INDEXING_TRANSFORM: |
- ColorIndexInverseTransform(transform, row_start, row_end, in, out); |
+ if (in == out && transform->bits_ > 0) { |
+ // Move packed pixels to the end of unpacked region, so that unpacking |
+ // can occur seamlessly. |
+ // Also, note that this is the only transform that applies on |
+ // the effective width of VP8LSubSampleSize(xsize_, bits_). All other |
+ // transforms work on effective width of xsize_. |
+ const int out_stride = (row_end - row_start) * transform->xsize_; |
+ const int in_stride = (row_end - row_start) * |
+ VP8LSubSampleSize(transform->xsize_, transform->bits_); |
+ uint32_t* const src = out + out_stride - in_stride; |
+ memmove(src, out, in_stride * sizeof(*src)); |
+ ColorIndexInverseTransform(transform, row_start, row_end, src, out); |
+ } else { |
+ ColorIndexInverseTransform(transform, row_start, row_end, in, out); |
+ } |
break; |
} |
} |
@@ -1020,8 +1207,15 @@ static void ConvertBGRAToRGBA4444(const uint32_t* src, |
const uint32_t* const src_end = src + num_pixels; |
while (src < src_end) { |
const uint32_t argb = *src++; |
- *dst++ = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); |
- *dst++ = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); |
+ const uint8_t rg = ((argb >> 16) & 0xf0) | ((argb >> 12) & 0xf); |
+ const uint8_t ba = ((argb >> 0) & 0xf0) | ((argb >> 28) & 0xf); |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ *dst++ = ba; |
+ *dst++ = rg; |
+#else |
+ *dst++ = rg; |
+ *dst++ = ba; |
+#endif |
} |
} |
@@ -1030,8 +1224,15 @@ static void ConvertBGRAToRGB565(const uint32_t* src, |
const uint32_t* const src_end = src + num_pixels; |
while (src < src_end) { |
const uint32_t argb = *src++; |
- *dst++ = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); |
- *dst++ = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); |
+ const uint8_t rg = ((argb >> 16) & 0xf8) | ((argb >> 13) & 0x7); |
+ const uint8_t gb = ((argb >> 5) & 0xe0) | ((argb >> 3) & 0x1f); |
+#ifdef WEBP_SWAP_16BIT_CSP |
+ *dst++ = gb; |
+ *dst++ = rg; |
+#else |
+ *dst++ = rg; |
+ *dst++ = gb; |
+#endif |
} |
} |
@@ -1052,20 +1253,27 @@ static void CopyOrSwap(const uint32_t* src, int num_pixels, uint8_t* dst, |
const uint32_t* const src_end = src + num_pixels; |
while (src < src_end) { |
uint32_t argb = *src++; |
+ |
+#if !defined(WEBP_REFERENCE_IMPLEMENTATION) |
#if !defined(__BIG_ENDIAN__) && (defined(__i386__) || defined(__x86_64__)) |
__asm__ volatile("bswap %0" : "=r"(argb) : "0"(argb)); |
*(uint32_t*)dst = argb; |
- dst += sizeof(argb); |
#elif !defined(__BIG_ENDIAN__) && defined(_MSC_VER) |
argb = _byteswap_ulong(argb); |
*(uint32_t*)dst = argb; |
- dst += sizeof(argb); |
#else |
- *dst++ = (argb >> 24) & 0xff; |
- *dst++ = (argb >> 16) & 0xff; |
- *dst++ = (argb >> 8) & 0xff; |
- *dst++ = (argb >> 0) & 0xff; |
+ dst[0] = (argb >> 24) & 0xff; |
+ dst[1] = (argb >> 16) & 0xff; |
+ dst[2] = (argb >> 8) & 0xff; |
+ dst[3] = (argb >> 0) & 0xff; |
#endif |
+#else // WEBP_REFERENCE_IMPLEMENTATION |
+ dst[0] = (argb >> 24) & 0xff; |
+ dst[1] = (argb >> 16) & 0xff; |
+ dst[2] = (argb >> 8) & 0xff; |
+ dst[3] = (argb >> 0) & 0xff; |
+#endif |
+ dst += sizeof(argb); |
} |
} else { |
memcpy(dst, src, num_pixels * sizeof(*src)); |