| Index: third_party/protobuf/javanano/src/main/java/com/google/protobuf/nano/CodedOutputByteBufferNano.java
|
| diff --git a/third_party/protobuf/javanano/src/main/java/com/google/protobuf/nano/CodedOutputByteBufferNano.java b/third_party/protobuf/javanano/src/main/java/com/google/protobuf/nano/CodedOutputByteBufferNano.java
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..322ada8e1f8230c1bb19c702f3d9d4634714b90c
|
| --- /dev/null
|
| +++ b/third_party/protobuf/javanano/src/main/java/com/google/protobuf/nano/CodedOutputByteBufferNano.java
|
| @@ -0,0 +1,1214 @@
|
| +// Protocol Buffers - Google's data interchange format
|
| +// Copyright 2013 Google Inc. All rights reserved.
|
| +// https://developers.google.com/protocol-buffers/
|
| +//
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following disclaimer
|
| +// in the documentation and/or other materials provided with the
|
| +// distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived from
|
| +// this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +package com.google.protobuf.nano;
|
| +
|
| +import java.io.IOException;
|
| +import java.nio.BufferOverflowException;
|
| +import java.nio.ByteBuffer;
|
| +import java.nio.ByteOrder;
|
| +import java.nio.ReadOnlyBufferException;
|
| +
|
| +/**
|
| + * Encodes and writes protocol message fields.
|
| + *
|
| + * <p>This class contains two kinds of methods: methods that write specific
|
| + * protocol message constructs and field types (e.g. {@link #writeTag} and
|
| + * {@link #writeInt32}) and methods that write low-level values (e.g.
|
| + * {@link #writeRawVarint32} and {@link #writeRawBytes}). If you are
|
| + * writing encoded protocol messages, you should use the former methods, but if
|
| + * you are writing some other format of your own design, use the latter.
|
| + *
|
| + * <p>This class is totally unsynchronized.
|
| + *
|
| + * @author kneton@google.com Kenton Varda
|
| + */
|
| +public final class CodedOutputByteBufferNano {
|
| + /* max bytes per java UTF-16 char in UTF-8 */
|
| + private static final int MAX_UTF8_EXPANSION = 3;
|
| + private final ByteBuffer buffer;
|
| +
|
| + private CodedOutputByteBufferNano(final byte[] buffer, final int offset,
|
| + final int length) {
|
| + this(ByteBuffer.wrap(buffer, offset, length));
|
| + }
|
| +
|
| + private CodedOutputByteBufferNano(final ByteBuffer buffer) {
|
| + this.buffer = buffer;
|
| + this.buffer.order(ByteOrder.LITTLE_ENDIAN);
|
| + }
|
| +
|
| + /**
|
| + * Create a new {@code CodedOutputStream} that writes directly to the given
|
| + * byte array. If more bytes are written than fit in the array,
|
| + * {@link OutOfSpaceException} will be thrown. Writing directly to a flat
|
| + * array is faster than writing to an {@code OutputStream}.
|
| + */
|
| + public static CodedOutputByteBufferNano newInstance(final byte[] flatArray) {
|
| + return newInstance(flatArray, 0, flatArray.length);
|
| + }
|
| +
|
| + /**
|
| + * Create a new {@code CodedOutputStream} that writes directly to the given
|
| + * byte array slice. If more bytes are written than fit in the slice,
|
| + * {@link OutOfSpaceException} will be thrown. Writing directly to a flat
|
| + * array is faster than writing to an {@code OutputStream}.
|
| + */
|
| + public static CodedOutputByteBufferNano newInstance(final byte[] flatArray,
|
| + final int offset,
|
| + final int length) {
|
| + return new CodedOutputByteBufferNano(flatArray, offset, length);
|
| + }
|
| +
|
| + // -----------------------------------------------------------------
|
| +
|
| + /** Write a {@code double} field, including tag, to the stream. */
|
| + public void writeDouble(final int fieldNumber, final double value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64);
|
| + writeDoubleNoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code float} field, including tag, to the stream. */
|
| + public void writeFloat(final int fieldNumber, final float value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32);
|
| + writeFloatNoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code uint64} field, including tag, to the stream. */
|
| + public void writeUInt64(final int fieldNumber, final long value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
|
| + writeUInt64NoTag(value);
|
| + }
|
| +
|
| + /** Write an {@code int64} field, including tag, to the stream. */
|
| + public void writeInt64(final int fieldNumber, final long value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
|
| + writeInt64NoTag(value);
|
| + }
|
| +
|
| + /** Write an {@code int32} field, including tag, to the stream. */
|
| + public void writeInt32(final int fieldNumber, final int value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
|
| + writeInt32NoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code fixed64} field, including tag, to the stream. */
|
| + public void writeFixed64(final int fieldNumber, final long value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64);
|
| + writeFixed64NoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code fixed32} field, including tag, to the stream. */
|
| + public void writeFixed32(final int fieldNumber, final int value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32);
|
| + writeFixed32NoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code bool} field, including tag, to the stream. */
|
| + public void writeBool(final int fieldNumber, final boolean value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
|
| + writeBoolNoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code string} field, including tag, to the stream. */
|
| + public void writeString(final int fieldNumber, final String value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED);
|
| + writeStringNoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code group} field, including tag, to the stream. */
|
| + public void writeGroup(final int fieldNumber, final MessageNano value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_START_GROUP);
|
| + writeGroupNoTag(value);
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_END_GROUP);
|
| + }
|
| +
|
| + /** Write an embedded message field, including tag, to the stream. */
|
| + public void writeMessage(final int fieldNumber, final MessageNano value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED);
|
| + writeMessageNoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code bytes} field, including tag, to the stream. */
|
| + public void writeBytes(final int fieldNumber, final byte[] value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_LENGTH_DELIMITED);
|
| + writeBytesNoTag(value);
|
| + }
|
| +
|
| + /** Write a {@code uint32} field, including tag, to the stream. */
|
| + public void writeUInt32(final int fieldNumber, final int value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
|
| + writeUInt32NoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Write an enum field, including tag, to the stream. Caller is responsible
|
| + * for converting the enum value to its numeric value.
|
| + */
|
| + public void writeEnum(final int fieldNumber, final int value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
|
| + writeEnumNoTag(value);
|
| + }
|
| +
|
| + /** Write an {@code sfixed32} field, including tag, to the stream. */
|
| + public void writeSFixed32(final int fieldNumber, final int value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED32);
|
| + writeSFixed32NoTag(value);
|
| + }
|
| +
|
| + /** Write an {@code sfixed64} field, including tag, to the stream. */
|
| + public void writeSFixed64(final int fieldNumber, final long value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_FIXED64);
|
| + writeSFixed64NoTag(value);
|
| + }
|
| +
|
| + /** Write an {@code sint32} field, including tag, to the stream. */
|
| + public void writeSInt32(final int fieldNumber, final int value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
|
| + writeSInt32NoTag(value);
|
| + }
|
| +
|
| + /** Write an {@code sint64} field, including tag, to the stream. */
|
| + public void writeSInt64(final int fieldNumber, final long value)
|
| + throws IOException {
|
| + writeTag(fieldNumber, WireFormatNano.WIRETYPE_VARINT);
|
| + writeSInt64NoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Write a MessageSet extension field to the stream. For historical reasons,
|
| + * the wire format differs from normal fields.
|
| + */
|
| +// public void writeMessageSetExtension(final int fieldNumber,
|
| +// final MessageMicro value)
|
| +// throws IOException {
|
| +// writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_START_GROUP);
|
| +// writeUInt32(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber);
|
| +// writeMessage(WireFormatMicro.MESSAGE_SET_MESSAGE, value);
|
| +// writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_END_GROUP);
|
| +// }
|
| +
|
| + /**
|
| + * Write an unparsed MessageSet extension field to the stream. For
|
| + * historical reasons, the wire format differs from normal fields.
|
| + */
|
| +// public void writeRawMessageSetExtension(final int fieldNumber,
|
| +// final ByteStringMicro value)
|
| +// throws IOException {
|
| +// writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_START_GROUP);
|
| +// writeUInt32(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber);
|
| +// writeBytes(WireFormatMicro.MESSAGE_SET_MESSAGE, value);
|
| +// writeTag(WireFormatMicro.MESSAGE_SET_ITEM, WireFormatMicro.WIRETYPE_END_GROUP);
|
| +// }
|
| +
|
| + // -----------------------------------------------------------------
|
| +
|
| + /** Write a {@code double} field to the stream. */
|
| + public void writeDoubleNoTag(final double value) throws IOException {
|
| + writeRawLittleEndian64(Double.doubleToLongBits(value));
|
| + }
|
| +
|
| + /** Write a {@code float} field to the stream. */
|
| + public void writeFloatNoTag(final float value) throws IOException {
|
| + writeRawLittleEndian32(Float.floatToIntBits(value));
|
| + }
|
| +
|
| + /** Write a {@code uint64} field to the stream. */
|
| + public void writeUInt64NoTag(final long value) throws IOException {
|
| + writeRawVarint64(value);
|
| + }
|
| +
|
| + /** Write an {@code int64} field to the stream. */
|
| + public void writeInt64NoTag(final long value) throws IOException {
|
| + writeRawVarint64(value);
|
| + }
|
| +
|
| + /** Write an {@code int32} field to the stream. */
|
| + public void writeInt32NoTag(final int value) throws IOException {
|
| + if (value >= 0) {
|
| + writeRawVarint32(value);
|
| + } else {
|
| + // Must sign-extend.
|
| + writeRawVarint64(value);
|
| + }
|
| + }
|
| +
|
| + /** Write a {@code fixed64} field to the stream. */
|
| + public void writeFixed64NoTag(final long value) throws IOException {
|
| + writeRawLittleEndian64(value);
|
| + }
|
| +
|
| + /** Write a {@code fixed32} field to the stream. */
|
| + public void writeFixed32NoTag(final int value) throws IOException {
|
| + writeRawLittleEndian32(value);
|
| + }
|
| +
|
| + /** Write a {@code bool} field to the stream. */
|
| + public void writeBoolNoTag(final boolean value) throws IOException {
|
| + writeRawByte(value ? 1 : 0);
|
| + }
|
| +
|
| + /** Write a {@code string} field to the stream. */
|
| + public void writeStringNoTag(final String value) throws IOException {
|
| + // UTF-8 byte length of the string is at least its UTF-16 code unit length (value.length()),
|
| + // and at most 3 times of it. Optimize for the case where we know this length results in a
|
| + // constant varint length - saves measuring length of the string.
|
| + try {
|
| + final int minLengthVarIntSize = computeRawVarint32Size(value.length());
|
| + final int maxLengthVarIntSize = computeRawVarint32Size(value.length() * MAX_UTF8_EXPANSION);
|
| + if (minLengthVarIntSize == maxLengthVarIntSize) {
|
| + int oldPosition = buffer.position();
|
| + // Buffer.position, when passed a position that is past its limit, throws
|
| + // IllegalArgumentException, and this class is documented to throw
|
| + // OutOfSpaceException instead.
|
| + if (buffer.remaining() < minLengthVarIntSize) {
|
| + throw new OutOfSpaceException(oldPosition + minLengthVarIntSize, buffer.limit());
|
| + }
|
| + buffer.position(oldPosition + minLengthVarIntSize);
|
| + encode(value, buffer);
|
| + int newPosition = buffer.position();
|
| + buffer.position(oldPosition);
|
| + writeRawVarint32(newPosition - oldPosition - minLengthVarIntSize);
|
| + buffer.position(newPosition);
|
| + } else {
|
| + writeRawVarint32(encodedLength(value));
|
| + encode(value, buffer);
|
| + }
|
| + } catch (BufferOverflowException e) {
|
| + final OutOfSpaceException outOfSpaceException = new OutOfSpaceException(buffer.position(),
|
| + buffer.limit());
|
| + outOfSpaceException.initCause(e);
|
| + throw outOfSpaceException;
|
| + }
|
| + }
|
| +
|
| + // These UTF-8 handling methods are copied from Guava's Utf8 class.
|
| + /**
|
| + * Returns the number of bytes in the UTF-8-encoded form of {@code sequence}. For a string,
|
| + * this method is equivalent to {@code string.getBytes(UTF_8).length}, but is more efficient in
|
| + * both time and space.
|
| + *
|
| + * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired
|
| + * surrogates)
|
| + */
|
| + private static int encodedLength(CharSequence sequence) {
|
| + // Warning to maintainers: this implementation is highly optimized.
|
| + int utf16Length = sequence.length();
|
| + int utf8Length = utf16Length;
|
| + int i = 0;
|
| +
|
| + // This loop optimizes for pure ASCII.
|
| + while (i < utf16Length && sequence.charAt(i) < 0x80) {
|
| + i++;
|
| + }
|
| +
|
| + // This loop optimizes for chars less than 0x800.
|
| + for (; i < utf16Length; i++) {
|
| + char c = sequence.charAt(i);
|
| + if (c < 0x800) {
|
| + utf8Length += ((0x7f - c) >>> 31); // branch free!
|
| + } else {
|
| + utf8Length += encodedLengthGeneral(sequence, i);
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if (utf8Length < utf16Length) {
|
| + // Necessary and sufficient condition for overflow because of maximum 3x expansion
|
| + throw new IllegalArgumentException("UTF-8 length does not fit in int: "
|
| + + (utf8Length + (1L << 32)));
|
| + }
|
| + return utf8Length;
|
| + }
|
| +
|
| + private static int encodedLengthGeneral(CharSequence sequence, int start) {
|
| + int utf16Length = sequence.length();
|
| + int utf8Length = 0;
|
| + for (int i = start; i < utf16Length; i++) {
|
| + char c = sequence.charAt(i);
|
| + if (c < 0x800) {
|
| + utf8Length += (0x7f - c) >>> 31; // branch free!
|
| + } else {
|
| + utf8Length += 2;
|
| + // jdk7+: if (Character.isSurrogate(c)) {
|
| + if (Character.MIN_SURROGATE <= c && c <= Character.MAX_SURROGATE) {
|
| + // Check that we have a well-formed surrogate pair.
|
| + int cp = Character.codePointAt(sequence, i);
|
| + if (cp < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
|
| + throw new IllegalArgumentException("Unpaired surrogate at index " + i);
|
| + }
|
| + i++;
|
| + }
|
| + }
|
| + }
|
| + return utf8Length;
|
| + }
|
| +
|
| + /**
|
| + * Encodes {@code sequence} into UTF-8, in {@code byteBuffer}. For a string, this method is
|
| + * equivalent to {@code buffer.put(string.getBytes(UTF_8))}, but is more efficient in both time
|
| + * and space. Bytes are written starting at the current position. This method requires paired
|
| + * surrogates, and therefore does not support chunking.
|
| + *
|
| + * <p>To ensure sufficient space in the output buffer, either call {@link #encodedLength} to
|
| + * compute the exact amount needed, or leave room for {@code 3 * sequence.length()}, which is the
|
| + * largest possible number of bytes that any input can be encoded to.
|
| + *
|
| + * @throws IllegalArgumentException if {@code sequence} contains ill-formed UTF-16 (unpaired
|
| + * surrogates)
|
| + * @throws BufferOverflowException if {@code sequence} encoded in UTF-8 does not fit in
|
| + * {@code byteBuffer}'s remaining space.
|
| + * @throws ReadOnlyBufferException if {@code byteBuffer} is a read-only buffer.
|
| + */
|
| + private static void encode(CharSequence sequence, ByteBuffer byteBuffer) {
|
| + if (byteBuffer.isReadOnly()) {
|
| + throw new ReadOnlyBufferException();
|
| + } else if (byteBuffer.hasArray()) {
|
| + try {
|
| + int encoded = encode(sequence,
|
| + byteBuffer.array(),
|
| + byteBuffer.arrayOffset() + byteBuffer.position(),
|
| + byteBuffer.remaining());
|
| + byteBuffer.position(encoded - byteBuffer.arrayOffset());
|
| + } catch (ArrayIndexOutOfBoundsException e) {
|
| + BufferOverflowException boe = new BufferOverflowException();
|
| + boe.initCause(e);
|
| + throw boe;
|
| + }
|
| + } else {
|
| + encodeDirect(sequence, byteBuffer);
|
| + }
|
| + }
|
| +
|
| + private static void encodeDirect(CharSequence sequence, ByteBuffer byteBuffer) {
|
| + int utf16Length = sequence.length();
|
| + for (int i = 0; i < utf16Length; i++) {
|
| + final char c = sequence.charAt(i);
|
| + if (c < 0x80) { // ASCII
|
| + byteBuffer.put((byte) c);
|
| + } else if (c < 0x800) { // 11 bits, two UTF-8 bytes
|
| + byteBuffer.put((byte) ((0xF << 6) | (c >>> 6)));
|
| + byteBuffer.put((byte) (0x80 | (0x3F & c)));
|
| + } else if (c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) {
|
| + // Maximium single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes
|
| + byteBuffer.put((byte) ((0xF << 5) | (c >>> 12)));
|
| + byteBuffer.put((byte) (0x80 | (0x3F & (c >>> 6))));
|
| + byteBuffer.put((byte) (0x80 | (0x3F & c)));
|
| + } else {
|
| + final char low;
|
| + if (i + 1 == sequence.length()
|
| + || !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) {
|
| + throw new IllegalArgumentException("Unpaired surrogate at index " + (i - 1));
|
| + }
|
| + int codePoint = Character.toCodePoint(c, low);
|
| + byteBuffer.put((byte) ((0xF << 4) | (codePoint >>> 18)));
|
| + byteBuffer.put((byte) (0x80 | (0x3F & (codePoint >>> 12))));
|
| + byteBuffer.put((byte) (0x80 | (0x3F & (codePoint >>> 6))));
|
| + byteBuffer.put((byte) (0x80 | (0x3F & codePoint)));
|
| + }
|
| + }
|
| + }
|
| +
|
| + private static int encode(CharSequence sequence, byte[] bytes, int offset, int length) {
|
| + int utf16Length = sequence.length();
|
| + int j = offset;
|
| + int i = 0;
|
| + int limit = offset + length;
|
| + // Designed to take advantage of
|
| + // https://wikis.oracle.com/display/HotSpotInternals/RangeCheckElimination
|
| + for (char c; i < utf16Length && i + j < limit && (c = sequence.charAt(i)) < 0x80; i++) {
|
| + bytes[j + i] = (byte) c;
|
| + }
|
| + if (i == utf16Length) {
|
| + return j + utf16Length;
|
| + }
|
| + j += i;
|
| + for (char c; i < utf16Length; i++) {
|
| + c = sequence.charAt(i);
|
| + if (c < 0x80 && j < limit) {
|
| + bytes[j++] = (byte) c;
|
| + } else if (c < 0x800 && j <= limit - 2) { // 11 bits, two UTF-8 bytes
|
| + bytes[j++] = (byte) ((0xF << 6) | (c >>> 6));
|
| + bytes[j++] = (byte) (0x80 | (0x3F & c));
|
| + } else if ((c < Character.MIN_SURROGATE || Character.MAX_SURROGATE < c) && j <= limit - 3) {
|
| + // Maximum single-char code point is 0xFFFF, 16 bits, three UTF-8 bytes
|
| + bytes[j++] = (byte) ((0xF << 5) | (c >>> 12));
|
| + bytes[j++] = (byte) (0x80 | (0x3F & (c >>> 6)));
|
| + bytes[j++] = (byte) (0x80 | (0x3F & c));
|
| + } else if (j <= limit - 4) {
|
| + // Minimum code point represented by a surrogate pair is 0x10000, 17 bits, four UTF-8 bytes
|
| + final char low;
|
| + if (i + 1 == sequence.length()
|
| + || !Character.isSurrogatePair(c, (low = sequence.charAt(++i)))) {
|
| + throw new IllegalArgumentException("Unpaired surrogate at index " + (i - 1));
|
| + }
|
| + int codePoint = Character.toCodePoint(c, low);
|
| + bytes[j++] = (byte) ((0xF << 4) | (codePoint >>> 18));
|
| + bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 12)));
|
| + bytes[j++] = (byte) (0x80 | (0x3F & (codePoint >>> 6)));
|
| + bytes[j++] = (byte) (0x80 | (0x3F & codePoint));
|
| + } else {
|
| + throw new ArrayIndexOutOfBoundsException("Failed writing " + c + " at index " + j);
|
| + }
|
| + }
|
| + return j;
|
| + }
|
| +
|
| + // End guava UTF-8 methods
|
| +
|
| +
|
| + /** Write a {@code group} field to the stream. */
|
| + public void writeGroupNoTag(final MessageNano value) throws IOException {
|
| + value.writeTo(this);
|
| + }
|
| +
|
| + /** Write an embedded message field to the stream. */
|
| + public void writeMessageNoTag(final MessageNano value) throws IOException {
|
| + writeRawVarint32(value.getCachedSize());
|
| + value.writeTo(this);
|
| + }
|
| +
|
| + /** Write a {@code bytes} field to the stream. */
|
| + public void writeBytesNoTag(final byte[] value) throws IOException {
|
| + writeRawVarint32(value.length);
|
| + writeRawBytes(value);
|
| + }
|
| +
|
| + /** Write a {@code uint32} field to the stream. */
|
| + public void writeUInt32NoTag(final int value) throws IOException {
|
| + writeRawVarint32(value);
|
| + }
|
| +
|
| + /**
|
| + * Write an enum field to the stream. Caller is responsible
|
| + * for converting the enum value to its numeric value.
|
| + */
|
| + public void writeEnumNoTag(final int value) throws IOException {
|
| + writeRawVarint32(value);
|
| + }
|
| +
|
| + /** Write an {@code sfixed32} field to the stream. */
|
| + public void writeSFixed32NoTag(final int value) throws IOException {
|
| + writeRawLittleEndian32(value);
|
| + }
|
| +
|
| + /** Write an {@code sfixed64} field to the stream. */
|
| + public void writeSFixed64NoTag(final long value) throws IOException {
|
| + writeRawLittleEndian64(value);
|
| + }
|
| +
|
| + /** Write an {@code sint32} field to the stream. */
|
| + public void writeSInt32NoTag(final int value) throws IOException {
|
| + writeRawVarint32(encodeZigZag32(value));
|
| + }
|
| +
|
| + /** Write an {@code sint64} field to the stream. */
|
| + public void writeSInt64NoTag(final long value) throws IOException {
|
| + writeRawVarint64(encodeZigZag64(value));
|
| + }
|
| +
|
| + // =================================================================
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code double} field, including tag.
|
| + */
|
| + public static int computeDoubleSize(final int fieldNumber,
|
| + final double value) {
|
| + return computeTagSize(fieldNumber) + computeDoubleSizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code float} field, including tag.
|
| + */
|
| + public static int computeFloatSize(final int fieldNumber, final float value) {
|
| + return computeTagSize(fieldNumber) + computeFloatSizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code uint64} field, including tag.
|
| + */
|
| + public static int computeUInt64Size(final int fieldNumber, final long value) {
|
| + return computeTagSize(fieldNumber) + computeUInt64SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code int64} field, including tag.
|
| + */
|
| + public static int computeInt64Size(final int fieldNumber, final long value) {
|
| + return computeTagSize(fieldNumber) + computeInt64SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code int32} field, including tag.
|
| + */
|
| + public static int computeInt32Size(final int fieldNumber, final int value) {
|
| + return computeTagSize(fieldNumber) + computeInt32SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code fixed64} field, including tag.
|
| + */
|
| + public static int computeFixed64Size(final int fieldNumber,
|
| + final long value) {
|
| + return computeTagSize(fieldNumber) + computeFixed64SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code fixed32} field, including tag.
|
| + */
|
| + public static int computeFixed32Size(final int fieldNumber,
|
| + final int value) {
|
| + return computeTagSize(fieldNumber) + computeFixed32SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code bool} field, including tag.
|
| + */
|
| + public static int computeBoolSize(final int fieldNumber,
|
| + final boolean value) {
|
| + return computeTagSize(fieldNumber) + computeBoolSizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code string} field, including tag.
|
| + */
|
| + public static int computeStringSize(final int fieldNumber,
|
| + final String value) {
|
| + return computeTagSize(fieldNumber) + computeStringSizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code group} field, including tag.
|
| + */
|
| + public static int computeGroupSize(final int fieldNumber,
|
| + final MessageNano value) {
|
| + return computeTagSize(fieldNumber) * 2 + computeGroupSizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * embedded message field, including tag.
|
| + */
|
| + public static int computeMessageSize(final int fieldNumber,
|
| + final MessageNano value) {
|
| + return computeTagSize(fieldNumber) + computeMessageSizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code bytes} field, including tag.
|
| + */
|
| + public static int computeBytesSize(final int fieldNumber,
|
| + final byte[] value) {
|
| + return computeTagSize(fieldNumber) + computeBytesSizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code uint32} field, including tag.
|
| + */
|
| + public static int computeUInt32Size(final int fieldNumber, final int value) {
|
| + return computeTagSize(fieldNumber) + computeUInt32SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * enum field, including tag. Caller is responsible for converting the
|
| + * enum value to its numeric value.
|
| + */
|
| + public static int computeEnumSize(final int fieldNumber, final int value) {
|
| + return computeTagSize(fieldNumber) + computeEnumSizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code sfixed32} field, including tag.
|
| + */
|
| + public static int computeSFixed32Size(final int fieldNumber,
|
| + final int value) {
|
| + return computeTagSize(fieldNumber) + computeSFixed32SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code sfixed64} field, including tag.
|
| + */
|
| + public static int computeSFixed64Size(final int fieldNumber,
|
| + final long value) {
|
| + return computeTagSize(fieldNumber) + computeSFixed64SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code sint32} field, including tag.
|
| + */
|
| + public static int computeSInt32Size(final int fieldNumber, final int value) {
|
| + return computeTagSize(fieldNumber) + computeSInt32SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code sint64} field, including tag.
|
| + */
|
| + public static int computeSInt64Size(final int fieldNumber, final long value) {
|
| + return computeTagSize(fieldNumber) + computeSInt64SizeNoTag(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * MessageSet extension to the stream. For historical reasons,
|
| + * the wire format differs from normal fields.
|
| + */
|
| +// public static int computeMessageSetExtensionSize(
|
| +// final int fieldNumber, final MessageMicro value) {
|
| +// return computeTagSize(WireFormatMicro.MESSAGE_SET_ITEM) * 2 +
|
| +// computeUInt32Size(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber) +
|
| +// computeMessageSize(WireFormatMicro.MESSAGE_SET_MESSAGE, value);
|
| +// }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * unparsed MessageSet extension field to the stream. For
|
| + * historical reasons, the wire format differs from normal fields.
|
| + */
|
| +// public static int computeRawMessageSetExtensionSize(
|
| +// final int fieldNumber, final ByteStringMicro value) {
|
| +// return computeTagSize(WireFormatMicro.MESSAGE_SET_ITEM) * 2 +
|
| +// computeUInt32Size(WireFormatMicro.MESSAGE_SET_TYPE_ID, fieldNumber) +
|
| +// computeBytesSize(WireFormatMicro.MESSAGE_SET_MESSAGE, value);
|
| +// }
|
| +
|
| + // -----------------------------------------------------------------
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code double} field, including tag.
|
| + */
|
| + public static int computeDoubleSizeNoTag(final double value) {
|
| + return LITTLE_ENDIAN_64_SIZE;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code float} field, including tag.
|
| + */
|
| + public static int computeFloatSizeNoTag(final float value) {
|
| + return LITTLE_ENDIAN_32_SIZE;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code uint64} field, including tag.
|
| + */
|
| + public static int computeUInt64SizeNoTag(final long value) {
|
| + return computeRawVarint64Size(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code int64} field, including tag.
|
| + */
|
| + public static int computeInt64SizeNoTag(final long value) {
|
| + return computeRawVarint64Size(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code int32} field, including tag.
|
| + */
|
| + public static int computeInt32SizeNoTag(final int value) {
|
| + if (value >= 0) {
|
| + return computeRawVarint32Size(value);
|
| + } else {
|
| + // Must sign-extend.
|
| + return 10;
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code fixed64} field.
|
| + */
|
| + public static int computeFixed64SizeNoTag(final long value) {
|
| + return LITTLE_ENDIAN_64_SIZE;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code fixed32} field.
|
| + */
|
| + public static int computeFixed32SizeNoTag(final int value) {
|
| + return LITTLE_ENDIAN_32_SIZE;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code bool} field.
|
| + */
|
| + public static int computeBoolSizeNoTag(final boolean value) {
|
| + return 1;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code string} field.
|
| + */
|
| + public static int computeStringSizeNoTag(final String value) {
|
| + final int length = encodedLength(value);
|
| + return computeRawVarint32Size(length) + length;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code group} field.
|
| + */
|
| + public static int computeGroupSizeNoTag(final MessageNano value) {
|
| + return value.getSerializedSize();
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an embedded
|
| + * message field.
|
| + */
|
| + public static int computeMessageSizeNoTag(final MessageNano value) {
|
| + final int size = value.getSerializedSize();
|
| + return computeRawVarint32Size(size) + size;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code bytes} field.
|
| + */
|
| + public static int computeBytesSizeNoTag(final byte[] value) {
|
| + return computeRawVarint32Size(value.length) + value.length;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a
|
| + * {@code uint32} field.
|
| + */
|
| + public static int computeUInt32SizeNoTag(final int value) {
|
| + return computeRawVarint32Size(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an enum field.
|
| + * Caller is responsible for converting the enum value to its numeric value.
|
| + */
|
| + public static int computeEnumSizeNoTag(final int value) {
|
| + return computeRawVarint32Size(value);
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code sfixed32} field.
|
| + */
|
| + public static int computeSFixed32SizeNoTag(final int value) {
|
| + return LITTLE_ENDIAN_32_SIZE;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code sfixed64} field.
|
| + */
|
| + public static int computeSFixed64SizeNoTag(final long value) {
|
| + return LITTLE_ENDIAN_64_SIZE;
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code sint32} field.
|
| + */
|
| + public static int computeSInt32SizeNoTag(final int value) {
|
| + return computeRawVarint32Size(encodeZigZag32(value));
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode an
|
| + * {@code sint64} field.
|
| + */
|
| + public static int computeSInt64SizeNoTag(final long value) {
|
| + return computeRawVarint64Size(encodeZigZag64(value));
|
| + }
|
| +
|
| + // =================================================================
|
| +
|
| + /**
|
| + * If writing to a flat array, return the space left in the array.
|
| + * Otherwise, throws {@code UnsupportedOperationException}.
|
| + */
|
| + public int spaceLeft() {
|
| + return buffer.remaining();
|
| + }
|
| +
|
| + /**
|
| + * Verifies that {@link #spaceLeft()} returns zero. It's common to create
|
| + * a byte array that is exactly big enough to hold a message, then write to
|
| + * it with a {@code CodedOutputStream}. Calling {@code checkNoSpaceLeft()}
|
| + * after writing verifies that the message was actually as big as expected,
|
| + * which can help catch bugs.
|
| + */
|
| + public void checkNoSpaceLeft() {
|
| + if (spaceLeft() != 0) {
|
| + throw new IllegalStateException(
|
| + "Did not write as much data as expected.");
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Returns the position within the internal buffer.
|
| + */
|
| + public int position() {
|
| + return buffer.position();
|
| + }
|
| +
|
| + /**
|
| + * Resets the position within the internal buffer to zero.
|
| + *
|
| + * @see #position
|
| + * @see #spaceLeft
|
| + */
|
| + public void reset() {
|
| + buffer.clear();
|
| + }
|
| +
|
| + /**
|
| + * If you create a CodedOutputStream around a simple flat array, you must
|
| + * not attempt to write more bytes than the array has space. Otherwise,
|
| + * this exception will be thrown.
|
| + */
|
| + public static class OutOfSpaceException extends IOException {
|
| + private static final long serialVersionUID = -6947486886997889499L;
|
| +
|
| + OutOfSpaceException(int position, int limit) {
|
| + super("CodedOutputStream was writing to a flat byte array and ran " +
|
| + "out of space (pos " + position + " limit " + limit + ").");
|
| + }
|
| + }
|
| +
|
| + /** Write a single byte. */
|
| + public void writeRawByte(final byte value) throws IOException {
|
| + if (!buffer.hasRemaining()) {
|
| + // We're writing to a single buffer.
|
| + throw new OutOfSpaceException(buffer.position(), buffer.limit());
|
| + }
|
| +
|
| + buffer.put(value);
|
| + }
|
| +
|
| + /** Write a single byte, represented by an integer value. */
|
| + public void writeRawByte(final int value) throws IOException {
|
| + writeRawByte((byte) value);
|
| + }
|
| +
|
| + /** Write an array of bytes. */
|
| + public void writeRawBytes(final byte[] value) throws IOException {
|
| + writeRawBytes(value, 0, value.length);
|
| + }
|
| +
|
| + /** Write part of an array of bytes. */
|
| + public void writeRawBytes(final byte[] value, int offset, int length)
|
| + throws IOException {
|
| + if (buffer.remaining() >= length) {
|
| + buffer.put(value, offset, length);
|
| + } else {
|
| + // We're writing to a single buffer.
|
| + throw new OutOfSpaceException(buffer.position(), buffer.limit());
|
| + }
|
| + }
|
| +
|
| + /** Encode and write a tag. */
|
| + public void writeTag(final int fieldNumber, final int wireType)
|
| + throws IOException {
|
| + writeRawVarint32(WireFormatNano.makeTag(fieldNumber, wireType));
|
| + }
|
| +
|
| + /** Compute the number of bytes that would be needed to encode a tag. */
|
| + public static int computeTagSize(final int fieldNumber) {
|
| + return computeRawVarint32Size(WireFormatNano.makeTag(fieldNumber, 0));
|
| + }
|
| +
|
| + /**
|
| + * Encode and write a varint. {@code value} is treated as
|
| + * unsigned, so it won't be sign-extended if negative.
|
| + */
|
| + public void writeRawVarint32(int value) throws IOException {
|
| + while (true) {
|
| + if ((value & ~0x7F) == 0) {
|
| + writeRawByte(value);
|
| + return;
|
| + } else {
|
| + writeRawByte((value & 0x7F) | 0x80);
|
| + value >>>= 7;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /**
|
| + * Compute the number of bytes that would be needed to encode a varint.
|
| + * {@code value} is treated as unsigned, so it won't be sign-extended if
|
| + * negative.
|
| + */
|
| + public static int computeRawVarint32Size(final int value) {
|
| + if ((value & (0xffffffff << 7)) == 0) return 1;
|
| + if ((value & (0xffffffff << 14)) == 0) return 2;
|
| + if ((value & (0xffffffff << 21)) == 0) return 3;
|
| + if ((value & (0xffffffff << 28)) == 0) return 4;
|
| + return 5;
|
| + }
|
| +
|
| + /** Encode and write a varint. */
|
| + public void writeRawVarint64(long value) throws IOException {
|
| + while (true) {
|
| + if ((value & ~0x7FL) == 0) {
|
| + writeRawByte((int)value);
|
| + return;
|
| + } else {
|
| + writeRawByte(((int)value & 0x7F) | 0x80);
|
| + value >>>= 7;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /** Compute the number of bytes that would be needed to encode a varint. */
|
| + public static int computeRawVarint64Size(final long value) {
|
| + if ((value & (0xffffffffffffffffL << 7)) == 0) return 1;
|
| + if ((value & (0xffffffffffffffffL << 14)) == 0) return 2;
|
| + if ((value & (0xffffffffffffffffL << 21)) == 0) return 3;
|
| + if ((value & (0xffffffffffffffffL << 28)) == 0) return 4;
|
| + if ((value & (0xffffffffffffffffL << 35)) == 0) return 5;
|
| + if ((value & (0xffffffffffffffffL << 42)) == 0) return 6;
|
| + if ((value & (0xffffffffffffffffL << 49)) == 0) return 7;
|
| + if ((value & (0xffffffffffffffffL << 56)) == 0) return 8;
|
| + if ((value & (0xffffffffffffffffL << 63)) == 0) return 9;
|
| + return 10;
|
| + }
|
| +
|
| + /** Write a little-endian 32-bit integer. */
|
| + public void writeRawLittleEndian32(final int value) throws IOException {
|
| + if (buffer.remaining() < 4) {
|
| + throw new OutOfSpaceException(buffer.position(), buffer.limit());
|
| + }
|
| + buffer.putInt(value);
|
| + }
|
| +
|
| + public static final int LITTLE_ENDIAN_32_SIZE = 4;
|
| +
|
| + /** Write a little-endian 64-bit integer. */
|
| + public void writeRawLittleEndian64(final long value) throws IOException {
|
| + if (buffer.remaining() < 8) {
|
| + throw new OutOfSpaceException(buffer.position(), buffer.limit());
|
| + }
|
| + buffer.putLong(value);
|
| + }
|
| +
|
| + public static final int LITTLE_ENDIAN_64_SIZE = 8;
|
| +
|
| + /**
|
| + * Encode a ZigZag-encoded 32-bit value. ZigZag encodes signed integers
|
| + * into values that can be efficiently encoded with varint. (Otherwise,
|
| + * negative values must be sign-extended to 64 bits to be varint encoded,
|
| + * thus always taking 10 bytes on the wire.)
|
| + *
|
| + * @param n A signed 32-bit integer.
|
| + * @return An unsigned 32-bit integer, stored in a signed int because
|
| + * Java has no explicit unsigned support.
|
| + */
|
| + public static int encodeZigZag32(final int n) {
|
| + // Note: the right-shift must be arithmetic
|
| + return (n << 1) ^ (n >> 31);
|
| + }
|
| +
|
| + /**
|
| + * Encode a ZigZag-encoded 64-bit value. ZigZag encodes signed integers
|
| + * into values that can be efficiently encoded with varint. (Otherwise,
|
| + * negative values must be sign-extended to 64 bits to be varint encoded,
|
| + * thus always taking 10 bytes on the wire.)
|
| + *
|
| + * @param n A signed 64-bit integer.
|
| + * @return An unsigned 64-bit integer, stored in a signed int because
|
| + * Java has no explicit unsigned support.
|
| + */
|
| + public static long encodeZigZag64(final long n) {
|
| + // Note: the right-shift must be arithmetic
|
| + return (n << 1) ^ (n >> 63);
|
| + }
|
| +
|
| + static int computeFieldSize(int number, int type, Object object) {
|
| + switch (type) {
|
| + case InternalNano.TYPE_BOOL:
|
| + return computeBoolSize(number, (Boolean) object);
|
| + case InternalNano.TYPE_BYTES:
|
| + return computeBytesSize(number, (byte[]) object);
|
| + case InternalNano.TYPE_STRING:
|
| + return computeStringSize(number, (String) object);
|
| + case InternalNano.TYPE_FLOAT:
|
| + return computeFloatSize(number, (Float) object);
|
| + case InternalNano.TYPE_DOUBLE:
|
| + return computeDoubleSize(number, (Double) object);
|
| + case InternalNano.TYPE_ENUM:
|
| + return computeEnumSize(number, (Integer) object);
|
| + case InternalNano.TYPE_FIXED32:
|
| + return computeFixed32Size(number, (Integer) object);
|
| + case InternalNano.TYPE_INT32:
|
| + return computeInt32Size(number, (Integer) object);
|
| + case InternalNano.TYPE_UINT32:
|
| + return computeUInt32Size(number, (Integer) object);
|
| + case InternalNano.TYPE_SINT32:
|
| + return computeSInt32Size(number, (Integer) object);
|
| + case InternalNano.TYPE_SFIXED32:
|
| + return computeSFixed32Size(number, (Integer) object);
|
| + case InternalNano.TYPE_INT64:
|
| + return computeInt64Size(number, (Long) object);
|
| + case InternalNano.TYPE_UINT64:
|
| + return computeUInt64Size(number, (Long) object);
|
| + case InternalNano.TYPE_SINT64:
|
| + return computeSInt64Size(number, (Long) object);
|
| + case InternalNano.TYPE_FIXED64:
|
| + return computeFixed64Size(number, (Long) object);
|
| + case InternalNano.TYPE_SFIXED64:
|
| + return computeSFixed64Size(number, (Long) object);
|
| + case InternalNano.TYPE_MESSAGE:
|
| + return computeMessageSize(number, (MessageNano) object);
|
| + case InternalNano.TYPE_GROUP:
|
| + return computeGroupSize(number, (MessageNano) object);
|
| + default:
|
| + throw new IllegalArgumentException("Unknown type: " + type);
|
| + }
|
| + }
|
| +
|
| + void writeField(int number, int type, Object value)
|
| + throws IOException {
|
| + switch (type) {
|
| + case InternalNano.TYPE_DOUBLE:
|
| + Double doubleValue = (Double) value;
|
| + writeDouble(number, doubleValue);
|
| + break;
|
| + case InternalNano.TYPE_FLOAT:
|
| + Float floatValue = (Float) value;
|
| + writeFloat(number, floatValue);
|
| + break;
|
| + case InternalNano.TYPE_INT64:
|
| + Long int64Value = (Long) value;
|
| + writeInt64(number, int64Value);
|
| + break;
|
| + case InternalNano.TYPE_UINT64:
|
| + Long uint64Value = (Long) value;
|
| + writeUInt64(number, uint64Value);
|
| + break;
|
| + case InternalNano.TYPE_INT32:
|
| + Integer int32Value = (Integer) value;
|
| + writeInt32(number, int32Value);
|
| + break;
|
| + case InternalNano.TYPE_FIXED64:
|
| + Long fixed64Value = (Long) value;
|
| + writeFixed64(number, fixed64Value);
|
| + break;
|
| + case InternalNano.TYPE_FIXED32:
|
| + Integer fixed32Value = (Integer) value;
|
| + writeFixed32(number, fixed32Value);
|
| + break;
|
| + case InternalNano.TYPE_BOOL:
|
| + Boolean boolValue = (Boolean) value;
|
| + writeBool(number, boolValue);
|
| + break;
|
| + case InternalNano.TYPE_STRING:
|
| + String stringValue = (String) value;
|
| + writeString(number, stringValue);
|
| + break;
|
| + case InternalNano.TYPE_BYTES:
|
| + byte[] bytesValue = (byte[]) value;
|
| + writeBytes(number, bytesValue);
|
| + break;
|
| + case InternalNano.TYPE_UINT32:
|
| + Integer uint32Value = (Integer) value;
|
| + writeUInt32(number, uint32Value);
|
| + break;
|
| + case InternalNano.TYPE_ENUM:
|
| + Integer enumValue = (Integer) value;
|
| + writeEnum(number, enumValue);
|
| + break;
|
| + case InternalNano.TYPE_SFIXED32:
|
| + Integer sfixed32Value = (Integer) value;
|
| + writeSFixed32(number, sfixed32Value);
|
| + break;
|
| + case InternalNano.TYPE_SFIXED64:
|
| + Long sfixed64Value = (Long) value;
|
| + writeSFixed64(number, sfixed64Value);
|
| + break;
|
| + case InternalNano.TYPE_SINT32:
|
| + Integer sint32Value = (Integer) value;
|
| + writeSInt32(number, sint32Value);
|
| + break;
|
| + case InternalNano.TYPE_SINT64:
|
| + Long sint64Value = (Long) value;
|
| + writeSInt64(number, sint64Value);
|
| + break;
|
| + case InternalNano.TYPE_MESSAGE:
|
| + MessageNano messageValue = (MessageNano) value;
|
| + writeMessage(number, messageValue);
|
| + break;
|
| + case InternalNano.TYPE_GROUP:
|
| + MessageNano groupValue = (MessageNano) value;
|
| + writeGroup(number, groupValue);
|
| + break;
|
| + default:
|
| + throw new IOException("Unknown type: " + type);
|
| + }
|
| + }
|
| +
|
| +}
|
|
|