| Index: third_party/protobuf/src/google/protobuf/stubs/map_util.h
|
| diff --git a/third_party/protobuf/src/google/protobuf/stubs/map_util.h b/third_party/protobuf/src/google/protobuf/stubs/map_util.h
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..4cccbbedcbbfe7bd078b81b6cddb255c1cd7568b
|
| --- /dev/null
|
| +++ b/third_party/protobuf/src/google/protobuf/stubs/map_util.h
|
| @@ -0,0 +1,769 @@
|
| +// Protocol Buffers - Google's data interchange format
|
| +// Copyright 2014 Google Inc. All rights reserved.
|
| +// https://developers.google.com/protocol-buffers/
|
| +//
|
| +// Redistribution and use in source and binary forms, with or without
|
| +// modification, are permitted provided that the following conditions are
|
| +// met:
|
| +//
|
| +// * Redistributions of source code must retain the above copyright
|
| +// notice, this list of conditions and the following disclaimer.
|
| +// * Redistributions in binary form must reproduce the above
|
| +// copyright notice, this list of conditions and the following disclaimer
|
| +// in the documentation and/or other materials provided with the
|
| +// distribution.
|
| +// * Neither the name of Google Inc. nor the names of its
|
| +// contributors may be used to endorse or promote products derived from
|
| +// this software without specific prior written permission.
|
| +//
|
| +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| +
|
| +// from google3/util/gtl/map_util.h
|
| +// Author: Anton Carver
|
| +
|
| +#ifndef GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
|
| +#define GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
|
| +
|
| +#include <stddef.h>
|
| +#include <iterator>
|
| +#include <string>
|
| +#include <utility>
|
| +#include <vector>
|
| +
|
| +#include <google/protobuf/stubs/common.h>
|
| +
|
| +namespace google {
|
| +namespace protobuf {
|
| +namespace internal {
|
| +// Local implementation of RemoveConst to avoid including base/type_traits.h.
|
| +template <class T> struct RemoveConst { typedef T type; };
|
| +template <class T> struct RemoveConst<const T> : RemoveConst<T> {};
|
| +} // namespace internal
|
| +
|
| +//
|
| +// Find*()
|
| +//
|
| +
|
| +// Returns a const reference to the value associated with the given key if it
|
| +// exists. Crashes otherwise.
|
| +//
|
| +// This is intended as a replacement for operator[] as an rvalue (for reading)
|
| +// when the key is guaranteed to exist.
|
| +//
|
| +// operator[] for lookup is discouraged for several reasons:
|
| +// * It has a side-effect of inserting missing keys
|
| +// * It is not thread-safe (even when it is not inserting, it can still
|
| +// choose to resize the underlying storage)
|
| +// * It invalidates iterators (when it chooses to resize)
|
| +// * It default constructs a value object even if it doesn't need to
|
| +//
|
| +// This version assumes the key is printable, and includes it in the fatal log
|
| +// message.
|
| +template <class Collection>
|
| +const typename Collection::value_type::second_type&
|
| +FindOrDie(const Collection& collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::const_iterator it = collection.find(key);
|
| + GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
|
| + return it->second;
|
| +}
|
| +
|
| +// Same as above, but returns a non-const reference.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type&
|
| +FindOrDie(Collection& collection, // NOLINT
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::iterator it = collection.find(key);
|
| + GOOGLE_CHECK(it != collection.end()) << "Map key not found: " << key;
|
| + return it->second;
|
| +}
|
| +
|
| +// Same as FindOrDie above, but doesn't log the key on failure.
|
| +template <class Collection>
|
| +const typename Collection::value_type::second_type&
|
| +FindOrDieNoPrint(const Collection& collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::const_iterator it = collection.find(key);
|
| + GOOGLE_CHECK(it != collection.end()) << "Map key not found";
|
| + return it->second;
|
| +}
|
| +
|
| +// Same as above, but returns a non-const reference.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type&
|
| +FindOrDieNoPrint(Collection& collection, // NOLINT
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::iterator it = collection.find(key);
|
| + GOOGLE_CHECK(it != collection.end()) << "Map key not found";
|
| + return it->second;
|
| +}
|
| +
|
| +// Returns a const reference to the value associated with the given key if it
|
| +// exists, otherwise returns a const reference to the provided default value.
|
| +//
|
| +// WARNING: If a temporary object is passed as the default "value,"
|
| +// this function will return a reference to that temporary object,
|
| +// which will be destroyed at the end of the statement. A common
|
| +// example: if you have a map with string values, and you pass a char*
|
| +// as the default "value," either use the returned value immediately
|
| +// or store it in a string (not string&).
|
| +// Details: http://go/findwithdefault
|
| +template <class Collection>
|
| +const typename Collection::value_type::second_type&
|
| +FindWithDefault(const Collection& collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& value) {
|
| + typename Collection::const_iterator it = collection.find(key);
|
| + if (it == collection.end()) {
|
| + return value;
|
| + }
|
| + return it->second;
|
| +}
|
| +
|
| +// Returns a pointer to the const value associated with the given key if it
|
| +// exists, or NULL otherwise.
|
| +template <class Collection>
|
| +const typename Collection::value_type::second_type*
|
| +FindOrNull(const Collection& collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::const_iterator it = collection.find(key);
|
| + if (it == collection.end()) {
|
| + return 0;
|
| + }
|
| + return &it->second;
|
| +}
|
| +
|
| +// Same as above but returns a pointer to the non-const value.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type*
|
| +FindOrNull(Collection& collection, // NOLINT
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::iterator it = collection.find(key);
|
| + if (it == collection.end()) {
|
| + return 0;
|
| + }
|
| + return &it->second;
|
| +}
|
| +
|
| +// Returns the pointer value associated with the given key. If none is found,
|
| +// NULL is returned. The function is designed to be used with a map of keys to
|
| +// pointers.
|
| +//
|
| +// This function does not distinguish between a missing key and a key mapped
|
| +// to a NULL value.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type
|
| +FindPtrOrNull(const Collection& collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::const_iterator it = collection.find(key);
|
| + if (it == collection.end()) {
|
| + return typename Collection::value_type::second_type();
|
| + }
|
| + return it->second;
|
| +}
|
| +
|
| +// Same as above, except takes non-const reference to collection.
|
| +//
|
| +// This function is needed for containers that propagate constness to the
|
| +// pointee, such as boost::ptr_map.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type
|
| +FindPtrOrNull(Collection& collection, // NOLINT
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::iterator it = collection.find(key);
|
| + if (it == collection.end()) {
|
| + return typename Collection::value_type::second_type();
|
| + }
|
| + return it->second;
|
| +}
|
| +
|
| +// Finds the pointer value associated with the given key in a map whose values
|
| +// are linked_ptrs. Returns NULL if key is not found.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type::element_type*
|
| +FindLinkedPtrOrNull(const Collection& collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::const_iterator it = collection.find(key);
|
| + if (it == collection.end()) {
|
| + return 0;
|
| + }
|
| + // Since linked_ptr::get() is a const member returning a non const,
|
| + // we do not need a version of this function taking a non const collection.
|
| + return it->second.get();
|
| +}
|
| +
|
| +// Same as above, but dies if the key is not found.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type::element_type&
|
| +FindLinkedPtrOrDie(const Collection& collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::const_iterator it = collection.find(key);
|
| + CHECK(it != collection.end()) << "key not found: " << key;
|
| + // Since linked_ptr::operator*() is a const member returning a non const,
|
| + // we do not need a version of this function taking a non const collection.
|
| + return *it->second;
|
| +}
|
| +
|
| +// Finds the value associated with the given key and copies it to *value (if not
|
| +// NULL). Returns false if the key was not found, true otherwise.
|
| +template <class Collection, class Key, class Value>
|
| +bool FindCopy(const Collection& collection,
|
| + const Key& key,
|
| + Value* const value) {
|
| + typename Collection::const_iterator it = collection.find(key);
|
| + if (it == collection.end()) {
|
| + return false;
|
| + }
|
| + if (value) {
|
| + *value = it->second;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +//
|
| +// Contains*()
|
| +//
|
| +
|
| +// Returns true if and only if the given collection contains the given key.
|
| +template <class Collection, class Key>
|
| +bool ContainsKey(const Collection& collection, const Key& key) {
|
| + return collection.find(key) != collection.end();
|
| +}
|
| +
|
| +// Returns true if and only if the given collection contains the given key-value
|
| +// pair.
|
| +template <class Collection, class Key, class Value>
|
| +bool ContainsKeyValuePair(const Collection& collection,
|
| + const Key& key,
|
| + const Value& value) {
|
| + typedef typename Collection::const_iterator const_iterator;
|
| + std::pair<const_iterator, const_iterator> range = collection.equal_range(key);
|
| + for (const_iterator it = range.first; it != range.second; ++it) {
|
| + if (it->second == value) {
|
| + return true;
|
| + }
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +//
|
| +// Insert*()
|
| +//
|
| +
|
| +// Inserts the given key-value pair into the collection. Returns true if and
|
| +// only if the key from the given pair didn't previously exist. Otherwise, the
|
| +// value in the map is replaced with the value from the given pair.
|
| +template <class Collection>
|
| +bool InsertOrUpdate(Collection* const collection,
|
| + const typename Collection::value_type& vt) {
|
| + std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
| + if (!ret.second) {
|
| + // update
|
| + ret.first->second = vt.second;
|
| + return false;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// Same as above, except that the key and value are passed separately.
|
| +template <class Collection>
|
| +bool InsertOrUpdate(Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& value) {
|
| + return InsertOrUpdate(
|
| + collection, typename Collection::value_type(key, value));
|
| +}
|
| +
|
| +// Inserts/updates all the key-value pairs from the range defined by the
|
| +// iterators "first" and "last" into the given collection.
|
| +template <class Collection, class InputIterator>
|
| +void InsertOrUpdateMany(Collection* const collection,
|
| + InputIterator first, InputIterator last) {
|
| + for (; first != last; ++first) {
|
| + InsertOrUpdate(collection, *first);
|
| + }
|
| +}
|
| +
|
| +// Change the value associated with a particular key in a map or hash_map
|
| +// of the form map<Key, Value*> which owns the objects pointed to by the
|
| +// value pointers. If there was an existing value for the key, it is deleted.
|
| +// True indicates an insert took place, false indicates an update + delete.
|
| +template <class Collection>
|
| +bool InsertAndDeleteExisting(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& value) {
|
| + std::pair<typename Collection::iterator, bool> ret =
|
| + collection->insert(typename Collection::value_type(key, value));
|
| + if (!ret.second) {
|
| + delete ret.first->second;
|
| + ret.first->second = value;
|
| + return false;
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +// Inserts the given key and value into the given collection if and only if the
|
| +// given key did NOT already exist in the collection. If the key previously
|
| +// existed in the collection, the value is not changed. Returns true if the
|
| +// key-value pair was inserted; returns false if the key was already present.
|
| +template <class Collection>
|
| +bool InsertIfNotPresent(Collection* const collection,
|
| + const typename Collection::value_type& vt) {
|
| + return collection->insert(vt).second;
|
| +}
|
| +
|
| +// Same as above except the key and value are passed separately.
|
| +template <class Collection>
|
| +bool InsertIfNotPresent(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& value) {
|
| + return InsertIfNotPresent(
|
| + collection, typename Collection::value_type(key, value));
|
| +}
|
| +
|
| +// Same as above except dies if the key already exists in the collection.
|
| +template <class Collection>
|
| +void InsertOrDie(Collection* const collection,
|
| + const typename Collection::value_type& value) {
|
| + CHECK(InsertIfNotPresent(collection, value)) << "duplicate value: " << value;
|
| +}
|
| +
|
| +// Same as above except doesn't log the value on error.
|
| +template <class Collection>
|
| +void InsertOrDieNoPrint(Collection* const collection,
|
| + const typename Collection::value_type& value) {
|
| + CHECK(InsertIfNotPresent(collection, value)) << "duplicate value.";
|
| +}
|
| +
|
| +// Inserts the key-value pair into the collection. Dies if key was already
|
| +// present.
|
| +template <class Collection>
|
| +void InsertOrDie(Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& data) {
|
| + GOOGLE_CHECK(InsertIfNotPresent(collection, key, data))
|
| + << "duplicate key: " << key;
|
| +}
|
| +
|
| +// Same as above except doesn't log the key on error.
|
| +template <class Collection>
|
| +void InsertOrDieNoPrint(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& data) {
|
| + GOOGLE_CHECK(InsertIfNotPresent(collection, key, data)) << "duplicate key.";
|
| +}
|
| +
|
| +// Inserts a new key and default-initialized value. Dies if the key was already
|
| +// present. Returns a reference to the value. Example usage:
|
| +//
|
| +// map<int, SomeProto> m;
|
| +// SomeProto& proto = InsertKeyOrDie(&m, 3);
|
| +// proto.set_field("foo");
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type& InsertKeyOrDie(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typedef typename Collection::value_type value_type;
|
| + std::pair<typename Collection::iterator, bool> res =
|
| + collection->insert(value_type(key, typename value_type::second_type()));
|
| + GOOGLE_CHECK(res.second) << "duplicate key: " << key;
|
| + return res.first->second;
|
| +}
|
| +
|
| +//
|
| +// Lookup*()
|
| +//
|
| +
|
| +// Looks up a given key and value pair in a collection and inserts the key-value
|
| +// pair if it's not already present. Returns a reference to the value associated
|
| +// with the key.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type&
|
| +LookupOrInsert(Collection* const collection,
|
| + const typename Collection::value_type& vt) {
|
| + return collection->insert(vt).first->second;
|
| +}
|
| +
|
| +// Same as above except the key-value are passed separately.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type&
|
| +LookupOrInsert(Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& value) {
|
| + return LookupOrInsert(
|
| + collection, typename Collection::value_type(key, value));
|
| +}
|
| +
|
| +// Counts the number of equivalent elements in the given "sequence", and stores
|
| +// the results in "count_map" with element as the key and count as the value.
|
| +//
|
| +// Example:
|
| +// vector<string> v = {"a", "b", "c", "a", "b"};
|
| +// map<string, int> m;
|
| +// AddTokenCounts(v, 1, &m);
|
| +// assert(m["a"] == 2);
|
| +// assert(m["b"] == 2);
|
| +// assert(m["c"] == 1);
|
| +template <typename Sequence, typename Collection>
|
| +void AddTokenCounts(
|
| + const Sequence& sequence,
|
| + const typename Collection::value_type::second_type& increment,
|
| + Collection* const count_map) {
|
| + for (typename Sequence::const_iterator it = sequence.begin();
|
| + it != sequence.end(); ++it) {
|
| + typename Collection::value_type::second_type& value =
|
| + LookupOrInsert(count_map, *it,
|
| + typename Collection::value_type::second_type());
|
| + value += increment;
|
| + }
|
| +}
|
| +
|
| +// Returns a reference to the value associated with key. If not found, a value
|
| +// is default constructed on the heap and added to the map.
|
| +//
|
| +// This function is useful for containers of the form map<Key, Value*>, where
|
| +// inserting a new key, value pair involves constructing a new heap-allocated
|
| +// Value, and storing a pointer to that in the collection.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type&
|
| +LookupOrInsertNew(Collection* const collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typedef typename std::iterator_traits<
|
| + typename Collection::value_type::second_type>::value_type Element;
|
| + std::pair<typename Collection::iterator, bool> ret =
|
| + collection->insert(typename Collection::value_type(
|
| + key,
|
| + static_cast<typename Collection::value_type::second_type>(NULL)));
|
| + if (ret.second) {
|
| + ret.first->second = new Element();
|
| + }
|
| + return ret.first->second;
|
| +}
|
| +
|
| +// Same as above but constructs the value using the single-argument constructor
|
| +// and the given "arg".
|
| +template <class Collection, class Arg>
|
| +typename Collection::value_type::second_type&
|
| +LookupOrInsertNew(Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const Arg& arg) {
|
| + typedef typename std::iterator_traits<
|
| + typename Collection::value_type::second_type>::value_type Element;
|
| + std::pair<typename Collection::iterator, bool> ret =
|
| + collection->insert(typename Collection::value_type(
|
| + key,
|
| + static_cast<typename Collection::value_type::second_type>(NULL)));
|
| + if (ret.second) {
|
| + ret.first->second = new Element(arg);
|
| + }
|
| + return ret.first->second;
|
| +}
|
| +
|
| +// Lookup of linked/shared pointers is used in two scenarios:
|
| +//
|
| +// Use LookupOrInsertNewLinkedPtr if the container owns the elements.
|
| +// In this case it is fine working with the raw pointer as long as it is
|
| +// guaranteed that no other thread can delete/update an accessed element.
|
| +// A mutex will need to lock the container operation as well as the use
|
| +// of the returned elements. Finding an element may be performed using
|
| +// FindLinkedPtr*().
|
| +//
|
| +// Use LookupOrInsertNewSharedPtr if the container does not own the elements
|
| +// for their whole lifetime. This is typically the case when a reader allows
|
| +// parallel updates to the container. In this case a Mutex only needs to lock
|
| +// container operations, but all element operations must be performed on the
|
| +// shared pointer. Finding an element must be performed using FindPtr*() and
|
| +// cannot be done with FindLinkedPtr*() even though it compiles.
|
| +
|
| +// Lookup a key in a map or hash_map whose values are linked_ptrs. If it is
|
| +// missing, set collection[key].reset(new Value::element_type) and return that.
|
| +// Value::element_type must be default constructable.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type::element_type*
|
| +LookupOrInsertNewLinkedPtr(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typedef typename Collection::value_type::second_type Value;
|
| + std::pair<typename Collection::iterator, bool> ret =
|
| + collection->insert(typename Collection::value_type(key, Value()));
|
| + if (ret.second) {
|
| + ret.first->second.reset(new typename Value::element_type);
|
| + }
|
| + return ret.first->second.get();
|
| +}
|
| +
|
| +// A variant of LookupOrInsertNewLinkedPtr where the value is constructed using
|
| +// a single-parameter constructor. Note: the constructor argument is computed
|
| +// even if it will not be used, so only values cheap to compute should be passed
|
| +// here. On the other hand it does not matter how expensive the construction of
|
| +// the actual stored value is, as that only occurs if necessary.
|
| +template <class Collection, class Arg>
|
| +typename Collection::value_type::second_type::element_type*
|
| +LookupOrInsertNewLinkedPtr(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const Arg& arg) {
|
| + typedef typename Collection::value_type::second_type Value;
|
| + std::pair<typename Collection::iterator, bool> ret =
|
| + collection->insert(typename Collection::value_type(key, Value()));
|
| + if (ret.second) {
|
| + ret.first->second.reset(new typename Value::element_type(arg));
|
| + }
|
| + return ret.first->second.get();
|
| +}
|
| +
|
| +// Lookup a key in a map or hash_map whose values are shared_ptrs. If it is
|
| +// missing, set collection[key].reset(new Value::element_type). Unlike
|
| +// LookupOrInsertNewLinkedPtr, this function returns the shared_ptr instead of
|
| +// the raw pointer. Value::element_type must be default constructable.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type&
|
| +LookupOrInsertNewSharedPtr(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typedef typename Collection::value_type::second_type SharedPtr;
|
| + typedef typename Collection::value_type::second_type::element_type Element;
|
| + std::pair<typename Collection::iterator, bool> ret =
|
| + collection->insert(typename Collection::value_type(key, SharedPtr()));
|
| + if (ret.second) {
|
| + ret.first->second.reset(new Element());
|
| + }
|
| + return ret.first->second;
|
| +}
|
| +
|
| +// A variant of LookupOrInsertNewSharedPtr where the value is constructed using
|
| +// a single-parameter constructor. Note: the constructor argument is computed
|
| +// even if it will not be used, so only values cheap to compute should be passed
|
| +// here. On the other hand it does not matter how expensive the construction of
|
| +// the actual stored value is, as that only occurs if necessary.
|
| +template <class Collection, class Arg>
|
| +typename Collection::value_type::second_type&
|
| +LookupOrInsertNewSharedPtr(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const Arg& arg) {
|
| + typedef typename Collection::value_type::second_type SharedPtr;
|
| + typedef typename Collection::value_type::second_type::element_type Element;
|
| + std::pair<typename Collection::iterator, bool> ret =
|
| + collection->insert(typename Collection::value_type(key, SharedPtr()));
|
| + if (ret.second) {
|
| + ret.first->second.reset(new Element(arg));
|
| + }
|
| + return ret.first->second;
|
| +}
|
| +
|
| +//
|
| +// Misc Utility Functions
|
| +//
|
| +
|
| +// Updates the value associated with the given key. If the key was not already
|
| +// present, then the key-value pair are inserted and "previous" is unchanged. If
|
| +// the key was already present, the value is updated and "*previous" will
|
| +// contain a copy of the old value.
|
| +//
|
| +// InsertOrReturnExisting has complementary behavior that returns the
|
| +// address of an already existing value, rather than updating it.
|
| +template <class Collection>
|
| +bool UpdateReturnCopy(Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& value,
|
| + typename Collection::value_type::second_type* previous) {
|
| + std::pair<typename Collection::iterator, bool> ret =
|
| + collection->insert(typename Collection::value_type(key, value));
|
| + if (!ret.second) {
|
| + // update
|
| + if (previous) {
|
| + *previous = ret.first->second;
|
| + }
|
| + ret.first->second = value;
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// Same as above except that the key and value are passed as a pair.
|
| +template <class Collection>
|
| +bool UpdateReturnCopy(Collection* const collection,
|
| + const typename Collection::value_type& vt,
|
| + typename Collection::value_type::second_type* previous) {
|
| + std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
| + if (!ret.second) {
|
| + // update
|
| + if (previous) {
|
| + *previous = ret.first->second;
|
| + }
|
| + ret.first->second = vt.second;
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +// Tries to insert the given key-value pair into the collection. Returns NULL if
|
| +// the insert succeeds. Otherwise, returns a pointer to the existing value.
|
| +//
|
| +// This complements UpdateReturnCopy in that it allows to update only after
|
| +// verifying the old value and still insert quickly without having to look up
|
| +// twice. Unlike UpdateReturnCopy this also does not come with the issue of an
|
| +// undefined previous* in case new data was inserted.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type* const
|
| +InsertOrReturnExisting(Collection* const collection,
|
| + const typename Collection::value_type& vt) {
|
| + std::pair<typename Collection::iterator, bool> ret = collection->insert(vt);
|
| + if (ret.second) {
|
| + return NULL; // Inserted, no existing previous value.
|
| + } else {
|
| + return &ret.first->second; // Return address of already existing value.
|
| + }
|
| +}
|
| +
|
| +// Same as above, except for explicit key and data.
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type* const
|
| +InsertOrReturnExisting(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key,
|
| + const typename Collection::value_type::second_type& data) {
|
| + return InsertOrReturnExisting(collection,
|
| + typename Collection::value_type(key, data));
|
| +}
|
| +
|
| +// Erases the collection item identified by the given key, and returns the value
|
| +// associated with that key. It is assumed that the value (i.e., the
|
| +// mapped_type) is a pointer. Returns NULL if the key was not found in the
|
| +// collection.
|
| +//
|
| +// Examples:
|
| +// map<string, MyType*> my_map;
|
| +//
|
| +// One line cleanup:
|
| +// delete EraseKeyReturnValuePtr(&my_map, "abc");
|
| +//
|
| +// Use returned value:
|
| +// scoped_ptr<MyType> value_ptr(EraseKeyReturnValuePtr(&my_map, "abc"));
|
| +// if (value_ptr.get())
|
| +// value_ptr->DoSomething();
|
| +//
|
| +template <class Collection>
|
| +typename Collection::value_type::second_type EraseKeyReturnValuePtr(
|
| + Collection* const collection,
|
| + const typename Collection::value_type::first_type& key) {
|
| + typename Collection::iterator it = collection->find(key);
|
| + if (it == collection->end()) {
|
| + return NULL;
|
| + }
|
| + typename Collection::value_type::second_type v = it->second;
|
| + collection->erase(it);
|
| + return v;
|
| +}
|
| +
|
| +// Inserts all the keys from map_container into key_container, which must
|
| +// support insert(MapContainer::key_type).
|
| +//
|
| +// Note: any initial contents of the key_container are not cleared.
|
| +template <class MapContainer, class KeyContainer>
|
| +void InsertKeysFromMap(const MapContainer& map_container,
|
| + KeyContainer* key_container) {
|
| + GOOGLE_CHECK(key_container != NULL);
|
| + for (typename MapContainer::const_iterator it = map_container.begin();
|
| + it != map_container.end(); ++it) {
|
| + key_container->insert(it->first);
|
| + }
|
| +}
|
| +
|
| +// Appends all the keys from map_container into key_container, which must
|
| +// support push_back(MapContainer::key_type).
|
| +//
|
| +// Note: any initial contents of the key_container are not cleared.
|
| +template <class MapContainer, class KeyContainer>
|
| +void AppendKeysFromMap(const MapContainer& map_container,
|
| + KeyContainer* key_container) {
|
| + GOOGLE_CHECK(key_container != NULL);
|
| + for (typename MapContainer::const_iterator it = map_container.begin();
|
| + it != map_container.end(); ++it) {
|
| + key_container->push_back(it->first);
|
| + }
|
| +}
|
| +
|
| +// A more specialized overload of AppendKeysFromMap to optimize reallocations
|
| +// for the common case in which we're appending keys to a vector and hence can
|
| +// (and sometimes should) call reserve() first.
|
| +//
|
| +// (It would be possible to play SFINAE games to call reserve() for any
|
| +// container that supports it, but this seems to get us 99% of what we need
|
| +// without the complexity of a SFINAE-based solution.)
|
| +template <class MapContainer, class KeyType>
|
| +void AppendKeysFromMap(const MapContainer& map_container,
|
| + vector<KeyType>* key_container) {
|
| + GOOGLE_CHECK(key_container != NULL);
|
| + // We now have the opportunity to call reserve(). Calling reserve() every
|
| + // time is a bad idea for some use cases: libstdc++'s implementation of
|
| + // vector<>::reserve() resizes the vector's backing store to exactly the
|
| + // given size (unless it's already at least that big). Because of this,
|
| + // the use case that involves appending a lot of small maps (total size
|
| + // N) one by one to a vector would be O(N^2). But never calling reserve()
|
| + // loses the opportunity to improve the use case of adding from a large
|
| + // map to an empty vector (this improves performance by up to 33%). A
|
| + // number of heuristics are possible; see the discussion in
|
| + // cl/34081696. Here we use the simplest one.
|
| + if (key_container->empty()) {
|
| + key_container->reserve(map_container.size());
|
| + }
|
| + for (typename MapContainer::const_iterator it = map_container.begin();
|
| + it != map_container.end(); ++it) {
|
| + key_container->push_back(it->first);
|
| + }
|
| +}
|
| +
|
| +// Inserts all the values from map_container into value_container, which must
|
| +// support push_back(MapContainer::mapped_type).
|
| +//
|
| +// Note: any initial contents of the value_container are not cleared.
|
| +template <class MapContainer, class ValueContainer>
|
| +void AppendValuesFromMap(const MapContainer& map_container,
|
| + ValueContainer* value_container) {
|
| + GOOGLE_CHECK(value_container != NULL);
|
| + for (typename MapContainer::const_iterator it = map_container.begin();
|
| + it != map_container.end(); ++it) {
|
| + value_container->push_back(it->second);
|
| + }
|
| +}
|
| +
|
| +// A more specialized overload of AppendValuesFromMap to optimize reallocations
|
| +// for the common case in which we're appending values to a vector and hence
|
| +// can (and sometimes should) call reserve() first.
|
| +//
|
| +// (It would be possible to play SFINAE games to call reserve() for any
|
| +// container that supports it, but this seems to get us 99% of what we need
|
| +// without the complexity of a SFINAE-based solution.)
|
| +template <class MapContainer, class ValueType>
|
| +void AppendValuesFromMap(const MapContainer& map_container,
|
| + vector<ValueType>* value_container) {
|
| + GOOGLE_CHECK(value_container != NULL);
|
| + // See AppendKeysFromMap for why this is done.
|
| + if (value_container->empty()) {
|
| + value_container->reserve(map_container.size());
|
| + }
|
| + for (typename MapContainer::const_iterator it = map_container.begin();
|
| + it != map_container.end(); ++it) {
|
| + value_container->push_back(it->second);
|
| + }
|
| +}
|
| +
|
| +} // namespace protobuf
|
| +} // namespace google
|
| +
|
| +#endif // GOOGLE_PROTOBUF_STUBS_MAP_UTIL_H__
|
|
|