Index: include/private/SkFloatingPoint.h |
diff --git a/include/private/SkFloatingPoint.h b/include/private/SkFloatingPoint.h |
deleted file mode 100644 |
index f7ee816b12005a6377a34016e35f878696a1e270..0000000000000000000000000000000000000000 |
--- a/include/private/SkFloatingPoint.h |
+++ /dev/null |
@@ -1,170 +0,0 @@ |
- |
-/* |
- * Copyright 2006 The Android Open Source Project |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
- |
-#ifndef SkFloatingPoint_DEFINED |
-#define SkFloatingPoint_DEFINED |
- |
-#include "SkTypes.h" |
- |
-#include <math.h> |
-#include <float.h> |
- |
-// For _POSIX_VERSION |
-#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) |
-#include <unistd.h> |
-#endif |
- |
-#include "SkFloatBits.h" |
- |
-// C++98 cmath std::pow seems to be the earliest portable way to get float pow. |
-// However, on Linux including cmath undefines isfinite. |
-// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608 |
-static inline float sk_float_pow(float base, float exp) { |
- return powf(base, exp); |
-} |
- |
-static inline float sk_float_copysign(float x, float y) { |
-// c++11 contains a 'float copysign(float, float)' function in <cmath>. |
-// clang-cl reports __cplusplus for clang, not the __cplusplus vc++ version _MSC_VER would report. |
-#if (defined(_MSC_VER) && defined(__clang__)) |
-# define SK_BUILD_WITH_CLANG_CL 1 |
-#else |
-# define SK_BUILD_WITH_CLANG_CL 0 |
-#endif |
-#if (!SK_BUILD_WITH_CLANG_CL && __cplusplus >= 201103L) || (_MSC_VER >= 1800) |
- return copysignf(x, y); |
- |
-// Posix has demanded 'float copysignf(float, float)' (from C99) since Issue 6. |
-#elif defined(_POSIX_VERSION) && _POSIX_VERSION >= 200112L |
- return copysignf(x, y); |
- |
-// Visual studio prior to 13 only has 'double _copysign(double, double)'. |
-#elif defined(_MSC_VER) |
- return (float)_copysign(x, y); |
- |
-// Otherwise convert to bits and extract sign. |
-#else |
- int32_t xbits = SkFloat2Bits(x); |
- int32_t ybits = SkFloat2Bits(y); |
- return SkBits2Float((xbits & 0x7FFFFFFF) | (ybits & 0x80000000)); |
-#endif |
-} |
- |
-#define sk_float_sqrt(x) sqrtf(x) |
-#define sk_float_sin(x) sinf(x) |
-#define sk_float_cos(x) cosf(x) |
-#define sk_float_tan(x) tanf(x) |
-#define sk_float_floor(x) floorf(x) |
-#define sk_float_ceil(x) ceilf(x) |
-#ifdef SK_BUILD_FOR_MAC |
-# define sk_float_acos(x) static_cast<float>(acos(x)) |
-# define sk_float_asin(x) static_cast<float>(asin(x)) |
-#else |
-# define sk_float_acos(x) acosf(x) |
-# define sk_float_asin(x) asinf(x) |
-#endif |
-#define sk_float_atan2(y,x) atan2f(y,x) |
-#define sk_float_abs(x) fabsf(x) |
-#define sk_float_mod(x,y) fmodf(x,y) |
-#define sk_float_exp(x) expf(x) |
-#define sk_float_log(x) logf(x) |
- |
-#define sk_float_round(x) sk_float_floor((x) + 0.5f) |
- |
-// can't find log2f on android, but maybe that just a tool bug? |
-#ifdef SK_BUILD_FOR_ANDROID |
- static inline float sk_float_log2(float x) { |
- const double inv_ln_2 = 1.44269504088896; |
- return (float)(log(x) * inv_ln_2); |
- } |
-#else |
- #define sk_float_log2(x) log2f(x) |
-#endif |
- |
-#ifdef SK_BUILD_FOR_WIN |
- #define sk_float_isfinite(x) _finite(x) |
- #define sk_float_isnan(x) _isnan(x) |
- static inline int sk_float_isinf(float x) { |
- int32_t bits = SkFloat2Bits(x); |
- return (bits << 1) == (0xFF << 24); |
- } |
-#else |
- #define sk_float_isfinite(x) isfinite(x) |
- #define sk_float_isnan(x) isnan(x) |
- #define sk_float_isinf(x) isinf(x) |
-#endif |
- |
-#define sk_double_isnan(a) sk_float_isnan(a) |
- |
-#ifdef SK_USE_FLOATBITS |
- #define sk_float_floor2int(x) SkFloatToIntFloor(x) |
- #define sk_float_round2int(x) SkFloatToIntRound(x) |
- #define sk_float_ceil2int(x) SkFloatToIntCeil(x) |
-#else |
- #define sk_float_floor2int(x) (int)sk_float_floor(x) |
- #define sk_float_round2int(x) (int)sk_float_floor((x) + 0.5f) |
- #define sk_float_ceil2int(x) (int)sk_float_ceil(x) |
-#endif |
- |
-#define sk_double_floor(x) floor(x) |
-#define sk_double_round(x) floor((x) + 0.5) |
-#define sk_double_ceil(x) ceil(x) |
-#define sk_double_floor2int(x) (int)floor(x) |
-#define sk_double_round2int(x) (int)floor((x) + 0.5f) |
-#define sk_double_ceil2int(x) (int)ceil(x) |
- |
-extern const uint32_t gIEEENotANumber; |
-extern const uint32_t gIEEEInfinity; |
-extern const uint32_t gIEEENegativeInfinity; |
- |
-#define SK_FloatNaN (*SkTCast<const float*>(&gIEEENotANumber)) |
-#define SK_FloatInfinity (*SkTCast<const float*>(&gIEEEInfinity)) |
-#define SK_FloatNegativeInfinity (*SkTCast<const float*>(&gIEEENegativeInfinity)) |
- |
-// We forward declare this to break an #include cycle. |
-// (SkScalar -> SkFloatingPoint -> SkOpts.h -> SkXfermode -> SkColor -> SkScalar) |
-namespace SkOpts { extern float (*rsqrt)(float); } |
- |
-// Fast, approximate inverse square root. |
-// Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON. |
-static inline float sk_float_rsqrt(const float x) { |
-// We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got |
-// it at compile time. This is going to be too fast to productively hide behind a function pointer. |
-// |
-// We do one step of Newton's method to refine the estimates in the NEON and null paths. No |
-// refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt. |
-// |
-// Optimized constants in the null path courtesy of http://rrrola.wz.cz/inv_sqrt.html |
-#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1 |
- return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x))); |
-#elif defined(SK_ARM_HAS_NEON) |
- // Get initial estimate. |
- const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x. |
- float32x2_t estimate = vrsqrte_f32(xx); |
- |
- // One step of Newton's method to refine. |
- const float32x2_t estimate_sq = vmul_f32(estimate, estimate); |
- estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq)); |
- return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places. |
-#else |
- // Perhaps runtime-detected NEON, or a portable fallback. |
- return SkOpts::rsqrt(x); |
-#endif |
-} |
- |
-// This is the number of significant digits we can print in a string such that when we read that |
-// string back we get the floating point number we expect. The minimum value C requires is 6, but |
-// most compilers support 9 |
-#ifdef FLT_DECIMAL_DIG |
-#define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG |
-#else |
-#define SK_FLT_DECIMAL_DIG 9 |
-#endif |
- |
-#endif |