Index: src/pathops/SkReduceOrder.cpp |
=================================================================== |
--- src/pathops/SkReduceOrder.cpp (revision 0) |
+++ src/pathops/SkReduceOrder.cpp (revision 0) |
@@ -0,0 +1,450 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkReduceOrder.h" |
+ |
+int SkReduceOrder::reduce(const SkDLine& line) { |
+ fLine[0] = line[0]; |
+ int different = line[0] != line[1]; |
+ fLine[1] = line[different]; |
+ return 1 + different; |
+} |
+ |
+static double interp_quad_coords(double a, double b, double c, double t) { |
+ double ab = SkDInterp(a, b, t); |
+ double bc = SkDInterp(b, c, t); |
+ return SkDInterp(ab, bc, t); |
+} |
+ |
+static int coincident_line(const SkDQuad& quad, SkDQuad& reduction) { |
+ reduction[0] = reduction[1] = quad[0]; |
+ return 1; |
+} |
+ |
+static int reductionLineCount(const SkDQuad& reduction) { |
+ return 1 + !reduction[0].approximatelyEqual(reduction[1]); |
+} |
+ |
+static int vertical_line(const SkDQuad& quad, SkReduceOrder::Style reduceStyle, |
+ SkDQuad& reduction) { |
+ double tValue; |
+ reduction[0] = quad[0]; |
+ reduction[1] = quad[2]; |
+ if (reduceStyle == SkReduceOrder::kFill_Style) { |
+ return reductionLineCount(reduction); |
+ } |
+ int smaller = reduction[1].fY > reduction[0].fY; |
+ int larger = smaller ^ 1; |
+ if (SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValue)) { |
+ double yExtrema = interp_quad_coords(quad[0].fY, quad[1].fY, quad[2].fY, tValue); |
+ if (reduction[smaller].fY > yExtrema) { |
+ reduction[smaller].fY = yExtrema; |
+ } else if (reduction[larger].fY < yExtrema) { |
+ reduction[larger].fY = yExtrema; |
+ } |
+ } |
+ return reductionLineCount(reduction); |
+} |
+ |
+static int horizontal_line(const SkDQuad& quad, SkReduceOrder::Style reduceStyle, |
+ SkDQuad& reduction) { |
+ double tValue; |
+ reduction[0] = quad[0]; |
+ reduction[1] = quad[2]; |
+ if (reduceStyle == SkReduceOrder::kFill_Style) { |
+ return reductionLineCount(reduction); |
+ } |
+ int smaller = reduction[1].fX > reduction[0].fX; |
+ int larger = smaller ^ 1; |
+ if (SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, &tValue)) { |
+ double xExtrema = interp_quad_coords(quad[0].fX, quad[1].fX, quad[2].fX, tValue); |
+ if (reduction[smaller].fX > xExtrema) { |
+ reduction[smaller].fX = xExtrema; |
+ } else if (reduction[larger].fX < xExtrema) { |
+ reduction[larger].fX = xExtrema; |
+ } |
+ } |
+ return reductionLineCount(reduction); |
+} |
+ |
+static int check_linear(const SkDQuad& quad, SkReduceOrder::Style reduceStyle, |
+ int minX, int maxX, int minY, int maxY, SkDQuad& reduction) { |
+ int startIndex = 0; |
+ int endIndex = 2; |
+ while (quad[startIndex].approximatelyEqual(quad[endIndex])) { |
+ --endIndex; |
+ if (endIndex == 0) { |
+ SkDebugf("%s shouldn't get here if all four points are about equal", __FUNCTION__); |
+ SkASSERT(0); |
+ } |
+ } |
+ if (!quad.isLinear(startIndex, endIndex)) { |
+ return 0; |
+ } |
+ // four are colinear: return line formed by outside |
+ reduction[0] = quad[0]; |
+ reduction[1] = quad[2]; |
+ if (reduceStyle == SkReduceOrder::kFill_Style) { |
+ return reductionLineCount(reduction); |
+ } |
+ int sameSide; |
+ bool useX = quad[maxX].fX - quad[minX].fX >= quad[maxY].fY - quad[minY].fY; |
+ if (useX) { |
+ sameSide = SkDSign(quad[0].fX - quad[1].fX) + SkDSign(quad[2].fX - quad[1].fX); |
+ } else { |
+ sameSide = SkDSign(quad[0].fY - quad[1].fY) + SkDSign(quad[2].fY - quad[1].fY); |
+ } |
+ if ((sameSide & 3) != 2) { |
+ return reductionLineCount(reduction); |
+ } |
+ double tValue; |
+ int root; |
+ if (useX) { |
+ root = SkDQuad::FindExtrema(quad[0].fX, quad[1].fX, quad[2].fX, &tValue); |
+ } else { |
+ root = SkDQuad::FindExtrema(quad[0].fY, quad[1].fY, quad[2].fY, &tValue); |
+ } |
+ if (root) { |
+ SkDPoint extrema; |
+ extrema.fX = interp_quad_coords(quad[0].fX, quad[1].fX, quad[2].fX, tValue); |
+ extrema.fY = interp_quad_coords(quad[0].fY, quad[1].fY, quad[2].fY, tValue); |
+ // sameSide > 0 means mid is smaller than either [0] or [2], so replace smaller |
+ int replace; |
+ if (useX) { |
+ if (extrema.fX < quad[0].fX ^ extrema.fX < quad[2].fX) { |
+ return reductionLineCount(reduction); |
+ } |
+ replace = (extrema.fX < quad[0].fX | extrema.fX < quad[2].fX) |
+ ^ (quad[0].fX < quad[2].fX); |
+ } else { |
+ if (extrema.fY < quad[0].fY ^ extrema.fY < quad[2].fY) { |
+ return reductionLineCount(reduction); |
+ } |
+ replace = (extrema.fY < quad[0].fY | extrema.fY < quad[2].fY) |
+ ^ (quad[0].fY < quad[2].fY); |
+ } |
+ reduction[replace] = extrema; |
+ } |
+ return reductionLineCount(reduction); |
+} |
+ |
+// reduce to a quadratic or smaller |
+// look for identical points |
+// look for all four points in a line |
+ // note that three points in a line doesn't simplify a cubic |
+// look for approximation with single quadratic |
+ // save approximation with multiple quadratics for later |
+int SkReduceOrder::reduce(const SkDQuad& quad, Style reduceStyle) { |
+ int index, minX, maxX, minY, maxY; |
+ int minXSet, minYSet; |
+ minX = maxX = minY = maxY = 0; |
+ minXSet = minYSet = 0; |
+ for (index = 1; index < 3; ++index) { |
+ if (quad[minX].fX > quad[index].fX) { |
+ minX = index; |
+ } |
+ if (quad[minY].fY > quad[index].fY) { |
+ minY = index; |
+ } |
+ if (quad[maxX].fX < quad[index].fX) { |
+ maxX = index; |
+ } |
+ if (quad[maxY].fY < quad[index].fY) { |
+ maxY = index; |
+ } |
+ } |
+ for (index = 0; index < 3; ++index) { |
+ if (AlmostEqualUlps(quad[index].fX, quad[minX].fX)) { |
+ minXSet |= 1 << index; |
+ } |
+ if (AlmostEqualUlps(quad[index].fY, quad[minY].fY)) { |
+ minYSet |= 1 << index; |
+ } |
+ } |
+ if (minXSet == 0x7) { // test for vertical line |
+ if (minYSet == 0x7) { // return 1 if all four are coincident |
+ return coincident_line(quad, fQuad); |
+ } |
+ return vertical_line(quad, reduceStyle, fQuad); |
+ } |
+ if (minYSet == 0xF) { // test for horizontal line |
+ return horizontal_line(quad, reduceStyle, fQuad); |
+ } |
+ int result = check_linear(quad, reduceStyle, minX, maxX, minY, maxY, fQuad); |
+ if (result) { |
+ return result; |
+ } |
+ fQuad = quad; |
+ return 3; |
+} |
+ |
+//////////////////////////////////////////////////////////////////////////////////// |
+ |
+static double interp_cubic_coords(const double* src, double t) { |
+ double ab = SkDInterp(src[0], src[2], t); |
+ double bc = SkDInterp(src[2], src[4], t); |
+ double cd = SkDInterp(src[4], src[6], t); |
+ double abc = SkDInterp(ab, bc, t); |
+ double bcd = SkDInterp(bc, cd, t); |
+ return SkDInterp(abc, bcd, t); |
+} |
+ |
+static int coincident_line(const SkDCubic& cubic, SkDCubic& reduction) { |
+ reduction[0] = reduction[1] = cubic[0]; |
+ return 1; |
+} |
+ |
+static int reductionLineCount(const SkDCubic& reduction) { |
+ return 1 + !reduction[0].approximatelyEqual(reduction[1]); |
+} |
+ |
+static int vertical_line(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle, |
+ SkDCubic& reduction) { |
+ double tValues[2]; |
+ reduction[0] = cubic[0]; |
+ reduction[1] = cubic[3]; |
+ if (reduceStyle == SkReduceOrder::kFill_Style) { |
+ return reductionLineCount(reduction); |
+ } |
+ int smaller = reduction[1].fY > reduction[0].fY; |
+ int larger = smaller ^ 1; |
+ int roots = SkDCubic::FindExtrema(cubic[0].fY, cubic[1].fY, cubic[2].fY, cubic[3].fY, tValues); |
+ for (int index = 0; index < roots; ++index) { |
+ double yExtrema = interp_cubic_coords(&cubic[0].fY, tValues[index]); |
+ if (reduction[smaller].fY > yExtrema) { |
+ reduction[smaller].fY = yExtrema; |
+ continue; |
+ } |
+ if (reduction[larger].fY < yExtrema) { |
+ reduction[larger].fY = yExtrema; |
+ } |
+ } |
+ return reductionLineCount(reduction); |
+} |
+ |
+static int horizontal_line(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle, |
+ SkDCubic& reduction) { |
+ double tValues[2]; |
+ reduction[0] = cubic[0]; |
+ reduction[1] = cubic[3]; |
+ if (reduceStyle == SkReduceOrder::kFill_Style) { |
+ return reductionLineCount(reduction); |
+ } |
+ int smaller = reduction[1].fX > reduction[0].fX; |
+ int larger = smaller ^ 1; |
+ int roots = SkDCubic::FindExtrema(cubic[0].fX, cubic[1].fX, cubic[2].fX, cubic[3].fX, tValues); |
+ for (int index = 0; index < roots; ++index) { |
+ double xExtrema = interp_cubic_coords(&cubic[0].fX, tValues[index]); |
+ if (reduction[smaller].fX > xExtrema) { |
+ reduction[smaller].fX = xExtrema; |
+ continue; |
+ } |
+ if (reduction[larger].fX < xExtrema) { |
+ reduction[larger].fX = xExtrema; |
+ } |
+ } |
+ return reductionLineCount(reduction); |
+} |
+ |
+// check to see if it is a quadratic or a line |
+static int check_quadratic(const SkDCubic& cubic, SkDCubic& reduction) { |
+ double dx10 = cubic[1].fX - cubic[0].fX; |
+ double dx23 = cubic[2].fX - cubic[3].fX; |
+ double midX = cubic[0].fX + dx10 * 3 / 2; |
+ if (!AlmostEqualUlps(midX - cubic[3].fX, dx23 * 3 / 2)) { |
+ return 0; |
+ } |
+ double dy10 = cubic[1].fY - cubic[0].fY; |
+ double dy23 = cubic[2].fY - cubic[3].fY; |
+ double midY = cubic[0].fY + dy10 * 3 / 2; |
+ if (!AlmostEqualUlps(midY - cubic[3].fY, dy23 * 3 / 2)) { |
+ return 0; |
+ } |
+ reduction[0] = cubic[0]; |
+ reduction[1].fX = midX; |
+ reduction[1].fY = midY; |
+ reduction[2] = cubic[3]; |
+ return 3; |
+} |
+ |
+static int check_linear(const SkDCubic& cubic, SkReduceOrder::Style reduceStyle, |
+ int minX, int maxX, int minY, int maxY, SkDCubic& reduction) { |
+ int startIndex = 0; |
+ int endIndex = 3; |
+ while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { |
+ --endIndex; |
+ if (endIndex == 0) { |
+ SkDebugf("%s shouldn't get here if all four points are about equal\n", __FUNCTION__); |
+ SkASSERT(0); |
+ } |
+ } |
+ if (!cubic.isLinear(startIndex, endIndex)) { |
+ return 0; |
+ } |
+ // four are colinear: return line formed by outside |
+ reduction[0] = cubic[0]; |
+ reduction[1] = cubic[3]; |
+ if (reduceStyle == SkReduceOrder::kFill_Style) { |
+ return reductionLineCount(reduction); |
+ } |
+ int sameSide1; |
+ int sameSide2; |
+ bool useX = cubic[maxX].fX - cubic[minX].fX >= cubic[maxY].fY - cubic[minY].fY; |
+ if (useX) { |
+ sameSide1 = SkDSign(cubic[0].fX - cubic[1].fX) + SkDSign(cubic[3].fX - cubic[1].fX); |
+ sameSide2 = SkDSign(cubic[0].fX - cubic[2].fX) + SkDSign(cubic[3].fX - cubic[2].fX); |
+ } else { |
+ sameSide1 = SkDSign(cubic[0].fY - cubic[1].fY) + SkDSign(cubic[3].fY - cubic[1].fY); |
+ sameSide2 = SkDSign(cubic[0].fY - cubic[2].fY) + SkDSign(cubic[3].fY - cubic[2].fY); |
+ } |
+ if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) { |
+ return reductionLineCount(reduction); |
+ } |
+ double tValues[2]; |
+ int roots; |
+ if (useX) { |
+ roots = SkDCubic::FindExtrema(cubic[0].fX, cubic[1].fX, cubic[2].fX, cubic[3].fX, tValues); |
+ } else { |
+ roots = SkDCubic::FindExtrema(cubic[0].fY, cubic[1].fY, cubic[2].fY, cubic[3].fY, tValues); |
+ } |
+ for (int index = 0; index < roots; ++index) { |
+ SkDPoint extrema; |
+ extrema.fX = interp_cubic_coords(&cubic[0].fX, tValues[index]); |
+ extrema.fY = interp_cubic_coords(&cubic[0].fY, tValues[index]); |
+ // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller |
+ int replace; |
+ if (useX) { |
+ if (extrema.fX < cubic[0].fX ^ extrema.fX < cubic[3].fX) { |
+ continue; |
+ } |
+ replace = (extrema.fX < cubic[0].fX | extrema.fX < cubic[3].fX) |
+ ^ (cubic[0].fX < cubic[3].fX); |
+ } else { |
+ if (extrema.fY < cubic[0].fY ^ extrema.fY < cubic[3].fY) { |
+ continue; |
+ } |
+ replace = (extrema.fY < cubic[0].fY | extrema.fY < cubic[3].fY) |
+ ^ (cubic[0].fY < cubic[3].fY); |
+ } |
+ reduction[replace] = extrema; |
+ } |
+ return reductionLineCount(reduction); |
+} |
+ |
+/* food for thought: |
+http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html |
+ |
+Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the |
+corresponding quadratic Bezier are (given in convex combinations of |
+points): |
+ |
+q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 |
+q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 |
+q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 |
+ |
+Of course, this curve does not interpolate the end-points, but it would |
+be interesting to see the behaviour of such a curve in an applet. |
+ |
+-- |
+Kalle Rutanen |
+http://kaba.hilvi.org |
+ |
+*/ |
+ |
+// reduce to a quadratic or smaller |
+// look for identical points |
+// look for all four points in a line |
+ // note that three points in a line doesn't simplify a cubic |
+// look for approximation with single quadratic |
+ // save approximation with multiple quadratics for later |
+int SkReduceOrder::reduce(const SkDCubic& cubic, Quadratics allowQuadratics, |
+ Style reduceStyle) { |
+ int index, minX, maxX, minY, maxY; |
+ int minXSet, minYSet; |
+ minX = maxX = minY = maxY = 0; |
+ minXSet = minYSet = 0; |
+ for (index = 1; index < 4; ++index) { |
+ if (cubic[minX].fX > cubic[index].fX) { |
+ minX = index; |
+ } |
+ if (cubic[minY].fY > cubic[index].fY) { |
+ minY = index; |
+ } |
+ if (cubic[maxX].fX < cubic[index].fX) { |
+ maxX = index; |
+ } |
+ if (cubic[maxY].fY < cubic[index].fY) { |
+ maxY = index; |
+ } |
+ } |
+ for (index = 0; index < 4; ++index) { |
+ double cx = cubic[index].fX; |
+ double cy = cubic[index].fY; |
+ double denom = SkTMax(fabs(cx), SkTMax(fabs(cy), |
+ SkTMax(fabs(cubic[minX].fX), fabs(cubic[minY].fY)))); |
+ if (denom == 0) { |
+ minXSet |= 1 << index; |
+ minYSet |= 1 << index; |
+ continue; |
+ } |
+ double inv = 1 / denom; |
+ if (approximately_equal_half(cx * inv, cubic[minX].fX * inv)) { |
+ minXSet |= 1 << index; |
+ } |
+ if (approximately_equal_half(cy * inv, cubic[minY].fY * inv)) { |
+ minYSet |= 1 << index; |
+ } |
+ } |
+ if (minXSet == 0xF) { // test for vertical line |
+ if (minYSet == 0xF) { // return 1 if all four are coincident |
+ return coincident_line(cubic, fCubic); |
+ } |
+ return vertical_line(cubic, reduceStyle, fCubic); |
+ } |
+ if (minYSet == 0xF) { // test for horizontal line |
+ return horizontal_line(cubic, reduceStyle, fCubic); |
+ } |
+ int result = check_linear(cubic, reduceStyle, minX, maxX, minY, maxY, fCubic); |
+ if (result) { |
+ return result; |
+ } |
+ if (allowQuadratics == SkReduceOrder::kAllow_Quadratics |
+ && (result = check_quadratic(cubic, fCubic))) { |
+ return result; |
+ } |
+ fCubic = cubic; |
+ return 4; |
+} |
+ |
+SkPath::Verb SkReduceOrder::Quad(const SkPoint a[3], SkTDArray<SkPoint>* reducePts) { |
+ SkDQuad quad; |
+ quad.set(a); |
+ SkReduceOrder reducer; |
+ int order = reducer.reduce(quad, kFill_Style); |
+ if (order == 2) { // quad became line |
+ for (int index = 0; index < order; ++index) { |
+ SkPoint* pt = reducePts->append(); |
+ pt->fX = SkDoubleToScalar(reducer.fLine[index].fX); |
+ pt->fY = SkDoubleToScalar(reducer.fLine[index].fY); |
+ } |
+ } |
+ return (SkPath::Verb) (order - 1); |
+} |
+ |
+SkPath::Verb SkReduceOrder::Cubic(const SkPoint a[4], SkTDArray<SkPoint>* reducePts) { |
+ SkDCubic cubic; |
+ cubic.set(a); |
+ SkReduceOrder reducer; |
+ int order = reducer.reduce(cubic, kAllow_Quadratics, kFill_Style); |
+ if (order == 2 || order == 3) { // cubic became line or quad |
+ for (int index = 0; index < order; ++index) { |
+ SkPoint* pt = reducePts->append(); |
+ pt->fX = SkDoubleToScalar(reducer.fQuad[index].fX); |
+ pt->fY = SkDoubleToScalar(reducer.fQuad[index].fY); |
+ } |
+ } |
+ return (SkPath::Verb) (order - 1); |
+} |