OLD | NEW |
1 // Copyright 2011 The Chromium Authors. All rights reserved. | 1 // Copyright 2011 The Chromium Authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "cc/trees/layer_tree_host_common.h" | 5 #include "cc/trees/layer_tree_host_common.h" |
6 | 6 |
7 #include <algorithm> | 7 #include <algorithm> |
8 | 8 |
9 #include "base/debug/trace_event.h" | 9 #include "base/debug/trace_event.h" |
10 #include "cc/base/math_util.h" | 10 #include "cc/base/math_util.h" |
11 #include "cc/layers/heads_up_display_layer_impl.h" | 11 #include "cc/layers/heads_up_display_layer_impl.h" |
12 #include "cc/layers/layer.h" | 12 #include "cc/layers/layer.h" |
13 #include "cc/layers/layer_impl.h" | 13 #include "cc/layers/layer_impl.h" |
14 #include "cc/layers/layer_iterator.h" | 14 #include "cc/layers/layer_iterator.h" |
15 #include "cc/layers/render_surface.h" | 15 #include "cc/layers/render_surface.h" |
16 #include "cc/layers/render_surface_impl.h" | 16 #include "cc/layers/render_surface_impl.h" |
17 #include "cc/trees/layer_sorter.h" | 17 #include "cc/trees/layer_sorter.h" |
18 #include "cc/trees/layer_tree_impl.h" | 18 #include "cc/trees/layer_tree_impl.h" |
19 #include "ui/gfx/point_conversions.h" | 19 #include "ui/gfx/point_conversions.h" |
20 #include "ui/gfx/rect_conversions.h" | 20 #include "ui/gfx/rect_conversions.h" |
21 #include "ui/gfx/transform.h" | 21 #include "ui/gfx/transform.h" |
22 | 22 |
23 namespace cc { | 23 namespace cc { |
24 | 24 |
25 ScrollAndScaleSet::ScrollAndScaleSet() {} | 25 ScrollAndScaleSet::ScrollAndScaleSet() |
26 | 26 { |
27 ScrollAndScaleSet::~ScrollAndScaleSet() {} | 27 } |
28 | 28 |
29 static void SortLayers(std::vector<scoped_refptr<Layer> >::iterator forst, | 29 ScrollAndScaleSet::~ScrollAndScaleSet() |
30 std::vector<scoped_refptr<Layer> >::iterator end, | 30 { |
31 void* layer_sorter) { | 31 } |
32 NOTREACHED(); | 32 |
33 } | 33 static void sortLayers(std::vector<scoped_refptr<Layer> >::iterator forst, std::
vector<scoped_refptr<Layer> >::iterator end, void* layerSorter) |
34 | 34 { |
35 static void SortLayers(std::vector<LayerImpl*>::iterator first, | 35 NOTREACHED(); |
36 std::vector<LayerImpl*>::iterator end, | 36 } |
37 LayerSorter* layer_sorter) { | 37 |
38 DCHECK(layer_sorter); | 38 static void sortLayers(std::vector<LayerImpl*>::iterator first, std::vector<Laye
rImpl*>::iterator end, LayerSorter* layerSorter) |
39 TRACE_EVENT0("cc", "LayerTreeHostCommon::SortLayers"); | 39 { |
40 layer_sorter->Sort(first, end); | 40 DCHECK(layerSorter); |
41 } | 41 TRACE_EVENT0("cc", "layer_tree_host_common::sortLayers"); |
42 | 42 layerSorter->Sort(first, end); |
43 inline gfx::Rect CalculateVisibleRectWithCachedLayerRect( | 43 } |
44 gfx::Rect target_surface_rect, | 44 |
45 gfx::Rect layer_bound_rect, | 45 inline gfx::Rect calculateVisibleRectWithCachedLayerRect(const gfx::Rect& target
SurfaceRect, const gfx::Rect& layerBoundRect, const gfx::Rect& layerRectInTarget
Space, const gfx::Transform& transform) |
46 gfx::Rect layer_rect_in_target_space, | 46 { |
47 const gfx::Transform& transform) { | 47 // Is this layer fully contained within the target surface? |
48 // Is this layer fully contained within the target surface? | 48 if (targetSurfaceRect.Contains(layerRectInTargetSpace)) |
49 if (target_surface_rect.Contains(layer_rect_in_target_space)) | 49 return layerBoundRect; |
50 return layer_bound_rect; | 50 |
51 | 51 // If the layer doesn't fill up the entire surface, then find the part of |
52 // If the layer doesn't fill up the entire surface, then find the part of | 52 // the surface rect where the layer could be visible. This avoids trying to |
53 // the surface rect where the layer could be visible. This avoids trying to | 53 // project surface rect points that are behind the projection point. |
54 // project surface rect points that are behind the projection point. | 54 gfx::Rect minimalSurfaceRect = targetSurfaceRect; |
55 gfx::Rect minimal_surface_rect = target_surface_rect; | 55 minimalSurfaceRect.Intersect(layerRectInTargetSpace); |
56 minimal_surface_rect.Intersect(layer_rect_in_target_space); | 56 |
57 | 57 // Project the corners of the target surface rect into the layer space. |
58 // Project the corners of the target surface rect into the layer space. | 58 // This bounding rectangle may be larger than it needs to be (being |
59 // This bounding rectangle may be larger than it needs to be (being | 59 // axis-aligned), but is a reasonable filter on the space to consider. |
60 // axis-aligned), but is a reasonable filter on the space to consider. | 60 // Non-invertible transforms will create an empty rect here. |
61 // Non-invertible transforms will create an empty rect here. | 61 |
62 | 62 gfx::Transform surfaceToLayer(gfx::Transform::kSkipInitialization); |
63 gfx::Transform surface_to_layer(gfx::Transform::kSkipInitialization); | 63 if (!transform.GetInverse(&surfaceToLayer)) { |
64 if (!transform.GetInverse(&surface_to_layer)) { | 64 // TODO(shawnsingh): Either we need to handle uninvertible transforms |
65 // TODO(shawnsingh): Either we need to handle uninvertible transforms | 65 // here, or DCHECK that the transform is invertible. |
66 // here, or DCHECK that the transform is invertible. | 66 } |
67 } | 67 gfx::Rect layerRect = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect(surf
aceToLayer, gfx::RectF(minimalSurfaceRect))); |
68 gfx::Rect layer_rect = gfx::ToEnclosingRect(MathUtil::ProjectClippedRect( | 68 layerRect.Intersect(layerBoundRect); |
69 surface_to_layer, gfx::RectF(minimal_surface_rect))); | 69 return layerRect; |
70 layer_rect.Intersect(layer_bound_rect); | 70 } |
71 return layer_rect; | 71 |
72 } | 72 gfx::Rect LayerTreeHostCommon::calculateVisibleRect(const gfx::Rect& targetSurfa
ceRect, const gfx::Rect& layerBoundRect, const gfx::Transform& transform) |
73 | 73 { |
74 gfx::Rect LayerTreeHostCommon::CalculateVisibleRect( | 74 gfx::Rect layerInSurfaceSpace = MathUtil::MapClippedRect(transform, layerBou
ndRect); |
75 gfx::Rect target_surface_rect, | 75 return calculateVisibleRectWithCachedLayerRect(targetSurfaceRect, layerBound
Rect, layerInSurfaceSpace, transform); |
76 gfx::Rect layer_bound_rect, | |
77 const gfx::Transform& transform) { | |
78 gfx::Rect layer_in_surface_space = | |
79 MathUtil::MapClippedRect(transform, layer_bound_rect); | |
80 return CalculateVisibleRectWithCachedLayerRect( | |
81 target_surface_rect, layer_bound_rect, layer_in_surface_space, transform); | |
82 } | |
83 | |
84 template <typename LayerType> static inline bool IsRootLayer(LayerType* layer) { | |
85 return !layer->parent(); | |
86 } | 76 } |
87 | 77 |
88 template <typename LayerType> | 78 template <typename LayerType> |
89 static inline bool LayerIsInExisting3DRenderingContext(LayerType* layer) { | 79 static inline bool isRootLayer(LayerType* layer) |
90 // According to current W3C spec on CSS transforms, a layer is part of an | 80 { |
91 // established 3d rendering context if its parent has transform-style of | 81 return !layer->parent(); |
92 // preserves-3d. | 82 } |
93 return layer->parent() && layer->parent()->preserves_3d(); | 83 |
94 } | 84 template<typename LayerType> |
95 | 85 static inline bool layerIsInExisting3DRenderingContext(LayerType* layer) |
96 template <typename LayerType> | 86 { |
97 static bool IsRootLayerOfNewRenderingContext(LayerType* layer) { | 87 // According to current W3C spec on CSS transforms, a layer is part of an es
tablished |
98 // According to current W3C spec on CSS transforms (Section 6.1), a layer is | 88 // 3d rendering context if its parent has transform-style of preserves-3d. |
99 // the beginning of 3d rendering context if its parent does not have | 89 return layer->parent() && layer->parent()->preserves_3d(); |
100 // transform-style: preserve-3d, but this layer itself does. | 90 } |
101 if (layer->parent()) | 91 |
102 return !layer->parent()->preserves_3d() && layer->preserves_3d(); | 92 template<typename LayerType> |
103 | 93 static bool isRootLayerOfNewRenderingContext(LayerType* layer) |
104 return layer->preserves_3d(); | 94 { |
105 } | 95 // According to current W3C spec on CSS transforms (Section 6.1), a layer is
the |
106 | 96 // beginning of 3d rendering context if its parent does not have transform-s
tyle: |
107 template <typename LayerType> | 97 // preserve-3d, but this layer itself does. |
108 static bool IsLayerBackFaceVisible(LayerType* layer) { | 98 if (layer->parent()) |
109 // The current W3C spec on CSS transforms says that backface visibility should | 99 return !layer->parent()->preserves_3d() && layer->preserves_3d(); |
110 // be determined differently depending on whether the layer is in a "3d | 100 |
111 // rendering context" or not. For Chromium code, we can determine whether we | 101 return layer->preserves_3d(); |
112 // are in a 3d rendering context by checking if the parent preserves 3d. | 102 } |
113 | 103 |
114 if (LayerIsInExisting3DRenderingContext(layer)) | 104 template<typename LayerType> |
115 return layer->draw_transform().IsBackFaceVisible(); | 105 static bool isLayerBackFaceVisible(LayerType* layer) |
116 | 106 { |
117 // In this case, either the layer establishes a new 3d rendering context, or | 107 // The current W3C spec on CSS transforms says that backface visibility shou
ld be |
118 // is not in a 3d rendering context at all. | 108 // determined differently depending on whether the layer is in a "3d renderi
ng |
119 return layer->transform().IsBackFaceVisible(); | 109 // context" or not. For Chromium code, we can determine whether we are in a
3d |
120 } | 110 // rendering context by checking if the parent preserves 3d. |
121 | 111 |
122 template <typename LayerType> | 112 if (layerIsInExisting3DRenderingContext(layer)) |
123 static bool IsSurfaceBackFaceVisible(LayerType* layer, | 113 return layer->draw_transform().IsBackFaceVisible(); |
124 const gfx::Transform& draw_transform) { | 114 |
125 if (LayerIsInExisting3DRenderingContext(layer)) | 115 // In this case, either the layer establishes a new 3d rendering context, or
is not in |
126 return draw_transform.IsBackFaceVisible(); | 116 // a 3d rendering context at all. |
127 | |
128 if (IsRootLayerOfNewRenderingContext(layer)) | |
129 return layer->transform().IsBackFaceVisible(); | 117 return layer->transform().IsBackFaceVisible(); |
130 | 118 } |
131 // If the render_surface is not part of a new or existing rendering context, | 119 |
132 // then the layers that contribute to this surface will decide back-face | 120 template<typename LayerType> |
133 // visibility for themselves. | 121 static bool isSurfaceBackFaceVisible(LayerType* layer, const gfx::Transform& dra
wTransform) |
134 return false; | 122 { |
135 } | 123 if (layerIsInExisting3DRenderingContext(layer)) |
136 | 124 return drawTransform.IsBackFaceVisible(); |
137 template <typename LayerType> | 125 |
138 static inline bool LayerClipsSubtree(LayerType* layer) { | 126 if (isRootLayerOfNewRenderingContext(layer)) |
139 return layer->masks_to_bounds() || layer->mask_layer(); | 127 return layer->transform().IsBackFaceVisible(); |
140 } | 128 |
141 | 129 // If the renderSurface is not part of a new or existing rendering context,
then the |
142 template <typename LayerType> | 130 // layers that contribute to this surface will decide back-face visibility f
or themselves. |
143 static gfx::Rect CalculateVisibleContentRect( | 131 return false; |
144 LayerType* layer, | 132 } |
145 gfx::Rect ancestor_clip_rect_in_descendant_surface_space, | 133 |
146 gfx::Rect layer_rect_in_target_space) { | 134 template<typename LayerType> |
147 DCHECK(layer->render_target()); | 135 static inline bool layerClipsSubtree(LayerType* layer) |
148 | 136 { |
149 // Nothing is visible if the layer bounds are empty. | 137 return layer->masks_to_bounds() || layer->mask_layer(); |
150 if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() || | 138 } |
151 layer->drawable_content_rect().IsEmpty()) | 139 |
152 return gfx::Rect(); | 140 template<typename LayerType> |
153 | 141 static gfx::Rect calculateVisibleContentRect(LayerType* layer, const gfx::Rect&
ancestorClipRectInDescendantSurfaceSpace, const gfx::Rect& layerRectInTargetSpac
e) |
154 // Compute visible bounds in target surface space. | 142 { |
155 gfx::Rect visible_rect_in_target_surface_space = | 143 DCHECK(layer->render_target()); |
156 layer->drawable_content_rect(); | 144 |
157 | 145 // Nothing is visible if the layer bounds are empty. |
158 if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) { | 146 if (!layer->DrawsContent() || layer->content_bounds().IsEmpty() || layer->dr
awable_content_rect().IsEmpty()) |
159 // In this case the target surface does clip layers that contribute to | 147 return gfx::Rect(); |
160 // it. So, we have to convert the current surface's clipRect from its | 148 |
161 // ancestor surface space to the current (descendant) surface | 149 // Compute visible bounds in target surface space. |
162 // space. This conversion is done outside this function so that it can | 150 gfx::Rect visibleRectInTargetSurfaceSpace = layer->drawable_content_rect(); |
163 // be cached instead of computing it redundantly for every layer. | 151 |
164 visible_rect_in_target_surface_space.Intersect( | 152 if (!layer->render_target()->render_surface()->clip_rect().IsEmpty()) { |
165 ancestor_clip_rect_in_descendant_surface_space); | 153 // In this case the target surface does clip layers that contribute to |
166 } | 154 // it. So, we have to convert the current surface's clipRect from its |
167 | 155 // ancestor surface space to the current (descendant) surface |
168 if (visible_rect_in_target_surface_space.IsEmpty()) | 156 // space. This conversion is done outside this function so that it can |
169 return gfx::Rect(); | 157 // be cached instead of computing it redundantly for every layer. |
170 | 158 visibleRectInTargetSurfaceSpace.Intersect(ancestorClipRectInDescendantSu
rfaceSpace); |
171 return CalculateVisibleRectWithCachedLayerRect( | 159 } |
172 visible_rect_in_target_surface_space, | 160 |
173 gfx::Rect(gfx::Point(), layer->content_bounds()), | 161 if (visibleRectInTargetSurfaceSpace.IsEmpty()) |
174 layer_rect_in_target_space, | 162 return gfx::Rect(); |
175 layer->draw_transform()); | 163 |
176 } | 164 return calculateVisibleRectWithCachedLayerRect(visibleRectInTargetSurfaceSpa
ce, gfx::Rect(gfx::Point(), layer->content_bounds()), layerRectInTargetSpace, la
yer->draw_transform()); |
177 | 165 } |
178 static inline bool TransformToParentIsKnown(LayerImpl* layer) { return true; } | 166 |
179 | 167 static inline bool transformToParentIsKnown(LayerImpl*) |
180 static inline bool TransformToParentIsKnown(Layer* layer) { | 168 { |
181 | |
182 return !layer->TransformIsAnimating(); | |
183 } | |
184 | |
185 static inline bool TransformToScreenIsKnown(LayerImpl* layer) { return true; } | |
186 | |
187 static inline bool TransformToScreenIsKnown(Layer* layer) { | |
188 return !layer->screen_space_transform_is_animating(); | |
189 } | |
190 | |
191 template <typename LayerType> | |
192 static bool LayerShouldBeSkipped(LayerType* layer) { | |
193 // Layers can be skipped if any of these conditions are met. | |
194 // - does not draw content. | |
195 // - is transparent | |
196 // - has empty bounds | |
197 // - the layer is not double-sided, but its back face is visible. | |
198 // | |
199 // Some additional conditions need to be computed at a later point after the | |
200 // recursion is finished. | |
201 // - the intersection of render surface content and layer clipRect is empty | |
202 // - the visibleContentRect is empty | |
203 // | |
204 // Note, if the layer should not have been drawn due to being fully | |
205 // transparent, we would have skipped the entire subtree and never made it | |
206 // into this function, so it is safe to omit this check here. | |
207 | |
208 if (!layer->DrawsContent() || layer->bounds().IsEmpty()) | |
209 return true; | 169 return true; |
210 | 170 } |
211 LayerType* backface_test_layer = layer; | 171 |
212 if (layer->use_parent_backface_visibility()) { | 172 static inline bool transformToParentIsKnown(Layer* layer) |
213 DCHECK(layer->parent()); | 173 { |
214 DCHECK(!layer->parent()->use_parent_backface_visibility()); | 174 |
215 backface_test_layer = layer->parent(); | 175 return !layer->TransformIsAnimating(); |
216 } | 176 } |
217 | 177 |
218 // The layer should not be drawn if (1) it is not double-sided and (2) the | 178 static inline bool transformToScreenIsKnown(LayerImpl*) |
219 // back of the layer is known to be facing the screen. | 179 { |
220 if (!backface_test_layer->double_sided() && | |
221 TransformToScreenIsKnown(backface_test_layer) && | |
222 IsLayerBackFaceVisible(backface_test_layer)) | |
223 return true; | 180 return true; |
224 | 181 } |
225 return false; | 182 |
226 } | 183 static inline bool transformToScreenIsKnown(Layer* layer) |
227 | 184 { |
228 static inline bool SubtreeShouldBeSkipped(LayerImpl* layer) { | 185 return !layer->screen_space_transform_is_animating(); |
229 // The opacity of a layer always applies to its children (either implicitly | 186 } |
230 // via a render surface or explicitly if the parent preserves 3D), so the | 187 |
231 // entire subtree can be skipped if this layer is fully transparent. | 188 template<typename LayerType> |
232 return !layer->opacity(); | 189 static bool layerShouldBeSkipped(LayerType* layer) |
233 } | 190 { |
234 | 191 // Layers can be skipped if any of these conditions are met. |
235 static inline bool SubtreeShouldBeSkipped(Layer* layer) { | 192 // - does not draw content. |
236 // If the opacity is being animated then the opacity on the main thread is | 193 // - is transparent |
237 // unreliable (since the impl thread may be using a different opacity), so it | 194 // - has empty bounds |
238 // should not be trusted. | 195 // - the layer is not double-sided, but its back face is visible. |
239 // In particular, it should not cause the subtree to be skipped. | 196 // |
240 // Similarly, for layers that might animate opacity using an impl-only | 197 // Some additional conditions need to be computed at a later point after the
recursion is finished. |
241 // animation, their subtree should also not be skipped. | 198 // - the intersection of render surface content and layer clipRect is empt
y |
242 return !layer->opacity() && !layer->OpacityIsAnimating() && | 199 // - the visibleContentRect is empty |
243 !layer->OpacityCanAnimateOnImplThread(); | 200 // |
| 201 // Note, if the layer should not have been drawn due to being fully transpar
ent, |
| 202 // we would have skipped the entire subtree and never made it into this func
tion, |
| 203 // so it is safe to omit this check here. |
| 204 |
| 205 if (!layer->DrawsContent() || layer->bounds().IsEmpty()) |
| 206 return true; |
| 207 |
| 208 LayerType* backfaceTestLayer = layer; |
| 209 if (layer->use_parent_backface_visibility()) { |
| 210 DCHECK(layer->parent()); |
| 211 DCHECK(!layer->parent()->use_parent_backface_visibility()); |
| 212 backfaceTestLayer = layer->parent(); |
| 213 } |
| 214 |
| 215 // The layer should not be drawn if (1) it is not double-sided and (2) the b
ack of the layer is known to be facing the screen. |
| 216 if (!backfaceTestLayer->double_sided() && transformToScreenIsKnown(backfaceT
estLayer) && isLayerBackFaceVisible(backfaceTestLayer)) |
| 217 return true; |
| 218 |
| 219 return false; |
| 220 } |
| 221 |
| 222 static inline bool subtreeShouldBeSkipped(LayerImpl* layer) |
| 223 { |
| 224 // The opacity of a layer always applies to its children (either implicitly |
| 225 // via a render surface or explicitly if the parent preserves 3D), so the |
| 226 // entire subtree can be skipped if this layer is fully transparent. |
| 227 return !layer->opacity(); |
| 228 } |
| 229 |
| 230 static inline bool subtreeShouldBeSkipped(Layer* layer) |
| 231 { |
| 232 // If the opacity is being animated then the opacity on the main thread is u
nreliable |
| 233 // (since the impl thread may be using a different opacity), so it should no
t be trusted. |
| 234 // In particular, it should not cause the subtree to be skipped. |
| 235 // Similarly, for layers that might animate opacity using an impl-only |
| 236 // animation, their subtree should also not be skipped. |
| 237 return !layer->opacity() && !layer->OpacityIsAnimating() && |
| 238 !layer->OpacityCanAnimateOnImplThread(); |
244 } | 239 } |
245 | 240 |
246 // Called on each layer that could be drawn after all information from | 241 // Called on each layer that could be drawn after all information from |
247 // calcDrawProperties has been updated on that layer. May have some false | 242 // calcDrawProperties has been updated on that layer. May have some false |
248 // positives (e.g. layers get this called on them but don't actually get drawn). | 243 // positives (e.g. layers get this called on them but don't actually get drawn). |
249 static inline void UpdateTilePrioritiesForLayer(LayerImpl* layer) { | 244 static inline void updateTilePrioritiesForLayer(LayerImpl* layer) |
250 layer->UpdateTilePriorities(); | 245 { |
251 | 246 layer->UpdateTilePriorities(); |
252 // Mask layers don't get this call, so explicitly update them so they can | 247 |
253 // kick off tile rasterization. | 248 // Mask layers don't get this call, so explicitly update them so they can |
254 if (layer->mask_layer()) | 249 // kick off tile rasterization. |
255 layer->mask_layer()->UpdateTilePriorities(); | 250 if (layer->mask_layer()) |
256 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) | 251 layer->mask_layer()->UpdateTilePriorities(); |
257 layer->replica_layer()->mask_layer()->UpdateTilePriorities(); | 252 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) |
258 } | 253 layer->replica_layer()->mask_layer()->UpdateTilePriorities(); |
259 | 254 } |
260 static inline void UpdateTilePrioritiesForLayer(Layer* layer) {} | 255 |
261 | 256 static inline void updateTilePrioritiesForLayer(Layer* layer) |
262 template <typename LayerType> | 257 { |
263 static bool SubtreeShouldRenderToSeparateSurface( | 258 } |
264 LayerType* layer, | 259 |
265 bool axis_aligned_with_respect_to_parent) { | 260 template<typename LayerType> |
266 // | 261 static bool subtreeShouldRenderToSeparateSurface(LayerType* layer, bool axisAlig
nedWithRespectToParent) |
267 // A layer and its descendants should render onto a new RenderSurfaceImpl if | 262 { |
268 // any of these rules hold: | 263 // |
269 // | 264 // A layer and its descendants should render onto a new RenderSurfaceImpl if
any of these rules hold: |
270 | 265 // |
271 // The root layer should always have a render_surface. | 266 |
272 if (IsRootLayer(layer)) | 267 // The root layer should always have a renderSurface. |
273 return true; | 268 if (isRootLayer(layer)) |
274 | 269 return true; |
275 // If we force it. | 270 |
276 if (layer->force_render_surface()) | 271 // If we force it. |
277 return true; | 272 if (layer->force_render_surface()) |
278 | 273 return true; |
279 // If the layer uses a mask. | 274 |
280 if (layer->mask_layer()) | 275 // If the layer uses a mask. |
281 return true; | 276 if (layer->mask_layer()) |
282 | 277 return true; |
283 // If the layer has a reflection. | 278 |
284 if (layer->replica_layer()) | 279 // If the layer has a reflection. |
285 return true; | 280 if (layer->replica_layer()) |
286 | 281 return true; |
287 // If the layer uses a CSS filter. | 282 |
288 if (!layer->filters().isEmpty() || !layer->background_filters().isEmpty() || | 283 // If the layer uses a CSS filter. |
289 layer->filter()) | 284 if (!layer->filters().isEmpty() || !layer->background_filters().isEmpty() ||
layer->filter()) |
290 return true; | 285 return true; |
291 | 286 |
292 int num_descendants_that_draw_content = | 287 int numDescendantsThatDrawContent = layer->draw_properties().num_descendants
_that_draw_content; |
293 layer->draw_properties().num_descendants_that_draw_content; | 288 |
294 | 289 // If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), b
ut it is |
295 // If the layer flattens its subtree (i.e. the layer doesn't preserve-3d), but | 290 // treated as a 3D object by its parent (i.e. parent does preserve-3d). |
296 // it is treated as a 3D object by its parent (i.e. parent does preserve-3d). | 291 if (layerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() &&
numDescendantsThatDrawContent > 0) { |
297 if (LayerIsInExisting3DRenderingContext(layer) && !layer->preserves_3d() && | 292 TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface flatteni
ng"); |
298 num_descendants_that_draw_content > 0) { | 293 return true; |
299 TRACE_EVENT_INSTANT0( | 294 } |
300 "cc", | 295 |
301 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface flattening"); | 296 // If the layer clips its descendants but it is not axis-aligned with respec
t to its parent. |
302 return true; | 297 bool layerClipsExternalContent = layerClipsSubtree(layer) || layer->HasDeleg
atedContent(); |
303 } | 298 if (layerClipsExternalContent && !axisAlignedWithRespectToParent && !layer->
draw_properties().descendants_can_clip_selves) |
304 | 299 { |
305 // If the layer clips its descendants but it is not axis-aligned with respect | 300 TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface clipping
"); |
306 // to its parent. | 301 return true; |
307 bool layer_clips_external_content = | 302 } |
308 LayerClipsSubtree(layer) || layer->HasDelegatedContent(); | 303 |
309 if (layer_clips_external_content && !axis_aligned_with_respect_to_parent && | 304 // If the layer has some translucency and does not have a preserves-3d trans
form style. |
310 !layer->draw_properties().descendants_can_clip_selves) { | 305 // This condition only needs a render surface if two or more layers in the |
311 TRACE_EVENT_INSTANT0( | 306 // subtree overlap. But checking layer overlaps is unnecessarily costly so |
312 "cc", | 307 // instead we conservatively create a surface whenever at least two layers |
313 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface clipping"); | 308 // draw content for this subtree. |
314 return true; | 309 bool atLeastTwoLayersInSubtreeDrawContent = numDescendantsThatDrawContent >
0 && (layer->DrawsContent() || numDescendantsThatDrawContent > 1); |
315 } | 310 |
316 | 311 if (layer->opacity() != 1.f && !layer->preserves_3d() && atLeastTwoLayersInS
ubtreeDrawContent) { |
317 // If the layer has some translucency and does not have a preserves-3d | 312 TRACE_EVENT_INSTANT0("cc", "LayerTreeHostCommon::requireSurface opacity"
); |
318 // transform style. This condition only needs a render surface if two or more | 313 return true; |
319 // layers in the subtree overlap. But checking layer overlaps is unnecessarily | 314 } |
320 // costly so instead we conservatively create a surface whenever at least two | 315 |
321 // layers draw content for this subtree. | 316 return false; |
322 bool at_least_two_layers_in_subtree_draw_content = | 317 } |
323 num_descendants_that_draw_content > 0 && | 318 |
324 (layer->DrawsContent() || num_descendants_that_draw_content > 1); | 319 gfx::Transform computeScrollCompensationForThisLayer(LayerImpl* scrollingLayer,
const gfx::Transform& parentMatrix) |
325 | 320 { |
326 if (layer->opacity() != 1.f && !layer->preserves_3d() && | 321 // For every layer that has non-zero scrollDelta, we have to compute a trans
form that can undo the |
327 at_least_two_layers_in_subtree_draw_content) { | 322 // scrollDelta translation. In particular, we want this matrix to premultipl
y a fixed-position layer's |
328 TRACE_EVENT_INSTANT0( | 323 // parentMatrix, so we design this transform in three steps as follows. The
steps described here apply |
329 "cc", | 324 // from right-to-left, so Step 1 would be the right-most matrix: |
330 "LayerTreeHostCommon::SubtreeShouldRenderToSeparateSurface opacity"); | 325 // |
331 return true; | 326 // Step 1. transform from target surface space to the exact space where
scrollDelta is actually applied. |
332 } | 327 // -- this is inverse of the matrix in step 3 |
333 | 328 // Step 2. undo the scrollDelta |
334 return false; | 329 // -- this is just a translation by scrollDelta. |
335 } | 330 // Step 3. transform back to target surface space. |
336 | 331 // -- this transform is the "partialLayerOriginTransform" = (paren
tMatrix * scale(layer->pageScaleDelta())); |
337 gfx::Transform ComputeScrollCompensationForThisLayer( | 332 // |
338 LayerImpl* scrolling_layer, | 333 // These steps create a matrix that both start and end in targetSurfaceSpace
. So this matrix can |
339 const gfx::Transform& parent_matrix) { | 334 // pre-multiply any fixed-position layer's drawTransform to undo the scrollD
eltas -- as long as |
340 // For every layer that has non-zero scroll_delta, we have to compute a | 335 // that fixed position layer is fixed onto the same renderTarget as this scr
ollingLayer. |
341 // transform that can undo the scroll_delta translation. In particular, we | 336 // |
342 // want this matrix to premultiply a fixed-position layer's parent_matrix, so | 337 |
343 // we design this transform in three steps as follows. The steps described | 338 gfx::Transform partialLayerOriginTransform = parentMatrix; |
344 // here apply from right-to-left, so Step 1 would be the right-most matrix: | 339 partialLayerOriginTransform.PreconcatTransform(scrollingLayer->impl_transfor
m()); |
345 // | 340 |
346 // Step 1. transform from target surface space to the exact space where | 341 gfx::Transform scrollCompensationForThisLayer = partialLayerOriginTransform;
// Step 3 |
347 // scroll_delta is actually applied. | 342 scrollCompensationForThisLayer.Translate(scrollingLayer->scroll_delta().x(),
scrollingLayer->scroll_delta().y()); // Step 2 |
348 // -- this is inverse of the matrix in step 3 | 343 |
349 // Step 2. undo the scroll_delta | 344 gfx::Transform inversePartialLayerOriginTransform(gfx::Transform::kSkipIniti
alization); |
350 // -- this is just a translation by scroll_delta. | 345 if (!partialLayerOriginTransform.GetInverse(&inversePartialLayerOriginTransf
orm)) { |
351 // Step 3. transform back to target surface space. | 346 // TODO(shawnsingh): Either we need to handle uninvertible transforms |
352 // -- this transform is the "partial_layer_origin_transform" = | 347 // here, or DCHECK that the transform is invertible. |
353 // (parent_matrix * scale(layer->pageScaleDelta())); | 348 } |
354 // | 349 scrollCompensationForThisLayer.PreconcatTransform(inversePartialLayerOriginT
ransform); // Step 1 |
355 // These steps create a matrix that both start and end in targetSurfaceSpace. | 350 return scrollCompensationForThisLayer; |
356 // So this matrix can pre-multiply any fixed-position layer's draw_transform | 351 } |
357 // to undo the scroll_deltas -- as long as that fixed position layer is fixed | 352 |
358 // onto the same render_target as this scrolling_layer. | 353 gfx::Transform computeScrollCompensationMatrixForChildren(Layer* current_layer,
const gfx::Transform& currentParentMatrix, const gfx::Transform& currentScrollCo
mpensation) |
359 // | 354 { |
360 | 355 // The main thread (i.e. Layer) does not need to worry about scroll compensa
tion. |
361 gfx::Transform partial_layer_origin_transform = parent_matrix; | 356 // So we can just return an identity matrix here. |
362 partial_layer_origin_transform.PreconcatTransform( | 357 return gfx::Transform(); |
363 scrolling_layer->impl_transform()); | 358 } |
364 | 359 |
365 gfx::Transform scroll_compensation_for_this_layer = | 360 gfx::Transform computeScrollCompensationMatrixForChildren(LayerImpl* layer, cons
t gfx::Transform& parentMatrix, const gfx::Transform& currentScrollCompensationM
atrix) |
366 partial_layer_origin_transform; // Step 3 | 361 { |
367 scroll_compensation_for_this_layer.Translate( | 362 // "Total scroll compensation" is the transform needed to cancel out all scr
ollDelta translations that |
368 scrolling_layer->scroll_delta().x(), | 363 // occurred since the nearest container layer, even if there are renderSurfa
ces in-between. |
369 scrolling_layer->scroll_delta().y()); // Step 2 | 364 // |
370 | 365 // There are some edge cases to be aware of, that are not explicit in the co
de: |
371 gfx::Transform inverse_partial_layer_origin_transform( | 366 // - A layer that is both a fixed-position and container should not be its
own container, instead, that means |
372 gfx::Transform::kSkipInitialization); | 367 // it is fixed to an ancestor, and is a container for any fixed-position
descendants. |
373 if (!partial_layer_origin_transform.GetInverse( | 368 // - A layer that is a fixed-position container and has a renderSurface sho
uld behave the same as a container |
374 &inverse_partial_layer_origin_transform)) { | 369 // without a renderSurface, the renderSurface is irrelevant in that case. |
375 // TODO(shawnsingh): Either we need to handle uninvertible transforms | 370 // - A layer that does not have an explicit container is simply fixed to th
e viewport. |
376 // here, or DCHECK that the transform is invertible. | 371 // (i.e. the root renderSurface.) |
377 } | 372 // - If the fixed-position layer has its own renderSurface, then the render
Surface is |
378 scroll_compensation_for_this_layer.PreconcatTransform( | 373 // the one who gets fixed. |
379 inverse_partial_layer_origin_transform); // Step 1 | 374 // |
380 return scroll_compensation_for_this_layer; | 375 // This function needs to be called AFTER layers create their own renderSurf
aces. |
381 } | 376 // |
382 | 377 |
383 gfx::Transform ComputeScrollCompensationMatrixForChildren( | 378 // Avoid the overheads (including stack allocation and matrix initialization
/copy) if we know that the scroll compensation doesn't need to be reset or adjus
ted. |
384 Layer* current_layer, | 379 if (!layer->is_container_for_fixed_position_layers() && layer->scroll_delta(
).IsZero() && !layer->render_surface()) |
385 const gfx::Transform& current_parent_matrix, | 380 return currentScrollCompensationMatrix; |
386 const gfx::Transform& current_scroll_compensation) { | 381 |
387 // The main thread (i.e. Layer) does not need to worry about scroll | 382 // Start as identity matrix. |
388 // compensation. So we can just return an identity matrix here. | 383 gfx::Transform nextScrollCompensationMatrix; |
389 return gfx::Transform(); | 384 |
390 } | 385 // If this layer is not a container, then it inherits the existing scroll co
mpensations. |
391 | 386 if (!layer->is_container_for_fixed_position_layers()) |
392 gfx::Transform ComputeScrollCompensationMatrixForChildren( | 387 nextScrollCompensationMatrix = currentScrollCompensationMatrix; |
393 LayerImpl* layer, | 388 |
394 const gfx::Transform& parent_matrix, | 389 // If the current layer has a non-zero scrollDelta, then we should compute i
ts local scrollCompensation |
395 const gfx::Transform& current_scroll_compensation_matrix) { | 390 // and accumulate it to the nextScrollCompensationMatrix. |
396 // "Total scroll compensation" is the transform needed to cancel out all | 391 if (!layer->scroll_delta().IsZero()) { |
397 // scroll_delta translations that occurred since the nearest container layer, | 392 gfx::Transform scrollCompensationForThisLayer = computeScrollCompensatio
nForThisLayer(layer, parentMatrix); |
398 // even if there are render_surfaces in-between. | 393 nextScrollCompensationMatrix.PreconcatTransform(scrollCompensationForThi
sLayer); |
399 // | 394 } |
400 // There are some edge cases to be aware of, that are not explicit in the | 395 |
401 // code: | 396 // If the layer created its own renderSurface, we have to adjust nextScrollC
ompensationMatrix. |
402 // - A layer that is both a fixed-position and container should not be its | 397 // The adjustment allows us to continue using the scrollCompensation on the
next surface. |
403 // own container, instead, that means it is fixed to an ancestor, and is a | 398 // Step 1 (right-most in the math): transform from the new surface to the o
riginal ancestor surface |
404 // container for any fixed-position descendants. | 399 // Step 2: apply the scroll compensation |
405 // - A layer that is a fixed-position container and has a render_surface | 400 // Step 3: transform back to the new surface. |
406 // should behave the same as a container without a render_surface, the | 401 if (layer->render_surface() && !nextScrollCompensationMatrix.IsIdentity()) { |
407 // render_surface is irrelevant in that case. | 402 gfx::Transform inverseSurfaceDrawTransform(gfx::Transform::kSkipInitiali
zation); |
408 // - A layer that does not have an explicit container is simply fixed to the | 403 if (!layer->render_surface()->draw_transform().GetInverse(&inverseSurfac
eDrawTransform)) { |
409 // viewport. (i.e. the root render_surface.) | 404 // TODO(shawnsingh): Either we need to handle uninvertible transform
s |
410 // - If the fixed-position layer has its own render_surface, then the | 405 // here, or DCHECK that the transform is invertible. |
411 // render_surface is the one who gets fixed. | 406 } |
412 // | 407 nextScrollCompensationMatrix = inverseSurfaceDrawTransform * nextScrollC
ompensationMatrix * layer->render_surface()->draw_transform(); |
413 // This function needs to be called AFTER layers create their own | 408 } |
414 // render_surfaces. | 409 |
415 // | 410 return nextScrollCompensationMatrix; |
416 | 411 } |
417 // Avoid the overheads (including stack allocation and matrix | 412 |
418 // initialization/copy) if we know that the scroll compensation doesn't need | 413 template<typename LayerType> |
419 // to be reset or adjusted. | 414 static inline void CalculateContentsScale(LayerType* layer, float contentsScale,
bool animating_transform_to_screen) |
420 if (!layer->is_container_for_fixed_position_layers() && | 415 { |
421 layer->scroll_delta().IsZero() && !layer->render_surface()) | 416 layer->CalculateContentsScale( |
422 return current_scroll_compensation_matrix; | 417 contentsScale, |
423 | |
424 // Start as identity matrix. | |
425 gfx::Transform next_scroll_compensation_matrix; | |
426 | |
427 // If this layer is not a container, then it inherits the existing scroll | |
428 // compensations. | |
429 if (!layer->is_container_for_fixed_position_layers()) | |
430 next_scroll_compensation_matrix = current_scroll_compensation_matrix; | |
431 | |
432 // If the current layer has a non-zero scroll_delta, then we should compute | |
433 // its local scrollCompensation and accumulate it to the | |
434 // next_scroll_compensation_matrix. | |
435 if (!layer->scroll_delta().IsZero()) { | |
436 gfx::Transform scroll_compensation_for_this_layer = | |
437 ComputeScrollCompensationForThisLayer(layer, parent_matrix); | |
438 next_scroll_compensation_matrix.PreconcatTransform( | |
439 scroll_compensation_for_this_layer); | |
440 } | |
441 | |
442 // If the layer created its own render_surface, we have to adjust | |
443 // next_scroll_compensation_matrix. The adjustment allows us to continue | |
444 // using the scrollCompensation on the next surface. | |
445 // Step 1 (right-most in the math): transform from the new surface to the | |
446 // original ancestor surface | |
447 // Step 2: apply the scroll compensation | |
448 // Step 3: transform back to the new surface. | |
449 if (layer->render_surface() && | |
450 !next_scroll_compensation_matrix.IsIdentity()) { | |
451 gfx::Transform inverse_surface_draw_transform( | |
452 gfx::Transform::kSkipInitialization); | |
453 if (!layer->render_surface()->draw_transform().GetInverse( | |
454 &inverse_surface_draw_transform)) { | |
455 // TODO(shawnsingh): Either we need to handle uninvertible transforms | |
456 // here, or DCHECK that the transform is invertible. | |
457 } | |
458 next_scroll_compensation_matrix = | |
459 inverse_surface_draw_transform * next_scroll_compensation_matrix * | |
460 layer->render_surface()->draw_transform(); | |
461 } | |
462 | |
463 return next_scroll_compensation_matrix; | |
464 } | |
465 | |
466 template <typename LayerType> | |
467 static inline void CalculateContentsScale(LayerType* layer, | |
468 float contents_scale, | |
469 bool animating_transform_to_screen) { | |
470 layer->CalculateContentsScale(contents_scale, | |
471 animating_transform_to_screen, | |
472 &layer->draw_properties().contents_scale_x, | |
473 &layer->draw_properties().contents_scale_y, | |
474 &layer->draw_properties().content_bounds); | |
475 | |
476 LayerType* mask_layer = layer->mask_layer(); | |
477 if (mask_layer) { | |
478 mask_layer->CalculateContentsScale( | |
479 contents_scale, | |
480 animating_transform_to_screen, | 418 animating_transform_to_screen, |
481 &mask_layer->draw_properties().contents_scale_x, | 419 &layer->draw_properties().contents_scale_x, |
482 &mask_layer->draw_properties().contents_scale_y, | 420 &layer->draw_properties().contents_scale_y, |
483 &mask_layer->draw_properties().content_bounds); | 421 &layer->draw_properties().content_bounds); |
484 } | 422 |
485 | 423 LayerType* maskLayer = layer->mask_layer(); |
486 LayerType* replica_mask_layer = | 424 if (maskLayer) |
487 layer->replica_layer() ? layer->replica_layer()->mask_layer() : NULL; | 425 { |
488 if (replica_mask_layer) { | 426 maskLayer->CalculateContentsScale( |
489 replica_mask_layer->CalculateContentsScale( | 427 contentsScale, |
490 contents_scale, | 428 animating_transform_to_screen, |
491 animating_transform_to_screen, | 429 &maskLayer->draw_properties().contents_scale_x, |
492 &replica_mask_layer->draw_properties().contents_scale_x, | 430 &maskLayer->draw_properties().contents_scale_y, |
493 &replica_mask_layer->draw_properties().contents_scale_y, | 431 &maskLayer->draw_properties().content_bounds); |
494 &replica_mask_layer->draw_properties().content_bounds); | 432 } |
495 } | 433 |
496 } | 434 LayerType* replicaMaskLayer = layer->replica_layer() ? layer->replica_layer(
)->mask_layer() : 0; |
497 | 435 if (replicaMaskLayer) |
498 static inline void UpdateLayerContentsScale( | 436 { |
499 LayerImpl* layer, | 437 replicaMaskLayer->CalculateContentsScale( |
500 const gfx::Transform& combined_transform, | 438 contentsScale, |
501 float device_scale_factor, | 439 animating_transform_to_screen, |
502 float page_scale_factor, | 440 &replicaMaskLayer->draw_properties().contents_scale_x, |
503 bool animating_transform_to_screen) { | 441 &replicaMaskLayer->draw_properties().contents_scale_y, |
504 gfx::Vector2dF transform_scale = MathUtil::ComputeTransform2dScaleComponents( | 442 &replicaMaskLayer->draw_properties().content_bounds); |
505 combined_transform, device_scale_factor * page_scale_factor); | 443 } |
506 float contents_scale = std::max(transform_scale.x(), transform_scale.y()); | 444 } |
507 CalculateContentsScale(layer, contents_scale, animating_transform_to_screen); | 445 |
508 } | 446 static inline void updateLayerContentsScale(LayerImpl* layer, const gfx::Transfo
rm& combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool anim
ating_transform_to_screen) |
509 | 447 { |
510 static inline void UpdateLayerContentsScale( | 448 gfx::Vector2dF transformScale = MathUtil::ComputeTransform2dScaleComponents(
combinedTransform, deviceScaleFactor * pageScaleFactor); |
511 Layer* layer, | 449 float contentsScale = std::max(transformScale.x(), transformScale.y()); |
512 const gfx::Transform& combined_transform, | 450 CalculateContentsScale(layer, contentsScale, animating_transform_to_screen); |
513 float device_scale_factor, | 451 } |
514 float page_scale_factor, | 452 |
515 bool animating_transform_to_screen) { | 453 static inline void updateLayerContentsScale(Layer* layer, const gfx::Transform&
combinedTransform, float deviceScaleFactor, float pageScaleFactor, bool animatin
g_transform_to_screen) |
516 float raster_scale = layer->raster_scale(); | 454 { |
517 | 455 float rasterScale = layer->raster_scale(); |
518 if (layer->automatically_compute_raster_scale()) { | 456 |
519 gfx::Vector2dF transform_scale = | 457 if (layer->automatically_compute_raster_scale()) { |
520 MathUtil::ComputeTransform2dScaleComponents(combined_transform, 0.f); | 458 gfx::Vector2dF transformScale = MathUtil::ComputeTransform2dScaleCompone
nts(combinedTransform, 0.f); |
521 float combined_scale = std::max(transform_scale.x(), transform_scale.y()); | 459 float combinedScale = std::max(transformScale.x(), transformScale.y()); |
522 float ideal_raster_scale = combined_scale / device_scale_factor; | 460 float idealRasterScale = combinedScale / deviceScaleFactor; |
| 461 if (!layer->bounds_contain_page_scale()) |
| 462 idealRasterScale /= pageScaleFactor; |
| 463 |
| 464 bool needToSetRasterScale = !rasterScale; |
| 465 |
| 466 // If we've previously saved a rasterScale but the ideal changes, things
are unpredictable and we should just use 1. |
| 467 if (rasterScale && rasterScale != 1.f && idealRasterScale != rasterScale
) { |
| 468 idealRasterScale = 1.f; |
| 469 needToSetRasterScale = true; |
| 470 } |
| 471 |
| 472 if (needToSetRasterScale) { |
| 473 bool useAndSaveIdealScale = idealRasterScale >= 1.f && !animating_tr
ansform_to_screen; |
| 474 if (useAndSaveIdealScale) { |
| 475 rasterScale = idealRasterScale; |
| 476 layer->SetRasterScale(rasterScale); |
| 477 } |
| 478 } |
| 479 } |
| 480 |
| 481 if (!rasterScale) |
| 482 rasterScale = 1.f; |
| 483 |
| 484 float contentsScale = rasterScale * deviceScaleFactor; |
523 if (!layer->bounds_contain_page_scale()) | 485 if (!layer->bounds_contain_page_scale()) |
524 ideal_raster_scale /= page_scale_factor; | 486 contentsScale *= pageScaleFactor; |
525 | 487 |
526 bool need_to_set_raster_scale = !raster_scale; | 488 CalculateContentsScale(layer, contentsScale, animating_transform_to_screen); |
527 | 489 } |
528 // If we've previously saved a raster_scale but the ideal changes, things | 490 |
529 // are unpredictable and we should just use 1. | 491 template<typename LayerType, typename LayerList> |
530 if (raster_scale && raster_scale != 1.f && | 492 static inline void removeSurfaceForEarlyExit(LayerType* layerToRemove, LayerList
& renderSurfaceLayerList) |
531 ideal_raster_scale != raster_scale) { | 493 { |
532 ideal_raster_scale = 1.f; | 494 DCHECK(layerToRemove->render_surface()); |
533 need_to_set_raster_scale = true; | 495 // Technically, we know that the layer we want to remove should be |
534 } | 496 // at the back of the renderSurfaceLayerList. However, we have had |
535 | 497 // bugs before that added unnecessary layers here |
536 if (need_to_set_raster_scale) { | 498 // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes |
537 bool use_and_save_ideal_scale = | 499 // things to crash. So here we proactively remove any additional |
538 ideal_raster_scale >= 1.f && !animating_transform_to_screen; | 500 // layers from the end of the list. |
539 if (use_and_save_ideal_scale) { | 501 while (renderSurfaceLayerList.back() != layerToRemove) { |
540 raster_scale = ideal_raster_scale; | 502 renderSurfaceLayerList.back()->ClearRenderSurface(); |
541 layer->SetRasterScale(raster_scale); | 503 renderSurfaceLayerList.pop_back(); |
542 } | 504 } |
543 } | 505 DCHECK(renderSurfaceLayerList.back() == layerToRemove); |
544 } | 506 renderSurfaceLayerList.pop_back(); |
545 | 507 layerToRemove->ClearRenderSurface(); |
546 if (!raster_scale) | |
547 raster_scale = 1.f; | |
548 | |
549 float contents_scale = raster_scale * device_scale_factor; | |
550 if (!layer->bounds_contain_page_scale()) | |
551 contents_scale *= page_scale_factor; | |
552 | |
553 CalculateContentsScale(layer, contents_scale, animating_transform_to_screen); | |
554 } | |
555 | |
556 template <typename LayerType, typename LayerList> | |
557 static inline void RemoveSurfaceForEarlyExit( | |
558 LayerType* layer_to_remove, | |
559 LayerList& render_surface_layer_list) { | |
560 DCHECK(layer_to_remove->render_surface()); | |
561 // Technically, we know that the layer we want to remove should be | |
562 // at the back of the render_surface_layer_list. However, we have had | |
563 // bugs before that added unnecessary layers here | |
564 // (https://bugs.webkit.org/show_bug.cgi?id=74147), but that causes | |
565 // things to crash. So here we proactively remove any additional | |
566 // layers from the end of the list. | |
567 while (render_surface_layer_list->back() != layer_to_remove) { | |
568 render_surface_layer_list->back()->ClearRenderSurface(); | |
569 render_surface_layer_list->pop_back(); | |
570 } | |
571 DCHECK_EQ(render_surface_layer_list->back(), layer_to_remove); | |
572 render_surface_layer_list->pop_back(); | |
573 layer_to_remove->ClearRenderSurface(); | |
574 } | 508 } |
575 | 509 |
576 // Recursively walks the layer tree to compute any information that is needed | 510 // Recursively walks the layer tree to compute any information that is needed |
577 // before doing the main recursion. | 511 // before doing the main recursion. |
578 template <typename LayerType> | 512 template<typename LayerType> |
579 static void PreCalculateMetaInformation(LayerType* layer) { | 513 static void preCalculateMetaInformation(LayerType* layer) |
580 if (layer->HasDelegatedContent()) { | 514 { |
581 // Layers with delegated content need to be treated as if they have as many | 515 if (layer->HasDelegatedContent()) { |
582 // children as the number of layers they own delegated quads for. Since we | 516 // Layers with delegated content need to be treated as if they have as m
any children as the number |
583 // don't know this number right now, we choose one that acts like infinity | 517 // of layers they own delegated quads for. Since we don't know this numb
er right now, we choose |
584 // for our purposes. | 518 // one that acts like infinity for our purposes. |
585 layer->draw_properties().num_descendants_that_draw_content = 1000; | 519 layer->draw_properties().num_descendants_that_draw_content = 1000; |
586 layer->draw_properties().descendants_can_clip_selves = false; | 520 layer->draw_properties().descendants_can_clip_selves = false; |
587 return; | 521 return; |
588 } | 522 } |
589 | 523 |
590 int num_descendants_that_draw_content = 0; | 524 int numDescendantsThatDrawContent = 0; |
591 bool descendants_can_clip_selves = true; | 525 bool descendantsCanClipSelves = true; |
592 bool sublayer_transform_prevents_clip = | 526 bool sublayerTransformPreventsClip = !layer->sublayer_transform().IsPositive
ScaleOrTranslation(); |
593 !layer->sublayer_transform().IsPositiveScaleOrTranslation(); | 527 |
594 | 528 for (size_t i = 0; i < layer->children().size(); ++i) { |
595 for (size_t i = 0; i < layer->children().size(); ++i) { | 529 LayerType* childLayer = layer->children()[i]; |
596 LayerType* child_layer = layer->children()[i]; | 530 preCalculateMetaInformation<LayerType>(childLayer); |
597 PreCalculateMetaInformation<LayerType>(child_layer); | 531 |
598 | 532 numDescendantsThatDrawContent += childLayer->DrawsContent() ? 1 : 0; |
599 num_descendants_that_draw_content += child_layer->DrawsContent() ? 1 : 0; | 533 numDescendantsThatDrawContent += childLayer->draw_properties().num_desce
ndants_that_draw_content; |
600 num_descendants_that_draw_content += | 534 |
601 child_layer->draw_properties().num_descendants_that_draw_content; | 535 if ((childLayer->DrawsContent() && !childLayer->CanClipSelf()) || |
602 | 536 !childLayer->draw_properties().descendants_can_clip_selves || |
603 if ((child_layer->DrawsContent() && !child_layer->CanClipSelf()) || | 537 sublayerTransformPreventsClip || |
604 !child_layer->draw_properties().descendants_can_clip_selves || | 538 !childLayer->transform().IsPositiveScaleOrTranslation()) |
605 sublayer_transform_prevents_clip || | 539 descendantsCanClipSelves = false; |
606 !child_layer->transform().IsPositiveScaleOrTranslation()) | 540 } |
607 descendants_can_clip_selves = false; | 541 |
608 } | 542 layer->draw_properties().num_descendants_that_draw_content = numDescendantsT
hatDrawContent; |
609 | 543 layer->draw_properties().descendants_can_clip_selves = descendantsCanClipSel
ves; |
610 layer->draw_properties().num_descendants_that_draw_content = | 544 } |
611 num_descendants_that_draw_content; | 545 |
612 layer->draw_properties().descendants_can_clip_selves = | 546 static void roundTranslationComponents(gfx::Transform* transform) |
613 descendants_can_clip_selves; | 547 { |
614 } | 548 transform->matrix().setDouble(0, 3, MathUtil::Round(transform->matrix().getD
ouble(0, 3))); |
615 | 549 transform->matrix().setDouble(1, 3, MathUtil::Round(transform->matrix().getD
ouble(1, 3))); |
616 static void RoundTranslationComponents(gfx::Transform* transform) { | 550 } |
617 transform->matrix(). | 551 |
618 setDouble(0, 3, MathUtil::Round(transform->matrix().getDouble(0, 3))); | 552 // Recursively walks the layer tree starting at the given node and computes all
the |
619 transform->matrix(). | 553 // necessary transformations, clipRects, render surfaces, etc. |
620 setDouble(1, 3, MathUtil::Round(transform->matrix().getDouble(1, 3))); | 554 template<typename LayerType, typename LayerList, typename RenderSurfaceType> |
621 } | 555 static void calculateDrawPropertiesInternal(LayerType* layer, const gfx::Transfo
rm& parentMatrix, |
622 | 556 const gfx::Transform& fullHierarchyMatrix, const gfx::Transform& currentScro
llCompensationMatrix, |
623 // Recursively walks the layer tree starting at the given node and computes all | 557 const gfx::Rect& clipRectFromAncestor, const gfx::Rect& clipRectFromAncestor
InDescendantSpace, bool ancestorClipsSubtree, |
624 // the necessary transformations, clipRects, render surfaces, etc. | 558 RenderSurfaceType* nearestAncestorThatMovesPixels, LayerList& renderSurfaceL
ayerList, LayerList& layerList, |
625 template <typename LayerType, typename LayerList, typename RenderSurfaceType> | 559 LayerSorter* layerSorter, int maxTextureSize, float deviceScaleFactor, float
pageScaleFactor, bool subtreeCanUseLCDText, |
626 static void CalculateDrawPropertiesInternal( | 560 gfx::Rect& drawableContentRectOfSubtree, bool updateTilePriorities) |
627 LayerType* layer, | 561 { |
628 const gfx::Transform& parent_matrix, | 562 // This function computes the new matrix transformations recursively for thi
s |
629 const gfx::Transform& full_hierarchy_matrix, | 563 // layer and all its descendants. It also computes the appropriate render su
rfaces. |
630 const gfx::Transform& current_scroll_compensation_matrix, | 564 // Some important points to remember: |
631 gfx::Rect clip_rect_from_ancestor, | 565 // |
632 gfx::Rect clip_rect_from_ancestor_in_descendant_space, | 566 // 0. Here, transforms are notated in Matrix x Vector order, and in words we
describe what |
633 bool ancestor_clips_subtree, | 567 // the transform does from left to right. |
634 RenderSurfaceType* nearest_ancestor_that_moves_pixels, | 568 // |
635 LayerList* render_surface_layer_list, | 569 // 1. In our terminology, the "layer origin" refers to the top-left corner o
f a layer, and the |
636 LayerList* layer_list, | 570 // positive Y-axis points downwards. This interpretation is valid because
the orthographic |
637 LayerSorter* layer_sorter, | 571 // projection applied at draw time flips the Y axis appropriately. |
638 int max_texture_size, | 572 // |
639 float device_scale_factor, | 573 // 2. The anchor point, when given as a PointF object, is specified in "unit
layer space", |
640 float page_scale_factor, | 574 // where the bounds of the layer map to [0, 1]. However, as a Transform o
bject, |
641 bool subtree_can_use_lcd_text, | 575 // the transform to the anchor point is specified in "layer space", where
the bounds |
642 gfx::Rect* drawable_content_rect_of_subtree, | 576 // of the layer map to [bounds.width(), bounds.height()]. |
643 bool update_tile_priorities) { | 577 // |
644 // This function computes the new matrix transformations recursively for this | 578 // 3. Definition of various transforms used: |
645 // layer and all its descendants. It also computes the appropriate render | 579 // M[parent] is the parent matrix, with respect to the nearest render
surface, passed down recursively. |
646 // surfaces. | 580 // M[root] is the full hierarchy, with respect to the root, passed do
wn recursively. |
647 // Some important points to remember: | 581 // Tr[origin] is the translation matrix from the parent's origin to t
his layer's origin. |
648 // | 582 // Tr[origin2anchor] is the translation from the layer's origin to it
s anchor point |
649 // 0. Here, transforms are notated in Matrix x Vector order, and in words we | 583 // Tr[origin2center] is the translation from the layer's origin to it
s center |
650 // describe what the transform does from left to right. | 584 // M[layer] is the layer's matrix (applied at the anchor point) |
651 // | 585 // M[sublayer] is the layer's sublayer transform (also applied at the
layer's anchor point) |
652 // 1. In our terminology, the "layer origin" refers to the top-left corner of | 586 // S[layer2content] is the ratio of a layer's ContentBounds() to its
Bounds(). |
653 // a layer, and the positive Y-axis points downwards. This interpretation is | 587 // |
654 // valid because the orthographic projection applied at draw time flips the Y | 588 // Some composite transforms can help in understanding the sequence of tr
ansforms: |
655 // axis appropriately. | 589 // compositeLayerTransform = Tr[origin2anchor] * M[layer] * Tr[origin
2anchor].inverse() |
656 // | 590 // compositeSublayerTransform = Tr[origin2anchor] * M[sublayer] * Tr[
origin2anchor].inverse() |
657 // 2. The anchor point, when given as a PointF object, is specified in "unit | 591 // |
658 // layer space", where the bounds of the layer map to [0, 1]. However, as a | 592 // 4. When a layer (or render surface) is drawn, it is drawn into a "target
render surface". Therefore the draw |
659 // Transform object, the transform to the anchor point is specified in "layer | 593 // transform does not necessarily transform from screen space to local la
yer space. Instead, the draw transform |
660 // space", where the bounds of the layer map to [bounds.width(), | 594 // is the transform between the "target render surface space" and local l
ayer space. Note that render surfaces, |
661 // bounds.height()]. | 595 // except for the root, also draw themselves into a different target rend
er surface, and so their draw |
662 // | 596 // transform and origin transforms are also described with respect to the
target. |
663 // 3. Definition of various transforms used: | 597 // |
664 // M[parent] is the parent matrix, with respect to the nearest render | 598 // Using these definitions, then: |
665 // surface, passed down recursively. | 599 // |
666 // | 600 // The draw transform for the layer is: |
667 // M[root] is the full hierarchy, with respect to the root, passed down | 601 // M[draw] = M[parent] * Tr[origin] * compositeLayerTransform * S[lay
er2content] |
668 // recursively. | 602 // = M[parent] * Tr[layer->Position() + anchor] * M[layer] *
Tr[anchor2origin] * S[layer2content] |
669 // | 603 // |
670 // Tr[origin] is the translation matrix from the parent's origin to | 604 // Interpreting the math left-to-right, this transforms from the laye
r's render surface to the origin of the layer in content space. |
671 // this layer's origin. | 605 // |
672 // | 606 // The screen space transform is: |
673 // Tr[origin2anchor] is the translation from the layer's origin to its | 607 // M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform *
S[layer2content] |
674 // anchor point | 608 // = M[root] * Tr[layer->Position() + anchor] * M[laye
r] * Tr[anchor2origin] * S[layer2content] |
675 // | 609 // |
676 // Tr[origin2center] is the translation from the layer's origin to its | 610 // Interpreting the math left-to-right, this transforms from the root
render surface's content space to the origin of the layer in content space. |
677 // center | 611 // |
678 // | 612 // The transform hierarchy that is passed on to children (i.e. the child's p
arentMatrix) is: |
679 // M[layer] is the layer's matrix (applied at the anchor point) | 613 // M[parent]_for_child = M[parent] * Tr[origin] * compositeLayerTrans
form * compositeSublayerTransform |
680 // | 614 // = M[parent] * Tr[layer->Position() + anchor] *
M[layer] * Tr[anchor2origin] * compositeSublayerTransform |
681 // M[sublayer] is the layer's sublayer transform (also applied at the | 615 // |
682 // layer's anchor point) | 616 // and a similar matrix for the full hierarchy with respect to the ro
ot. |
683 // | 617 // |
684 // S[layer2content] is the ratio of a layer's ContentBounds() to its | 618 // Finally, note that the final matrix used by the shader for the layer is P
* M[draw] * S . This final product |
685 // Bounds(). | 619 // is computed in drawTexturedQuad(), where: |
686 // | 620 // P is the projection matrix |
687 // Some composite transforms can help in understanding the sequence of | 621 // S is the scale adjustment (to scale up a canonical quad to the lay
er's size) |
688 // transforms: | 622 // |
689 // compositeLayerTransform = Tr[origin2anchor] * M[layer] * | 623 // When a render surface has a replica layer, that layer's transform is used
to draw a second copy of the surface. |
690 // Tr[origin2anchor].inverse() | 624 // gfx::Transforms named here are relative to the surface, unless they speci
fy they are relative to the replica layer. |
691 // | 625 // |
692 // compositeSublayerTransform = Tr[origin2anchor] * M[sublayer] * | 626 // We will denote a scale by device scale S[deviceScale] |
693 // Tr[origin2anchor].inverse() | 627 // |
694 // | 628 // The render surface draw transform to its target surface origin is: |
695 // 4. When a layer (or render surface) is drawn, it is drawn into a "target | 629 // M[surfaceDraw] = M[owningLayer->Draw] |
696 // render surface". Therefore the draw transform does not necessarily | 630 // |
697 // transform from screen space to local layer space. Instead, the draw | 631 // The render surface origin transform to its the root (screen space) origin
is: |
698 // transform is the transform between the "target render surface space" and | 632 // M[surface2root] = M[owningLayer->screenspace] * S[deviceScale].in
verse() |
699 // local layer space. Note that render surfaces, except for the root, also | 633 // |
700 // draw themselves into a different target render surface, and so their draw | 634 // The replica draw transform to its target surface origin is: |
701 // transform and origin transforms are also described with respect to the | 635 // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * Tr[replica->Pos
ition() + replica->anchor()] * Tr[replica] * Tr[origin2anchor].inverse() * S[con
tentsScale].inverse() |
702 // target. | 636 // |
703 // | 637 // The replica draw transform to the root (screen space) origin is: |
704 // Using these definitions, then: | 638 // M[replica2root] = M[surface2root] * Tr[replica->Position()] * Tr[r
eplica] * Tr[origin2anchor].inverse() |
705 // | 639 // |
706 // The draw transform for the layer is: | 640 |
707 // M[draw] = M[parent] * Tr[origin] * compositeLayerTransform * | 641 // If we early-exit anywhere in this function, the drawableContentRect of th
is subtree should be considered empty. |
708 // S[layer2content] = M[parent] * Tr[layer->Position() + anchor] * | 642 drawableContentRectOfSubtree = gfx::Rect(); |
709 // M[layer] * Tr[anchor2origin] * S[layer2content] | 643 |
710 // | 644 // The root layer cannot skip calcDrawProperties. |
711 // Interpreting the math left-to-right, this transforms from the | 645 if (!isRootLayer(layer) && subtreeShouldBeSkipped(layer)) |
712 // layer's render surface to the origin of the layer in content space. | 646 return; |
713 // | 647 |
714 // The screen space transform is: | 648 // As this function proceeds, these are the properties for the current |
715 // M[screenspace] = M[root] * Tr[origin] * compositeLayerTransform * | 649 // layer that actually get computed. To avoid unnecessary copies |
716 // S[layer2content] | 650 // (particularly for matrices), we do computations directly on these values |
717 // = M[root] * Tr[layer->Position() + anchor] * M[layer] | 651 // when possible. |
718 // * Tr[anchor2origin] * S[layer2content] | 652 DrawProperties<LayerType, RenderSurfaceType>& layerDrawProperties = layer->d
raw_properties(); |
719 // | 653 |
720 // Interpreting the math left-to-right, this transforms from the root | 654 gfx::Rect clipRectForSubtree; |
721 // render surface's content space to the origin of the layer in content | 655 bool subtreeShouldBeClipped = false; |
722 // space. | 656 |
723 // | 657 // This value is cached on the stack so that we don't have to inverse-projec
t |
724 // The transform hierarchy that is passed on to children (i.e. the child's | 658 // the surface's clipRect redundantly for every layer. This value is the |
725 // parent_matrix) is: | 659 // same as the surface's clipRect, except that instead of being described |
726 // M[parent]_for_child = M[parent] * Tr[origin] * | 660 // in the target surface space (i.e. the ancestor surface space), it is |
727 // compositeLayerTransform * compositeSublayerTransform | 661 // described in the current surface space. |
728 // = M[parent] * Tr[layer->Position() + anchor] * | 662 gfx::Rect clipRectForSubtreeInDescendantSpace; |
729 // M[layer] * Tr[anchor2origin] * | 663 |
730 // compositeSublayerTransform | 664 float accumulatedDrawOpacity = layer->opacity(); |
731 // | 665 bool animatingOpacityToTarget = layer->OpacityIsAnimating(); |
732 // and a similar matrix for the full hierarchy with respect to the | 666 bool animatingOpacityToScreen = animatingOpacityToTarget; |
733 // root. | 667 if (layer->parent()) { |
734 // | 668 accumulatedDrawOpacity *= layer->parent()->draw_opacity(); |
735 // Finally, note that the final matrix used by the shader for the layer is P * | 669 animatingOpacityToTarget |= layer->parent()->draw_opacity_is_animating()
; |
736 // M[draw] * S . This final product is computed in drawTexturedQuad(), where: | 670 animatingOpacityToScreen |= layer->parent()->screen_space_opacity_is_ani
mating(); |
737 // P is the projection matrix | 671 } |
738 // S is the scale adjustment (to scale up a canonical quad to the | 672 |
739 // layer's size) | 673 bool animatingTransformToTarget = layer->TransformIsAnimating(); |
740 // | 674 bool animating_transform_to_screen = animatingTransformToTarget; |
741 // When a render surface has a replica layer, that layer's transform is used | 675 if (layer->parent()) { |
742 // to draw a second copy of the surface. gfx::Transforms named here are | 676 animatingTransformToTarget |= layer->parent()->draw_transform_is_animati
ng(); |
743 // relative to the surface, unless they specify they are relative to the | 677 animating_transform_to_screen |= layer->parent()->screen_space_transform
_is_animating(); |
744 // replica layer. | 678 } |
745 // | 679 |
746 // We will denote a scale by device scale S[deviceScale] | 680 gfx::Size bounds = layer->bounds(); |
747 // | 681 gfx::PointF anchorPoint = layer->anchor_point(); |
748 // The render surface draw transform to its target surface origin is: | 682 gfx::PointF position = layer->position() - layer->scroll_delta(); |
749 // M[surfaceDraw] = M[owningLayer->Draw] | 683 |
750 // | 684 gfx::Transform combinedTransform = parentMatrix; |
751 // The render surface origin transform to its the root (screen space) origin | 685 if (!layer->transform().IsIdentity()) { |
752 // is: | 686 // LT = Tr[origin] * Tr[origin2anchor] |
753 // M[surface2root] = M[owningLayer->screenspace] * | 687 combinedTransform.Translate3d(position.x() + anchorPoint.x() * bounds.wi
dth(), position.y() + anchorPoint.y() * bounds.height(), layer->anchor_point_z()
); |
754 // S[deviceScale].inverse() | 688 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] |
755 // | 689 combinedTransform.PreconcatTransform(layer->transform()); |
756 // The replica draw transform to its target surface origin is: | 690 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin] |
757 // M[replicaDraw] = S[deviceScale] * M[surfaceDraw] * | 691 combinedTransform.Translate3d(-anchorPoint.x() * bounds.width(), -anchor
Point.y() * bounds.height(), -layer->anchor_point_z()); |
758 // Tr[replica->Position() + replica->anchor()] * Tr[replica] * | |
759 // Tr[origin2anchor].inverse() * S[contents_scale].inverse() | |
760 // | |
761 // The replica draw transform to the root (screen space) origin is: | |
762 // M[replica2root] = M[surface2root] * Tr[replica->Position()] * | |
763 // Tr[replica] * Tr[origin2anchor].inverse() | |
764 // | |
765 | |
766 // If we early-exit anywhere in this function, the drawableContentRect of this | |
767 // subtree should be considered empty. | |
768 *drawable_content_rect_of_subtree = gfx::Rect(); | |
769 | |
770 // The root layer cannot skip calcDrawProperties. | |
771 if (!IsRootLayer(layer) && SubtreeShouldBeSkipped(layer)) | |
772 return; | |
773 | |
774 // As this function proceeds, these are the properties for the current | |
775 // layer that actually get computed. To avoid unnecessary copies | |
776 // (particularly for matrices), we do computations directly on these values | |
777 // when possible. | |
778 DrawProperties<LayerType, RenderSurfaceType>& layer_draw_properties = | |
779 layer->draw_properties(); | |
780 | |
781 gfx::Rect clip_rect_for_subtree; | |
782 bool subtree_should_be_clipped = false; | |
783 | |
784 // This value is cached on the stack so that we don't have to inverse-project | |
785 // the surface's clipRect redundantly for every layer. This value is the | |
786 // same as the surface's clipRect, except that instead of being described | |
787 // in the target surface space (i.e. the ancestor surface space), it is | |
788 // described in the current surface space. | |
789 gfx::Rect clip_rect_for_subtree_in_descendant_space; | |
790 | |
791 float accumulated_draw_opacity = layer->opacity(); | |
792 bool animating_opacity_to_target = layer->OpacityIsAnimating(); | |
793 bool animating_opacity_to_screen = animating_opacity_to_target; | |
794 if (layer->parent()) { | |
795 accumulated_draw_opacity *= layer->parent()->draw_opacity(); | |
796 animating_opacity_to_target |= layer->parent()->draw_opacity_is_animating(); | |
797 animating_opacity_to_screen |= | |
798 layer->parent()->screen_space_opacity_is_animating(); | |
799 } | |
800 | |
801 bool animating_transform_to_target = layer->TransformIsAnimating(); | |
802 bool animating_transform_to_screen = animating_transform_to_target; | |
803 if (layer->parent()) { | |
804 animating_transform_to_target |= | |
805 layer->parent()->draw_transform_is_animating(); | |
806 animating_transform_to_screen |= | |
807 layer->parent()->screen_space_transform_is_animating(); | |
808 } | |
809 | |
810 gfx::Size bounds = layer->bounds(); | |
811 gfx::PointF anchor_point = layer->anchor_point(); | |
812 gfx::PointF position = layer->position() - layer->scroll_delta(); | |
813 | |
814 gfx::Transform combined_transform = parent_matrix; | |
815 if (!layer->transform().IsIdentity()) { | |
816 // LT = Tr[origin] * Tr[origin2anchor] | |
817 combined_transform.Translate3d( | |
818 position.x() + anchor_point.x() * bounds.width(), | |
819 position.y() + anchor_point.y() * bounds.height(), | |
820 layer->anchor_point_z()); | |
821 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] | |
822 combined_transform.PreconcatTransform(layer->transform()); | |
823 // LT = Tr[origin] * Tr[origin2anchor] * M[layer] * Tr[anchor2origin] | |
824 combined_transform.Translate3d(-anchor_point.x() * bounds.width(), | |
825 -anchor_point.y() * bounds.height(), | |
826 -layer->anchor_point_z()); | |
827 } else { | |
828 combined_transform.Translate(position.x(), position.y()); | |
829 } | |
830 | |
831 // The layer's contentsSize is determined from the combined_transform, which | |
832 // then informs the layer's draw_transform. | |
833 UpdateLayerContentsScale(layer, | |
834 combined_transform, | |
835 device_scale_factor, | |
836 page_scale_factor, | |
837 animating_transform_to_screen); | |
838 | |
839 // If there is a transformation from the impl thread then it should be at | |
840 // the start of the combined_transform, but we don't want it to affect the | |
841 // computation of contents_scale above. | |
842 // Note carefully: this is Concat, not Preconcat (implTransform * | |
843 // combined_transform). | |
844 combined_transform.ConcatTransform(layer->impl_transform()); | |
845 | |
846 if (!animating_transform_to_target && layer->scrollable() && | |
847 combined_transform.IsScaleOrTranslation()) { | |
848 // Align the scrollable layer's position to screen space pixels to avoid | |
849 // blurriness. To avoid side-effects, do this only if the transform is | |
850 // simple. | |
851 RoundTranslationComponents(&combined_transform); | |
852 } | |
853 | |
854 if (layer->fixed_to_container_layer()) { | |
855 // Special case: this layer is a composited fixed-position layer; we need to | |
856 // explicitly compensate for all ancestors' nonzero scroll_deltas to keep | |
857 // this layer fixed correctly. | |
858 // Note carefully: this is Concat, not Preconcat | |
859 // (current_scroll_compensation * combined_transform). | |
860 combined_transform.ConcatTransform(current_scroll_compensation_matrix); | |
861 } | |
862 | |
863 // The draw_transform that gets computed below is effectively the layer's | |
864 // draw_transform, unless the layer itself creates a render_surface. In that | |
865 // case, the render_surface re-parents the transforms. | |
866 layer_draw_properties.target_space_transform = combined_transform; | |
867 // M[draw] = M[parent] * LT * S[layer2content] | |
868 layer_draw_properties.target_space_transform.Scale | |
869 (1.f / layer->contents_scale_x(), 1.f / layer->contents_scale_y()); | |
870 | |
871 // layerScreenSpaceTransform represents the transform between root layer's | |
872 // "screen space" and local content space. | |
873 layer_draw_properties.screen_space_transform = full_hierarchy_matrix; | |
874 if (!layer->preserves_3d()) | |
875 layer_draw_properties.screen_space_transform.FlattenTo2d(); | |
876 layer_draw_properties.screen_space_transform.PreconcatTransform | |
877 (layer_draw_properties.target_space_transform); | |
878 | |
879 // Adjusting text AA method during animation may cause repaints, which in-turn | |
880 // causes jank. | |
881 bool adjust_text_aa = | |
882 !animating_opacity_to_screen && !animating_transform_to_screen; | |
883 // To avoid color fringing, LCD text should only be used on opaque layers with | |
884 // just integral translation. | |
885 bool layer_can_use_lcd_text = | |
886 subtree_can_use_lcd_text && (accumulated_draw_opacity == 1.f) && | |
887 layer_draw_properties.target_space_transform. | |
888 IsIdentityOrIntegerTranslation(); | |
889 | |
890 gfx::RectF content_rect(gfx::PointF(), layer->content_bounds()); | |
891 | |
892 // full_hierarchy_matrix is the matrix that transforms objects between screen | |
893 // space (except projection matrix) and the most recent RenderSurfaceImpl's | |
894 // space. next_hierarchy_matrix will only change if this layer uses a new | |
895 // RenderSurfaceImpl, otherwise remains the same. | |
896 gfx::Transform next_hierarchy_matrix = full_hierarchy_matrix; | |
897 gfx::Transform sublayer_matrix; | |
898 | |
899 gfx::Vector2dF render_surface_sublayer_scale = | |
900 MathUtil::ComputeTransform2dScaleComponents( | |
901 combined_transform, device_scale_factor * page_scale_factor); | |
902 | |
903 if (SubtreeShouldRenderToSeparateSurface( | |
904 layer, combined_transform.IsScaleOrTranslation())) { | |
905 // Check back-face visibility before continuing with this surface and its | |
906 // subtree | |
907 if (!layer->double_sided() && TransformToParentIsKnown(layer) && | |
908 IsSurfaceBackFaceVisible(layer, combined_transform)) | |
909 return; | |
910 | |
911 if (!layer->render_surface()) | |
912 layer->CreateRenderSurface(); | |
913 | |
914 RenderSurfaceType* render_surface = layer->render_surface(); | |
915 render_surface->ClearLayerLists(); | |
916 | |
917 // The owning layer's draw transform has a scale from content to layer | |
918 // space which we do not want; so here we use the combined_transform | |
919 // instead of the draw_transform. However, we do need to add a different | |
920 // scale factor that accounts for the surface's pixel dimensions. | |
921 combined_transform.Scale(1.0 / render_surface_sublayer_scale.x(), | |
922 1.0 / render_surface_sublayer_scale.y()); | |
923 render_surface->SetDrawTransform(combined_transform); | |
924 | |
925 // The owning layer's transform was re-parented by the surface, so the | |
926 // layer's new draw_transform only needs to scale the layer to surface | |
927 // space. | |
928 layer_draw_properties.target_space_transform.MakeIdentity(); | |
929 layer_draw_properties.target_space_transform. | |
930 Scale(render_surface_sublayer_scale.x() / layer->contents_scale_x(), | |
931 render_surface_sublayer_scale.y() / layer->contents_scale_y()); | |
932 | |
933 // Inside the surface's subtree, we scale everything to the owning layer's | |
934 // scale. The sublayer matrix transforms layer rects into target surface | |
935 // content space. | |
936 DCHECK(sublayer_matrix.IsIdentity()); | |
937 sublayer_matrix.Scale(render_surface_sublayer_scale.x(), | |
938 render_surface_sublayer_scale.y()); | |
939 | |
940 // The opacity value is moved from the layer to its surface, so that the | |
941 // entire subtree properly inherits opacity. | |
942 render_surface->SetDrawOpacity(accumulated_draw_opacity); | |
943 render_surface->SetDrawOpacityIsAnimating(animating_opacity_to_target); | |
944 animating_opacity_to_target = false; | |
945 layer_draw_properties.opacity = 1.f; | |
946 layer_draw_properties.opacity_is_animating = animating_opacity_to_target; | |
947 layer_draw_properties.screen_space_opacity_is_animating = | |
948 animating_opacity_to_screen; | |
949 | |
950 render_surface->SetTargetSurfaceTransformsAreAnimating( | |
951 animating_transform_to_target); | |
952 render_surface->SetScreenSpaceTransformsAreAnimating( | |
953 animating_transform_to_screen); | |
954 animating_transform_to_target = false; | |
955 layer_draw_properties.target_space_transform_is_animating = | |
956 animating_transform_to_target; | |
957 layer_draw_properties.screen_space_transform_is_animating = | |
958 animating_transform_to_screen; | |
959 | |
960 // Update the aggregate hierarchy matrix to include the transform of the | |
961 // newly created RenderSurfaceImpl. | |
962 next_hierarchy_matrix.PreconcatTransform(render_surface->draw_transform()); | |
963 | |
964 // The new render_surface here will correctly clip the entire subtree. So, | |
965 // we do not need to continue propagating the clipping state further down | |
966 // the tree. This way, we can avoid transforming clipRects from ancestor | |
967 // target surface space to current target surface space that could cause | |
968 // more w < 0 headaches. | |
969 subtree_should_be_clipped = false; | |
970 | |
971 if (layer->mask_layer()) { | |
972 DrawProperties<LayerType, RenderSurfaceType>& mask_layer_draw_properties = | |
973 layer->mask_layer()->draw_properties(); | |
974 mask_layer_draw_properties.render_target = layer; | |
975 mask_layer_draw_properties.visible_content_rect = | |
976 gfx::Rect(gfx::Point(), layer->content_bounds()); | |
977 } | |
978 | |
979 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) { | |
980 DrawProperties<LayerType, RenderSurfaceType>& | |
981 replica_mask_draw_properties = | |
982 layer->replica_layer()->mask_layer()->draw_properties(); | |
983 replica_mask_draw_properties.render_target = layer; | |
984 replica_mask_draw_properties.visible_content_rect = | |
985 gfx::Rect(gfx::Point(), layer->content_bounds()); | |
986 } | |
987 | |
988 // TODO(senorblanco): make this smarter for the SkImageFilter case (check | |
989 // for pixel-moving filters) | |
990 if (layer->filters().hasFilterThatMovesPixels() || layer->filter()) | |
991 nearest_ancestor_that_moves_pixels = render_surface; | |
992 | |
993 // The render surface clipRect is expressed in the space where this surface | |
994 // draws, i.e. the same space as clip_rect_from_ancestor. | |
995 render_surface->SetIsClipped(ancestor_clips_subtree); | |
996 if (ancestor_clips_subtree) { | |
997 render_surface->SetClipRect(clip_rect_from_ancestor); | |
998 | |
999 gfx::Transform inverse_surface_draw_transform( | |
1000 gfx::Transform::kSkipInitialization); | |
1001 if (!render_surface->draw_transform().GetInverse( | |
1002 &inverse_surface_draw_transform)) { | |
1003 // TODO(shawnsingh): Either we need to handle uninvertible transforms | |
1004 // here, or DCHECK that the transform is invertible. | |
1005 } | |
1006 clip_rect_for_subtree_in_descendant_space = | |
1007 gfx::ToEnclosingRect(MathUtil::ProjectClippedRect( | |
1008 inverse_surface_draw_transform, render_surface->clip_rect())); | |
1009 } else { | 692 } else { |
1010 render_surface->SetClipRect(gfx::Rect()); | 693 combinedTransform.Translate(position.x(), position.y()); |
1011 clip_rect_for_subtree_in_descendant_space = | 694 } |
1012 clip_rect_from_ancestor_in_descendant_space; | 695 |
1013 } | 696 // The layer's contentsSize is determined from the combinedTransform, which
then informs the |
1014 | 697 // layer's drawTransform. |
1015 render_surface->SetNearestAncestorThatMovesPixels( | 698 updateLayerContentsScale(layer, combinedTransform, deviceScaleFactor, pageSc
aleFactor, animating_transform_to_screen); |
1016 nearest_ancestor_that_moves_pixels); | 699 |
1017 | 700 // If there is a transformation from the impl thread then it should be at |
1018 // If the new render surface is drawn translucent or with a non-integral | 701 // the start of the combinedTransform, but we don't want it to affect the |
1019 // translation then the subtree that gets drawn on this render surface | 702 // computation of contentsScale above. |
1020 // cannot use LCD text. | 703 // Note carefully: this is Concat, not Preconcat (implTransform * combinedTr
ansform). |
1021 subtree_can_use_lcd_text = layer_can_use_lcd_text; | 704 combinedTransform.ConcatTransform(layer->impl_transform()); |
1022 | 705 |
1023 render_surface_layer_list->push_back(layer); | 706 if (!animatingTransformToTarget && layer->scrollable() && combinedTransform.
IsScaleOrTranslation()) { |
1024 } else { | 707 // Align the scrollable layer's position to screen space pixels to avoid
blurriness. |
1025 DCHECK(layer->parent()); | 708 // To avoid side-effects, do this only if the transform is simple. |
1026 | 709 roundTranslationComponents(&combinedTransform); |
1027 // Note: layer_draw_properties.target_space_transform is computed above, | 710 } |
1028 // before this if-else statement. | 711 |
1029 layer_draw_properties.target_space_transform_is_animating = | 712 if (layer->fixed_to_container_layer()) { |
1030 animating_transform_to_target; | 713 // Special case: this layer is a composited fixed-position layer; we nee
d to |
1031 layer_draw_properties.screen_space_transform_is_animating = | 714 // explicitly compensate for all ancestors' nonzero scrollDeltas to keep
this layer |
1032 animating_transform_to_screen; | 715 // fixed correctly. |
1033 layer_draw_properties.opacity = accumulated_draw_opacity; | 716 // Note carefully: this is Concat, not Preconcat (currentScrollCompensat
ion * combinedTransform). |
1034 layer_draw_properties.opacity_is_animating = animating_opacity_to_target; | 717 combinedTransform.ConcatTransform(currentScrollCompensationMatrix); |
1035 layer_draw_properties.screen_space_opacity_is_animating = | 718 } |
1036 animating_opacity_to_screen; | 719 |
1037 sublayer_matrix = combined_transform; | 720 // The drawTransform that gets computed below is effectively the layer's dra
wTransform, unless |
1038 | 721 // the layer itself creates a renderSurface. In that case, the renderSurface
re-parents the transforms. |
1039 layer->ClearRenderSurface(); | 722 layerDrawProperties.target_space_transform = combinedTransform; |
1040 | 723 // M[draw] = M[parent] * LT * S[layer2content] |
1041 // Layers without render_surfaces directly inherit the ancestor's clip | 724 layerDrawProperties.target_space_transform.Scale(1.0 / layer->contents_scale
_x(), 1.0 / layer->contents_scale_y()); |
1042 // status. | 725 |
1043 subtree_should_be_clipped = ancestor_clips_subtree; | 726 // layerScreenSpaceTransform represents the transform between root layer's "
screen space" and local content space. |
1044 if (ancestor_clips_subtree) | 727 layerDrawProperties.screen_space_transform = fullHierarchyMatrix; |
1045 clip_rect_for_subtree = clip_rect_from_ancestor; | 728 if (!layer->preserves_3d()) |
1046 | 729 layerDrawProperties.screen_space_transform.FlattenTo2d(); |
1047 // The surface's cached clipRect value propagates regardless of what | 730 layerDrawProperties.screen_space_transform.PreconcatTransform(layerDrawPrope
rties.target_space_transform); |
1048 // clipping goes on between layers here. | 731 |
1049 clip_rect_for_subtree_in_descendant_space = | 732 // Adjusting text AA method during animation may cause repaints, which in-tu
rn causes jank. |
1050 clip_rect_from_ancestor_in_descendant_space; | 733 bool adjustTextAA = !animatingOpacityToScreen && !animating_transform_to_scr
een; |
1051 | 734 // To avoid color fringing, LCD text should only be used on opaque layers wi
th just integral translation. |
1052 // Layers that are not their own render_target will render into the target | 735 bool layerCanUseLCDText = subtreeCanUseLCDText && |
1053 // of their nearest ancestor. | 736 (accumulatedDrawOpacity == 1.0) && |
1054 layer_draw_properties.render_target = layer->parent()->render_target(); | 737 layerDrawProperties.target_space_transform.IsIdent
ityOrIntegerTranslation(); |
1055 } | 738 |
1056 | 739 gfx::RectF contentRect(gfx::PointF(), layer->content_bounds()); |
1057 if (adjust_text_aa) | 740 |
1058 layer_draw_properties.can_use_lcd_text = layer_can_use_lcd_text; | 741 // fullHierarchyMatrix is the matrix that transforms objects between screen
space (except projection matrix) and the most recent RenderSurfaceImpl's space. |
1059 | 742 // nextHierarchyMatrix will only change if this layer uses a new RenderSurfa
ceImpl, otherwise remains the same. |
1060 gfx::Rect rect_in_target_space = ToEnclosingRect( | 743 gfx::Transform nextHierarchyMatrix = fullHierarchyMatrix; |
1061 MathUtil::MapClippedRect(layer->draw_transform(), content_rect)); | 744 gfx::Transform sublayerMatrix; |
1062 | 745 |
1063 if (LayerClipsSubtree(layer)) { | 746 gfx::Vector2dF renderSurfaceSublayerScale = MathUtil::ComputeTransform2dScal
eComponents(combinedTransform, deviceScaleFactor * pageScaleFactor); |
1064 subtree_should_be_clipped = true; | 747 |
1065 if (ancestor_clips_subtree && !layer->render_surface()) { | 748 if (subtreeShouldRenderToSeparateSurface(layer, combinedTransform.IsScaleOrT
ranslation())) { |
1066 clip_rect_for_subtree = clip_rect_from_ancestor; | 749 // Check back-face visibility before continuing with this surface and it
s subtree |
1067 clip_rect_for_subtree.Intersect(rect_in_target_space); | 750 if (!layer->double_sided() && transformToParentIsKnown(layer) && isSurfa
ceBackFaceVisible(layer, combinedTransform)) |
| 751 return; |
| 752 |
| 753 if (!layer->render_surface()) |
| 754 layer->CreateRenderSurface(); |
| 755 |
| 756 RenderSurfaceType* renderSurface = layer->render_surface(); |
| 757 renderSurface->ClearLayerLists(); |
| 758 |
| 759 // The owning layer's draw transform has a scale from content to layer |
| 760 // space which we do not want; so here we use the combinedTransform |
| 761 // instead of the drawTransform. However, we do need to add a different |
| 762 // scale factor that accounts for the surface's pixel dimensions. |
| 763 combinedTransform.Scale(1 / renderSurfaceSublayerScale.x(), 1 / renderSu
rfaceSublayerScale.y()); |
| 764 renderSurface->SetDrawTransform(combinedTransform); |
| 765 |
| 766 // The owning layer's transform was re-parented by the surface, so the l
ayer's new drawTransform |
| 767 // only needs to scale the layer to surface space. |
| 768 layerDrawProperties.target_space_transform.MakeIdentity(); |
| 769 layerDrawProperties.target_space_transform.Scale(renderSurfaceSublayerSc
ale.x() / layer->contents_scale_x(), renderSurfaceSublayerScale.y() / layer->con
tents_scale_y()); |
| 770 |
| 771 // Inside the surface's subtree, we scale everything to the owning layer
's scale. |
| 772 // The sublayer matrix transforms layer rects into target |
| 773 // surface content space. |
| 774 DCHECK(sublayerMatrix.IsIdentity()); |
| 775 sublayerMatrix.Scale(renderSurfaceSublayerScale.x(), renderSurfaceSublay
erScale.y()); |
| 776 |
| 777 // The opacity value is moved from the layer to its surface, so that the
entire subtree properly inherits opacity. |
| 778 renderSurface->SetDrawOpacity(accumulatedDrawOpacity); |
| 779 renderSurface->SetDrawOpacityIsAnimating(animatingOpacityToTarget); |
| 780 animatingOpacityToTarget = false; |
| 781 layerDrawProperties.opacity = 1; |
| 782 layerDrawProperties.opacity_is_animating = animatingOpacityToTarget; |
| 783 layerDrawProperties.screen_space_opacity_is_animating = animatingOpacity
ToScreen; |
| 784 |
| 785 renderSurface->SetTargetSurfaceTransformsAreAnimating(animatingTransform
ToTarget); |
| 786 renderSurface->SetScreenSpaceTransformsAreAnimating(animating_transform_
to_screen); |
| 787 animatingTransformToTarget = false; |
| 788 layerDrawProperties.target_space_transform_is_animating = animatingTrans
formToTarget; |
| 789 layerDrawProperties.screen_space_transform_is_animating = animating_tran
sform_to_screen; |
| 790 |
| 791 // Update the aggregate hierarchy matrix to include the transform of the |
| 792 // newly created RenderSurfaceImpl. |
| 793 nextHierarchyMatrix.PreconcatTransform(renderSurface->draw_transform()); |
| 794 |
| 795 // The new renderSurface here will correctly clip the entire subtree. So
, we do |
| 796 // not need to continue propagating the clipping state further down the
tree. This |
| 797 // way, we can avoid transforming clipRects from ancestor target surface
space to |
| 798 // current target surface space that could cause more w < 0 headaches. |
| 799 subtreeShouldBeClipped = false; |
| 800 |
| 801 if (layer->mask_layer()) { |
| 802 DrawProperties<LayerType, RenderSurfaceType>& maskLayerDrawPropertie
s = layer->mask_layer()->draw_properties(); |
| 803 maskLayerDrawProperties.render_target = layer; |
| 804 maskLayerDrawProperties.visible_content_rect = gfx::Rect(gfx::Point(
), layer->content_bounds()); |
| 805 } |
| 806 |
| 807 if (layer->replica_layer() && layer->replica_layer()->mask_layer()) { |
| 808 DrawProperties<LayerType, RenderSurfaceType>& replicaMaskDrawPropert
ies = layer->replica_layer()->mask_layer()->draw_properties(); |
| 809 replicaMaskDrawProperties.render_target = layer; |
| 810 replicaMaskDrawProperties.visible_content_rect = gfx::Rect(gfx::Poin
t(), layer->content_bounds()); |
| 811 } |
| 812 |
| 813 // FIXME: make this smarter for the SkImageFilter case (check for |
| 814 // pixel-moving filters) |
| 815 if (layer->filters().hasFilterThatMovesPixels() || layer->filter()) |
| 816 nearestAncestorThatMovesPixels = renderSurface; |
| 817 |
| 818 // The render surface clipRect is expressed in the space where this surf
ace draws, i.e. the same space as clipRectFromAncestor. |
| 819 renderSurface->SetIsClipped(ancestorClipsSubtree); |
| 820 if (ancestorClipsSubtree) { |
| 821 renderSurface->SetClipRect(clipRectFromAncestor); |
| 822 |
| 823 gfx::Transform inverseSurfaceDrawTransform(gfx::Transform::kSkipInit
ialization); |
| 824 if (!renderSurface->draw_transform().GetInverse(&inverseSurfaceDrawT
ransform)) { |
| 825 // TODO(shawnsingh): Either we need to handle uninvertible trans
forms |
| 826 // here, or DCHECK that the transform is invertible. |
| 827 } |
| 828 clipRectForSubtreeInDescendantSpace = gfx::ToEnclosingRect(MathUtil:
:ProjectClippedRect(inverseSurfaceDrawTransform, renderSurface->clip_rect())); |
| 829 } else { |
| 830 renderSurface->SetClipRect(gfx::Rect()); |
| 831 clipRectForSubtreeInDescendantSpace = clipRectFromAncestorInDescenda
ntSpace; |
| 832 } |
| 833 |
| 834 renderSurface->SetNearestAncestorThatMovesPixels(nearestAncestorThatMove
sPixels); |
| 835 |
| 836 // If the new render surface is drawn translucent or with a non-integral
translation |
| 837 // then the subtree that gets drawn on this render surface cannot use LC
D text. |
| 838 subtreeCanUseLCDText = layerCanUseLCDText; |
| 839 |
| 840 renderSurfaceLayerList.push_back(layer); |
1068 } else { | 841 } else { |
1069 clip_rect_for_subtree = rect_in_target_space; | 842 DCHECK(layer->parent()); |
1070 } | 843 |
1071 } | 844 // Note: layerDrawProperties.target_space_transform is computed above, |
1072 | 845 // before this if-else statement. |
1073 // Flatten to 2D if the layer doesn't preserve 3D. | 846 layerDrawProperties.target_space_transform_is_animating = animatingTrans
formToTarget; |
1074 if (!layer->preserves_3d()) | 847 layerDrawProperties.screen_space_transform_is_animating = animating_tran
sform_to_screen; |
1075 sublayer_matrix.FlattenTo2d(); | 848 layerDrawProperties.opacity = accumulatedDrawOpacity; |
1076 | 849 layerDrawProperties.opacity_is_animating = animatingOpacityToTarget; |
1077 // Apply the sublayer transform at the anchor point of the layer. | 850 layerDrawProperties.screen_space_opacity_is_animating = animatingOpacity
ToScreen; |
1078 if (!layer->sublayer_transform().IsIdentity()) { | 851 sublayerMatrix = combinedTransform; |
1079 sublayer_matrix.Translate(layer->anchor_point().x() * bounds.width(), | 852 |
1080 layer->anchor_point().y() * bounds.height()); | 853 layer->ClearRenderSurface(); |
1081 sublayer_matrix.PreconcatTransform(layer->sublayer_transform()); | 854 |
1082 sublayer_matrix.Translate(-layer->anchor_point().x() * bounds.width(), | 855 // Layers without renderSurfaces directly inherit the ancestor's clip st
atus. |
1083 -layer->anchor_point().y() * bounds.height()); | 856 subtreeShouldBeClipped = ancestorClipsSubtree; |
1084 } | 857 if (ancestorClipsSubtree) |
1085 | 858 clipRectForSubtree = clipRectFromAncestor; |
1086 LayerList& descendants = | 859 |
1087 (layer->render_surface() ? layer->render_surface()->layer_list() | 860 // The surface's cached clipRect value propagates regardless of what cli
pping goes on between layers here. |
1088 : *layer_list); | 861 clipRectForSubtreeInDescendantSpace = clipRectFromAncestorInDescendantSp
ace; |
1089 | 862 |
1090 // Any layers that are appended after this point are in the layer's subtree | 863 // Layers that are not their own renderTarget will render into the targe
t of their nearest ancestor. |
1091 // and should be included in the sorting process. | 864 layerDrawProperties.render_target = layer->parent()->render_target(); |
1092 size_t sorting_start_index = descendants.size(); | 865 } |
1093 | 866 |
1094 if (!LayerShouldBeSkipped(layer)) | 867 if (adjustTextAA) |
1095 descendants.push_back(layer); | 868 layerDrawProperties.can_use_lcd_text = layerCanUseLCDText; |
1096 | 869 |
1097 gfx::Transform next_scroll_compensation_matrix = | 870 gfx::Rect rectInTargetSpace = ToEnclosingRect(MathUtil::MapClippedRect(layer
->draw_transform(), contentRect)); |
1098 ComputeScrollCompensationMatrixForChildren( | 871 |
1099 layer, parent_matrix, current_scroll_compensation_matrix); | 872 if (layerClipsSubtree(layer)) { |
1100 | 873 subtreeShouldBeClipped = true; |
1101 gfx::Rect accumulated_drawable_content_rect_of_children; | 874 if (ancestorClipsSubtree && !layer->render_surface()) { |
1102 for (size_t i = 0; i < layer->children().size(); ++i) { | 875 clipRectForSubtree = clipRectFromAncestor; |
1103 LayerType* child = | 876 clipRectForSubtree.Intersect(rectInTargetSpace); |
1104 LayerTreeHostCommon::get_child_as_raw_ptr(layer->children(), i); | 877 } else |
1105 gfx::Rect drawable_content_rect_of_child_subtree; | 878 clipRectForSubtree = rectInTargetSpace; |
1106 CalculateDrawPropertiesInternal<LayerType, LayerList, RenderSurfaceType>( | 879 } |
1107 child, | 880 |
1108 sublayer_matrix, | 881 // Flatten to 2D if the layer doesn't preserve 3D. |
1109 next_hierarchy_matrix, | 882 if (!layer->preserves_3d()) |
1110 next_scroll_compensation_matrix, | 883 sublayerMatrix.FlattenTo2d(); |
1111 clip_rect_for_subtree, | 884 |
1112 clip_rect_for_subtree_in_descendant_space, | 885 // Apply the sublayer transform at the anchor point of the layer. |
1113 subtree_should_be_clipped, | 886 if (!layer->sublayer_transform().IsIdentity()) { |
1114 nearest_ancestor_that_moves_pixels, | 887 sublayerMatrix.Translate(layer->anchor_point().x() * bounds.width(), lay
er->anchor_point().y() * bounds.height()); |
1115 render_surface_layer_list, | 888 sublayerMatrix.PreconcatTransform(layer->sublayer_transform()); |
1116 &descendants, | 889 sublayerMatrix.Translate(-layer->anchor_point().x() * bounds.width(), -l
ayer->anchor_point().y() * bounds.height()); |
1117 layer_sorter, | 890 } |
1118 max_texture_size, | 891 |
1119 device_scale_factor, | 892 LayerList& descendants = (layer->render_surface() ? layer->render_surface()-
>layer_list() : layerList); |
1120 page_scale_factor, | 893 |
1121 subtree_can_use_lcd_text, | 894 // Any layers that are appended after this point are in the layer's subtree
and should be included in the sorting process. |
1122 &drawable_content_rect_of_child_subtree, | 895 unsigned sortingStartIndex = descendants.size(); |
1123 update_tile_priorities); | 896 |
1124 if (!drawable_content_rect_of_child_subtree.IsEmpty()) { | 897 if (!layerShouldBeSkipped(layer)) |
1125 accumulated_drawable_content_rect_of_children.Union( | 898 descendants.push_back(layer); |
1126 drawable_content_rect_of_child_subtree); | 899 |
1127 if (child->render_surface()) | 900 gfx::Transform nextScrollCompensationMatrix = computeScrollCompensationMatri
xForChildren(layer, parentMatrix, currentScrollCompensationMatrix);; |
1128 descendants.push_back(child); | 901 |
1129 } | 902 gfx::Rect accumulatedDrawableContentRectOfChildren; |
1130 } | 903 for (size_t i = 0; i < layer->children().size(); ++i) { |
1131 | 904 LayerType* child = LayerTreeHostCommon::getChildAsRawPtr(layer->children
(), i); |
1132 if (layer->render_surface() && !IsRootLayer(layer) && | 905 gfx::Rect drawableContentRectOfChildSubtree; |
1133 layer->render_surface()->layer_list().empty()) { | 906 calculateDrawPropertiesInternal<LayerType, LayerList, RenderSurfaceType>
(child, sublayerMatrix, nextHierarchyMatrix, nextScrollCompensationMatrix, |
1134 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list); | 907
clipRectForSubtree, clipRectForSubtreeInDescendantSpace, subtreeShouldBeClipped
, nearestAncestorThatMovesPixels, |
1135 return; | 908
renderSurfaceLayerList, descendants, layerSorter, maxTextureSize, deviceScaleFa
ctor, pageScaleFactor, |
1136 } | 909
subtreeCanUseLCDText, drawableContentRectOfChildSubtree, updateTilePriorities); |
1137 | 910 if (!drawableContentRectOfChildSubtree.IsEmpty()) { |
1138 // Compute the total drawableContentRect for this subtree (the rect is in | 911 accumulatedDrawableContentRectOfChildren.Union(drawableContentRectOf
ChildSubtree); |
1139 // targetSurface space). | 912 if (child->render_surface()) |
1140 gfx::Rect local_drawable_content_rect_of_subtree = | 913 descendants.push_back(child); |
1141 accumulated_drawable_content_rect_of_children; | 914 } |
1142 if (layer->DrawsContent()) | 915 } |
1143 local_drawable_content_rect_of_subtree.Union(rect_in_target_space); | 916 |
1144 if (subtree_should_be_clipped) | 917 if (layer->render_surface() && !isRootLayer(layer) && !layer->render_surface
()->layer_list().size()) { |
1145 local_drawable_content_rect_of_subtree.Intersect(clip_rect_for_subtree); | 918 removeSurfaceForEarlyExit(layer, renderSurfaceLayerList); |
1146 | 919 return; |
1147 // Compute the layer's drawable content rect (the rect is in targetSurface | 920 } |
1148 // space). | 921 |
1149 layer_draw_properties.drawable_content_rect = rect_in_target_space; | 922 // Compute the total drawableContentRect for this subtree (the rect is in ta
rgetSurface space) |
1150 if (subtree_should_be_clipped) { | 923 gfx::Rect localDrawableContentRectOfSubtree = accumulatedDrawableContentRect
OfChildren; |
1151 layer_draw_properties.drawable_content_rect. | 924 if (layer->DrawsContent()) |
1152 Intersect(clip_rect_for_subtree); | 925 localDrawableContentRectOfSubtree.Union(rectInTargetSpace); |
1153 } | 926 if (subtreeShouldBeClipped) |
1154 | 927 localDrawableContentRectOfSubtree.Intersect(clipRectForSubtree); |
1155 // Tell the layer the rect that is clipped by. In theory we could use a | 928 |
1156 // tighter clipRect here (drawableContentRect), but that actually does not | 929 // Compute the layer's drawable content rect (the rect is in targetSurface s
pace) |
1157 // reduce how much would be drawn, and instead it would create unnecessary | 930 layerDrawProperties.drawable_content_rect = rectInTargetSpace; |
1158 // changes to scissor state affecting GPU performance. | 931 if (subtreeShouldBeClipped) |
1159 layer_draw_properties.is_clipped = subtree_should_be_clipped; | 932 layerDrawProperties.drawable_content_rect.Intersect(clipRectForSubtree); |
1160 if (subtree_should_be_clipped) { | 933 |
1161 layer_draw_properties.clip_rect = clip_rect_for_subtree; | 934 // Tell the layer the rect that is clipped by. In theory we could use a |
1162 } else { | 935 // tighter clipRect here (drawableContentRect), but that actually does not |
1163 // Initialize the clipRect to a safe value that will not clip the | 936 // reduce how much would be drawn, and instead it would create unnecessary |
1164 // layer, just in case clipping is still accidentally used. | 937 // changes to scissor state affecting GPU performance. |
1165 layer_draw_properties.clip_rect = rect_in_target_space; | 938 layerDrawProperties.is_clipped = subtreeShouldBeClipped; |
1166 } | 939 if (subtreeShouldBeClipped) |
1167 | 940 layerDrawProperties.clip_rect = clipRectForSubtree; |
1168 // Compute the layer's visible content rect (the rect is in content space) | 941 else { |
1169 layer_draw_properties.visible_content_rect = CalculateVisibleContentRect( | 942 // Initialize the clipRect to a safe value that will not clip the |
1170 layer, clip_rect_for_subtree_in_descendant_space, rect_in_target_space); | 943 // layer, just in case clipping is still accidentally used. |
1171 | 944 layerDrawProperties.clip_rect = rectInTargetSpace; |
1172 // Compute the remaining properties for the render surface, if the layer has | 945 } |
1173 // one. | 946 |
1174 if (IsRootLayer(layer)) { | 947 // Compute the layer's visible content rect (the rect is in content space) |
1175 // The root layer's surface's content_rect is always the entire viewport. | 948 layerDrawProperties.visible_content_rect = calculateVisibleContentRect(layer
, clipRectForSubtreeInDescendantSpace, rectInTargetSpace); |
1176 DCHECK(layer->render_surface()); | 949 |
1177 layer->render_surface()->SetContentRect(clip_rect_from_ancestor); | 950 // Compute the remaining properties for the render surface, if the layer has
one. |
1178 } else if (layer->render_surface() && !IsRootLayer(layer)) { | 951 if (isRootLayer(layer)) { |
1179 RenderSurfaceType* render_surface = layer->render_surface(); | 952 // The root layer's surface's contentRect is always the entire viewport. |
1180 gfx::Rect clipped_content_rect = local_drawable_content_rect_of_subtree; | 953 DCHECK(layer->render_surface()); |
1181 | 954 layer->render_surface()->SetContentRect(clipRectFromAncestor); |
1182 // Don't clip if the layer is reflected as the reflection shouldn't be | 955 } else if (layer->render_surface() && !isRootLayer(layer)) { |
1183 // clipped. If the layer is animating, then the surface's transform to | 956 RenderSurfaceType* renderSurface = layer->render_surface(); |
1184 // its target is not known on the main thread, and we should not use it | 957 gfx::Rect clippedContentRect = localDrawableContentRectOfSubtree; |
1185 // to clip. | 958 |
1186 if (!layer->replica_layer() && TransformToParentIsKnown(layer)) { | 959 // Don't clip if the layer is reflected as the reflection shouldn't be |
1187 // Note, it is correct to use ancestor_clips_subtree here, because we are | 960 // clipped. If the layer is animating, then the surface's transform to |
1188 // looking at this layer's render_surface, not the layer itself. | 961 // its target is not known on the main thread, and we should not use it |
1189 if (ancestor_clips_subtree && !clipped_content_rect.IsEmpty()) { | 962 // to clip. |
1190 gfx::Rect surface_clip_rect = LayerTreeHostCommon::CalculateVisibleRect( | 963 if (!layer->replica_layer() && transformToParentIsKnown(layer)) { |
1191 render_surface->clip_rect(), | 964 // Note, it is correct to use ancestorClipsSubtree here, because we
are looking at this layer's renderSurface, not the layer itself. |
1192 clipped_content_rect, | 965 if (ancestorClipsSubtree && !clippedContentRect.IsEmpty()) { |
1193 render_surface->draw_transform()); | 966 gfx::Rect surfaceClipRect = LayerTreeHostCommon::calculateVisibl
eRect(renderSurface->clip_rect(), clippedContentRect, renderSurface->draw_transf
orm()); |
1194 clipped_content_rect.Intersect(surface_clip_rect); | 967 clippedContentRect.Intersect(surfaceClipRect); |
1195 } | 968 } |
1196 } | 969 } |
1197 | 970 |
1198 // The RenderSurfaceImpl backing texture cannot exceed the maximum supported | 971 // The RenderSurfaceImpl backing texture cannot exceed the maximum suppo
rted |
1199 // texture size. | 972 // texture size. |
1200 clipped_content_rect.set_width( | 973 clippedContentRect.set_width(std::min(clippedContentRect.width(), maxTex
tureSize)); |
1201 std::min(clipped_content_rect.width(), max_texture_size)); | 974 clippedContentRect.set_height(std::min(clippedContentRect.height(), maxT
extureSize)); |
1202 clipped_content_rect.set_height( | 975 |
1203 std::min(clipped_content_rect.height(), max_texture_size)); | 976 if (clippedContentRect.IsEmpty()) { |
1204 | 977 renderSurface->ClearLayerLists(); |
1205 if (clipped_content_rect.IsEmpty()) { | 978 removeSurfaceForEarlyExit(layer, renderSurfaceLayerList); |
1206 render_surface->ClearLayerLists(); | 979 return; |
1207 RemoveSurfaceForEarlyExit(layer, render_surface_layer_list); | 980 } |
1208 return; | 981 |
1209 } | 982 renderSurface->SetContentRect(clippedContentRect); |
1210 | 983 |
1211 render_surface->SetContentRect(clipped_content_rect); | 984 // The owning layer's screenSpaceTransform has a scale from content to l
ayer space which we need to undo and |
1212 | 985 // replace with a scale from the surface's subtree into layer space. |
1213 // The owning layer's screen_space_transform has a scale from content to | 986 gfx::Transform screenSpaceTransform = layer->screen_space_transform(); |
1214 // layer space which we need to undo and replace with a scale from the | 987 screenSpaceTransform.Scale(layer->contents_scale_x() / renderSurfaceSubl
ayerScale.x(), layer->contents_scale_y() / renderSurfaceSublayerScale.y()); |
1215 // surface's subtree into layer space. | 988 renderSurface->SetScreenSpaceTransform(screenSpaceTransform); |
1216 gfx::Transform screen_space_transform = layer->screen_space_transform(); | 989 |
1217 screen_space_transform.Scale( | 990 if (layer->replica_layer()) { |
1218 layer->contents_scale_x() / render_surface_sublayer_scale.x(), | 991 gfx::Transform surfaceOriginToReplicaOriginTransform; |
1219 layer->contents_scale_y() / render_surface_sublayer_scale.y()); | 992 surfaceOriginToReplicaOriginTransform.Scale(renderSurfaceSublayerSca
le.x(), renderSurfaceSublayerScale.y()); |
1220 render_surface->SetScreenSpaceTransform(screen_space_transform); | 993 surfaceOriginToReplicaOriginTransform.Translate(layer->replica_layer
()->position().x() + layer->replica_layer()->anchor_point().x() * bounds.width()
, |
1221 | 994 layer->replica_layer
()->position().y() + layer->replica_layer()->anchor_point().y() * bounds.height(
)); |
1222 if (layer->replica_layer()) { | 995 surfaceOriginToReplicaOriginTransform.PreconcatTransform(layer->repl
ica_layer()->transform()); |
1223 gfx::Transform surface_origin_to_replica_origin_transform; | 996 surfaceOriginToReplicaOriginTransform.Translate(-layer->replica_laye
r()->anchor_point().x() * bounds.width(), -layer->replica_layer()->anchor_point(
).y() * bounds.height()); |
1224 surface_origin_to_replica_origin_transform.Scale( | 997 surfaceOriginToReplicaOriginTransform.Scale(1 / renderSurfaceSublaye
rScale.x(), 1 / renderSurfaceSublayerScale.y()); |
1225 render_surface_sublayer_scale.x(), render_surface_sublayer_scale.y()); | 998 |
1226 surface_origin_to_replica_origin_transform.Translate( | 999 // Compute the replica's "originTransform" that maps from the replic
a's origin space to the target surface origin space. |
1227 layer->replica_layer()->position().x() + | 1000 gfx::Transform replicaOriginTransform = layer->render_surface()->dra
w_transform() * surfaceOriginToReplicaOriginTransform; |
1228 layer->replica_layer()->anchor_point().x() * bounds.width(), | 1001 renderSurface->SetReplicaDrawTransform(replicaOriginTransform); |
1229 layer->replica_layer()->position().y() + | 1002 |
1230 layer->replica_layer()->anchor_point().y() * bounds.height()); | 1003 // Compute the replica's "screenSpaceTransform" that maps from the r
eplica's origin space to the screen's origin space. |
1231 surface_origin_to_replica_origin_transform.PreconcatTransform( | 1004 gfx::Transform replicaScreenSpaceTransform = layer->render_surface()
->screen_space_transform() * surfaceOriginToReplicaOriginTransform; |
1232 layer->replica_layer()->transform()); | 1005 renderSurface->SetReplicaScreenSpaceTransform(replicaScreenSpaceTran
sform); |
1233 surface_origin_to_replica_origin_transform.Translate( | 1006 } |
1234 -layer->replica_layer()->anchor_point().x() * bounds.width(), | 1007 } |
1235 -layer->replica_layer()->anchor_point().y() * bounds.height()); | 1008 |
1236 surface_origin_to_replica_origin_transform.Scale( | 1009 if (updateTilePriorities) |
1237 1.0 / render_surface_sublayer_scale.x(), | 1010 updateTilePrioritiesForLayer(layer); |
1238 1.0 / render_surface_sublayer_scale.y()); | 1011 |
1239 | 1012 // If neither this layer nor any of its children were added, early out. |
1240 // Compute the replica's "originTransform" that maps from the replica's | 1013 if (sortingStartIndex == descendants.size()) |
1241 // origin space to the target surface origin space. | 1014 return; |
1242 gfx::Transform replica_origin_transform = | 1015 |
1243 layer->render_surface()->draw_transform() * | 1016 // If preserves-3d then sort all the descendants in 3D so that they can be |
1244 surface_origin_to_replica_origin_transform; | 1017 // drawn from back to front. If the preserves-3d property is also set on the
parent then |
1245 render_surface->SetReplicaDrawTransform(replica_origin_transform); | 1018 // skip the sorting as the parent will sort all the descendants anyway. |
1246 | 1019 if (layerSorter && descendants.size() && layer->preserves_3d() && (!layer->p
arent() || !layer->parent()->preserves_3d())) |
1247 // Compute the replica's "screen_space_transform" that maps from the | 1020 sortLayers(descendants.begin() + sortingStartIndex, descendants.end(), l
ayerSorter); |
1248 // replica's origin space to the screen's origin space. | 1021 |
1249 gfx::Transform replica_screen_space_transform = | 1022 if (layer->render_surface()) |
1250 layer->render_surface()->screen_space_transform() * | 1023 drawableContentRectOfSubtree = gfx::ToEnclosingRect(layer->render_surfac
e()->DrawableContentRect()); |
1251 surface_origin_to_replica_origin_transform; | 1024 else |
1252 render_surface->SetReplicaScreenSpaceTransform( | 1025 drawableContentRectOfSubtree = localDrawableContentRectOfSubtree; |
1253 replica_screen_space_transform); | 1026 |
1254 } | 1027 if (layer->HasContributingDelegatedRenderPasses()) |
1255 } | 1028 layer->render_target()->render_surface()->AddContributingDelegatedRender
PassLayer(layer); |
1256 | 1029 } |
1257 if (update_tile_priorities) | 1030 |
1258 UpdateTilePrioritiesForLayer(layer); | 1031 void LayerTreeHostCommon::calculateDrawProperties(Layer* rootLayer, const gfx::S
ize& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int max
TextureSize, bool canUseLCDText, std::vector<scoped_refptr<Layer> >& renderSurfa
ceLayerList) |
1259 | 1032 { |
1260 // If neither this layer nor any of its children were added, early out. | 1033 gfx::Rect totalDrawableContentRect; |
1261 if (sorting_start_index == descendants.size()) | 1034 gfx::Transform identityMatrix; |
1262 return; | 1035 gfx::Transform deviceScaleTransform; |
1263 | 1036 deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor); |
1264 // If preserves-3d then sort all the descendants in 3D so that they can be | 1037 std::vector<scoped_refptr<Layer> > dummyLayerList; |
1265 // drawn from back to front. If the preserves-3d property is also set on the | 1038 |
1266 // parent then skip the sorting as the parent will sort all the descendants | 1039 // The root layer's renderSurface should receive the deviceViewport as the i
nitial clipRect. |
1267 // anyway. | 1040 bool subtreeShouldBeClipped = true; |
1268 if (layer_sorter && descendants.size() && layer->preserves_3d() && | 1041 gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize); |
1269 (!layer->parent() || !layer->parent()->preserves_3d())) { | 1042 bool updateTilePriorities = false; |
1270 SortLayers(descendants.begin() + sorting_start_index, | 1043 |
1271 descendants.end(), | 1044 // This function should have received a root layer. |
1272 layer_sorter); | 1045 DCHECK(isRootLayer(rootLayer)); |
1273 } | 1046 |
1274 | 1047 preCalculateMetaInformation<Layer>(rootLayer); |
1275 if (layer->render_surface()) { | 1048 calculateDrawPropertiesInternal<Layer, std::vector<scoped_refptr<Layer> >, R
enderSurface>( |
1276 *drawable_content_rect_of_subtree = | 1049 rootLayer, deviceScaleTransform, identityMatrix, identityMatrix, |
1277 gfx::ToEnclosingRect(layer->render_surface()->DrawableContentRect()); | 1050 deviceViewportRect, deviceViewportRect, subtreeShouldBeClipped, 0, rende
rSurfaceLayerList, |
1278 } else { | 1051 dummyLayerList, 0, maxTextureSize, |
1279 *drawable_content_rect_of_subtree = local_drawable_content_rect_of_subtree; | 1052 deviceScaleFactor, pageScaleFactor, canUseLCDText, totalDrawableContentR
ect, |
1280 } | 1053 updateTilePriorities); |
1281 | 1054 |
1282 if (layer->HasContributingDelegatedRenderPasses()) { | 1055 // The dummy layer list should not have been used. |
1283 layer->render_target()->render_surface()-> | 1056 DCHECK(dummyLayerList.size() == 0); |
1284 AddContributingDelegatedRenderPassLayer(layer); | 1057 // A root layer renderSurface should always exist after calculateDrawPropert
ies. |
1285 } | 1058 DCHECK(rootLayer->render_surface()); |
1286 } | 1059 } |
1287 | 1060 |
1288 void LayerTreeHostCommon::CalculateDrawProperties( | 1061 void LayerTreeHostCommon::calculateDrawProperties(LayerImpl* rootLayer, const gf
x::Size& deviceViewportSize, float deviceScaleFactor, float pageScaleFactor, int
maxTextureSize, bool canUseLCDText, std::vector<LayerImpl*>& renderSurfaceLayer
List, bool updateTilePriorities) |
1289 Layer* root_layer, | 1062 { |
1290 gfx::Size device_viewport_size, | 1063 gfx::Rect totalDrawableContentRect; |
1291 float device_scale_factor, | 1064 gfx::Transform identityMatrix; |
1292 float page_scale_factor, | 1065 gfx::Transform deviceScaleTransform; |
1293 int max_texture_size, | 1066 deviceScaleTransform.Scale(deviceScaleFactor, deviceScaleFactor); |
1294 bool can_use_lcd_text, | 1067 std::vector<LayerImpl*> dummyLayerList; |
1295 std::vector<scoped_refptr<Layer> >* render_surface_layer_list) { | 1068 LayerSorter layerSorter; |
1296 gfx::Rect total_drawable_content_rect; | 1069 |
1297 gfx::Transform identity_matrix; | 1070 // The root layer's renderSurface should receive the deviceViewport as the i
nitial clipRect. |
1298 gfx::Transform device_scale_transform; | 1071 bool subtreeShouldBeClipped = true; |
1299 device_scale_transform.Scale(device_scale_factor, device_scale_factor); | 1072 gfx::Rect deviceViewportRect(gfx::Point(), deviceViewportSize); |
1300 std::vector<scoped_refptr<Layer> > dummy_layer_list; | 1073 |
1301 | 1074 // This function should have received a root layer. |
1302 // The root layer's render_surface should receive the deviceViewport as the | 1075 DCHECK(isRootLayer(rootLayer)); |
1303 // initial clipRect. | 1076 |
1304 bool subtree_should_be_clipped = true; | 1077 preCalculateMetaInformation<LayerImpl>(rootLayer); |
1305 gfx::Rect device_viewport_rect(gfx::Point(), device_viewport_size); | 1078 calculateDrawPropertiesInternal<LayerImpl, std::vector<LayerImpl*>, RenderSu
rfaceImpl>( |
1306 bool update_tile_priorities = false; | 1079 rootLayer, deviceScaleTransform, identityMatrix, identityMatrix, |
1307 | 1080 deviceViewportRect, deviceViewportRect, subtreeShouldBeClipped, 0, rende
rSurfaceLayerList, |
1308 // This function should have received a root layer. | 1081 dummyLayerList, &layerSorter, maxTextureSize, |
1309 DCHECK(IsRootLayer(root_layer)); | 1082 deviceScaleFactor, pageScaleFactor, canUseLCDText, totalDrawableContentR
ect, |
1310 | 1083 updateTilePriorities); |
1311 PreCalculateMetaInformation<Layer>(root_layer); | 1084 |
1312 CalculateDrawPropertiesInternal<Layer, | 1085 // The dummy layer list should not have been used. |
1313 std::vector<scoped_refptr<Layer> >, | 1086 DCHECK(dummyLayerList.size() == 0); |
1314 RenderSurface>(root_layer, | 1087 // A root layer renderSurface should always exist after calculateDrawPropert
ies. |
1315 device_scale_transform, | 1088 DCHECK(rootLayer->render_surface()); |
1316 identity_matrix, | 1089 } |
1317 identity_matrix, | 1090 |
1318 device_viewport_rect, | 1091 static bool pointHitsRect(const gfx::PointF& screenSpacePoint, const gfx::Transf
orm& localSpaceToScreenSpaceTransform, gfx::RectF localSpaceRect) |
1319 device_viewport_rect, | 1092 { |
1320 subtree_should_be_clipped, | 1093 // If the transform is not invertible, then assume that this point doesn't h
it this rect. |
1321 NULL, | 1094 gfx::Transform inverseLocalSpaceToScreenSpace(gfx::Transform::kSkipInitializ
ation); |
1322 render_surface_layer_list, | 1095 if (!localSpaceToScreenSpaceTransform.GetInverse(&inverseLocalSpaceToScreenS
pace)) |
1323 &dummy_layer_list, | 1096 return false; |
1324 NULL, | 1097 |
1325 max_texture_size, | 1098 // Transform the hit test point from screen space to the local space of the
given rect. |
1326 device_scale_factor, | 1099 bool clipped = false; |
1327 page_scale_factor, | 1100 gfx::PointF hitTestPointInLocalSpace = MathUtil::ProjectPoint(inverseLocalSp
aceToScreenSpace, screenSpacePoint, &clipped); |
1328 can_use_lcd_text, | 1101 |
1329 &total_drawable_content_rect, | 1102 // If projectPoint could not project to a valid value, then we assume that t
his point doesn't hit this rect. |
1330 update_tile_priorities); | 1103 if (clipped) |
1331 | 1104 return false; |
1332 // The dummy layer list should not have been used. | 1105 |
1333 DCHECK_EQ(dummy_layer_list.size(), 0); | 1106 return localSpaceRect.Contains(hitTestPointInLocalSpace); |
1334 // A root layer render_surface should always exist after | 1107 } |
1335 // calculateDrawProperties. | 1108 |
1336 DCHECK(root_layer->render_surface()); | 1109 static bool pointHitsRegion(gfx::PointF screenSpacePoint, const gfx::Transform&
screenSpaceTransform, const Region& layerSpaceRegion, float layerContentScaleX,
float layerContentScaleY) |
1337 } | 1110 { |
1338 | 1111 // If the transform is not invertible, then assume that this point doesn't h
it this region. |
1339 void LayerTreeHostCommon::CalculateDrawProperties( | 1112 gfx::Transform inverseScreenSpaceTransform(gfx::Transform::kSkipInitializati
on); |
1340 LayerImpl* root_layer, | 1113 if (!screenSpaceTransform.GetInverse(&inverseScreenSpaceTransform)) |
1341 gfx::Size device_viewport_size, | 1114 return false; |
1342 float device_scale_factor, | 1115 |
1343 float page_scale_factor, | 1116 // Transform the hit test point from screen space to the local space of the
given region. |
1344 int max_texture_size, | 1117 bool clipped = false; |
1345 bool can_use_lcd_text, | 1118 gfx::PointF hitTestPointInContentSpace = MathUtil::ProjectPoint(inverseScree
nSpaceTransform, screenSpacePoint, &clipped); |
1346 std::vector<LayerImpl*>* render_surface_layer_list, | 1119 gfx::PointF hitTestPointInLayerSpace = gfx::ScalePoint(hitTestPointInContent
Space, 1 / layerContentScaleX, 1 / layerContentScaleY); |
1347 bool update_tile_priorities) { | 1120 |
1348 gfx::Rect total_drawable_content_rect; | 1121 // If projectPoint could not project to a valid value, then we assume that t
his point doesn't hit this region. |
1349 gfx::Transform identity_matrix; | 1122 if (clipped) |
1350 gfx::Transform device_scale_transform; | 1123 return false; |
1351 device_scale_transform.Scale(device_scale_factor, device_scale_factor); | 1124 |
1352 std::vector<LayerImpl*> dummy_layer_list; | 1125 return layerSpaceRegion.Contains(gfx::ToRoundedPoint(hitTestPointInLayerSpac
e)); |
1353 LayerSorter layer_sorter; | 1126 } |
1354 | 1127 |
1355 // The root layer's render_surface should receive the deviceViewport as the | 1128 static bool pointIsClippedBySurfaceOrClipRect(const gfx::PointF& screenSpacePoin
t, LayerImpl* layer) |
1356 // initial clipRect. | 1129 { |
1357 bool subtree_should_be_clipped = true; | 1130 LayerImpl* current_layer = layer; |
1358 gfx::Rect device_viewport_rect(gfx::Point(), device_viewport_size); | 1131 |
1359 | 1132 // Walk up the layer tree and hit-test any renderSurfaces and any layer clip
Rects that are active. |
1360 // This function should have received a root layer. | 1133 while (current_layer) { |
1361 DCHECK(IsRootLayer(root_layer)); | 1134 if (current_layer->render_surface() && !pointHitsRect(screenSpacePoint,
current_layer->render_surface()->screen_space_transform(), current_layer->render
_surface()->content_rect())) |
1362 | 1135 return true; |
1363 PreCalculateMetaInformation<LayerImpl>(root_layer); | 1136 |
1364 CalculateDrawPropertiesInternal<LayerImpl, | 1137 // Note that drawableContentRects are actually in targetSurface space, s
o the transform we |
1365 std::vector<LayerImpl*>, | 1138 // have to provide is the target surface's screenSpaceTransform. |
1366 RenderSurfaceImpl>( | 1139 LayerImpl* renderTarget = current_layer->render_target(); |
1367 root_layer, | 1140 if (layerClipsSubtree(current_layer) && !pointHitsRect(screenSpacePoint,
renderTarget->render_surface()->screen_space_transform(), current_layer->drawab
le_content_rect())) |
1368 device_scale_transform, | 1141 return true; |
1369 identity_matrix, | 1142 |
1370 identity_matrix, | 1143 current_layer = current_layer->parent(); |
1371 device_viewport_rect, | 1144 } |
1372 device_viewport_rect, | 1145 |
1373 subtree_should_be_clipped, | 1146 // If we have finished walking all ancestors without having already exited,
then the point is not clipped by any ancestors. |
1374 NULL, | |
1375 render_surface_layer_list, | |
1376 &dummy_layer_list, | |
1377 &layer_sorter, | |
1378 max_texture_size, | |
1379 device_scale_factor, | |
1380 page_scale_factor, | |
1381 can_use_lcd_text, | |
1382 &total_drawable_content_rect, | |
1383 update_tile_priorities); | |
1384 | |
1385 // The dummy layer list should not have been used. | |
1386 DCHECK_EQ(dummy_layer_list.size(), 0); | |
1387 // A root layer render_surface should always exist after | |
1388 // calculateDrawProperties. | |
1389 DCHECK(root_layer->render_surface()); | |
1390 } | |
1391 | |
1392 static bool PointHitsRect( | |
1393 gfx::PointF screen_space_point, | |
1394 const gfx::Transform& local_space_to_screen_space_transform, | |
1395 gfx::RectF local_space_rect) { | |
1396 // If the transform is not invertible, then assume that this point doesn't hit | |
1397 // this rect. | |
1398 gfx::Transform inverse_local_space_to_screen_space( | |
1399 gfx::Transform::kSkipInitialization); | |
1400 if (!local_space_to_screen_space_transform.GetInverse( | |
1401 &inverse_local_space_to_screen_space)) | |
1402 return false; | 1147 return false; |
1403 | 1148 } |
1404 // Transform the hit test point from screen space to the local space of the | 1149 |
1405 // given rect. | 1150 LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPoint(const gfx::PointF& scr
eenSpacePoint, const std::vector<LayerImpl*>& renderSurfaceLayerList) |
1406 bool clipped = false; | 1151 { |
1407 gfx::PointF hit_test_point_in_local_space = MathUtil::ProjectPoint( | 1152 LayerImpl* foundLayer = 0; |
1408 inverse_local_space_to_screen_space, screen_space_point, &clipped); | 1153 |
1409 | 1154 typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl,
LayerIteratorActions::FrontToBack> LayerIteratorType; |
1410 // If ProjectPoint could not project to a valid value, then we assume that | 1155 LayerIteratorType end = LayerIteratorType::End(&renderSurfaceLayerList); |
1411 // this point doesn't hit this rect. | 1156 |
1412 if (clipped) | 1157 for (LayerIteratorType it = LayerIteratorType::Begin(&renderSurfaceLayerList
); it != end; ++it) { |
1413 return false; | 1158 // We don't want to consider renderSurfaces for hit testing. |
1414 | 1159 if (!it.represents_itself()) |
1415 return local_space_rect.Contains(hit_test_point_in_local_space); | 1160 continue; |
1416 } | 1161 |
1417 | 1162 LayerImpl* current_layer = (*it); |
1418 static bool PointHitsRegion(gfx::PointF screen_space_point, | 1163 |
1419 const gfx::Transform& screen_space_transform, | 1164 gfx::RectF contentRect(gfx::PointF(), current_layer->content_bounds()); |
1420 const Region& layer_space_region, | 1165 if (!pointHitsRect(screenSpacePoint, current_layer->screen_space_transfo
rm(), contentRect)) |
1421 float layer_content_scale_x, | 1166 continue; |
1422 float layer_content_scale_y) { | 1167 |
1423 // If the transform is not invertible, then assume that this point doesn't hit | 1168 // At this point, we think the point does hit the layer, but we need to
walk up |
1424 // this region. | 1169 // the parents to ensure that the layer was not clipped in such a way th
at the |
1425 gfx::Transform inverse_screen_space_transform( | 1170 // hit point actually should not hit the layer. |
1426 gfx::Transform::kSkipInitialization); | 1171 if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, current_layer)) |
1427 if (!screen_space_transform.GetInverse(&inverse_screen_space_transform)) | 1172 continue; |
1428 return false; | 1173 |
1429 | 1174 // Skip the HUD layer. |
1430 // Transform the hit test point from screen space to the local space of the | 1175 if (current_layer == current_layer->layer_tree_impl()->hud_layer()) |
1431 // given region. | 1176 continue; |
1432 bool clipped = false; | 1177 |
1433 gfx::PointF hit_test_point_in_content_space = MathUtil::ProjectPoint( | 1178 foundLayer = current_layer; |
1434 inverse_screen_space_transform, screen_space_point, &clipped); | 1179 break; |
1435 gfx::PointF hit_test_point_in_layer_space = | 1180 } |
1436 gfx::ScalePoint(hit_test_point_in_content_space, | 1181 |
1437 1.f / layer_content_scale_x, | 1182 // This can potentially return 0, which means the screenSpacePoint did not s
uccessfully hit test any layers, not even the root layer. |
1438 1.f / layer_content_scale_y); | 1183 return foundLayer; |
1439 | 1184 } |
1440 // If ProjectPoint could not project to a valid value, then we assume that | 1185 |
1441 // this point doesn't hit this region. | 1186 LayerImpl* LayerTreeHostCommon::findLayerThatIsHitByPointInTouchHandlerRegion(co
nst gfx::PointF& screenSpacePoint, const std::vector<LayerImpl*>& renderSurfaceL
ayerList) |
1442 if (clipped) | 1187 { |
1443 return false; | 1188 LayerImpl* foundLayer = 0; |
1444 | 1189 |
1445 return layer_space_region.Contains( | 1190 typedef LayerIterator<LayerImpl, std::vector<LayerImpl*>, RenderSurfaceImpl,
LayerIteratorActions::FrontToBack> LayerIteratorType; |
1446 gfx::ToRoundedPoint(hit_test_point_in_layer_space)); | 1191 LayerIteratorType end = LayerIteratorType::End(&renderSurfaceLayerList); |
1447 } | 1192 |
1448 | 1193 for (LayerIteratorType it = LayerIteratorType::Begin(&renderSurfaceLayerList
); it != end; ++it) { |
1449 static bool PointIsClippedBySurfaceOrClipRect(gfx::PointF screen_space_point, | 1194 // We don't want to consider renderSurfaces for hit testing. |
1450 LayerImpl* layer) { | 1195 if (!it.represents_itself()) |
1451 LayerImpl* current_layer = layer; | 1196 continue; |
1452 | 1197 |
1453 // Walk up the layer tree and hit-test any render_surfaces and any layer | 1198 LayerImpl* current_layer = (*it); |
1454 // clip rects that are active. | 1199 |
1455 while (current_layer) { | 1200 if (!layerHasTouchEventHandlersAt(screenSpacePoint, current_layer)) |
1456 if (current_layer->render_surface() && | 1201 continue; |
1457 !PointHitsRect( | 1202 |
1458 screen_space_point, | 1203 foundLayer = current_layer; |
1459 current_layer->render_surface()->screen_space_transform(), | 1204 break; |
1460 current_layer->render_surface()->content_rect())) | 1205 } |
1461 return true; | 1206 |
1462 | 1207 // This can potentially return 0, which means the screenSpacePoint did not s
uccessfully hit test any layers, not even the root layer. |
1463 // Note that drawable content rects are actually in target surface space, so | 1208 return foundLayer; |
1464 // the transform we have to provide is the target surface's | 1209 } |
1465 // screen_space_transform. | 1210 |
1466 LayerImpl* render_target = current_layer->render_target(); | 1211 bool LayerTreeHostCommon::layerHasTouchEventHandlersAt(const gfx::PointF& screen
SpacePoint, LayerImpl* layerImpl) { |
1467 if (LayerClipsSubtree(current_layer) && | 1212 if (layerImpl->touch_event_handler_region().IsEmpty()) |
1468 !PointHitsRect( | 1213 return false; |
1469 screen_space_point, | 1214 |
1470 render_target->render_surface()->screen_space_transform(), | 1215 if (!pointHitsRegion(screenSpacePoint, layerImpl->screen_space_transform(), la
yerImpl->touch_event_handler_region(), layerImpl->contents_scale_x(), layerImpl-
>contents_scale_y())) |
1471 current_layer->drawable_content_rect())) | 1216 return false;; |
1472 return true; | 1217 |
1473 | 1218 // At this point, we think the point does hit the touch event handler region o
n the layer, but we need to walk up |
1474 current_layer = current_layer->parent(); | 1219 // the parents to ensure that the layer was not clipped in such a way that the |
1475 } | 1220 // hit point actually should not hit the layer. |
1476 | 1221 if (pointIsClippedBySurfaceOrClipRect(screenSpacePoint, layerImpl)) |
1477 // If we have finished walking all ancestors without having already exited, | 1222 return false; |
1478 // then the point is not clipped by any ancestors. | |
1479 return false; | |
1480 } | |
1481 | |
1482 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPoint( | |
1483 gfx::PointF screen_space_point, | |
1484 const std::vector<LayerImpl*>& render_surface_layer_list) { | |
1485 LayerImpl* found_layer = NULL; | |
1486 | |
1487 typedef LayerIterator<LayerImpl, | |
1488 std::vector<LayerImpl*>, | |
1489 RenderSurfaceImpl, | |
1490 LayerIteratorActions::FrontToBack> LayerIteratorType; | |
1491 LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list); | |
1492 | |
1493 for (LayerIteratorType | |
1494 it = LayerIteratorType::Begin(&render_surface_layer_list); | |
1495 it != end; | |
1496 ++it) { | |
1497 // We don't want to consider render_surfaces for hit testing. | |
1498 if (!it.represents_itself()) | |
1499 continue; | |
1500 | |
1501 LayerImpl* current_layer = (*it); | |
1502 | |
1503 gfx::RectF content_rect(gfx::PointF(), current_layer->content_bounds()); | |
1504 if (!PointHitsRect(screen_space_point, | |
1505 current_layer->screen_space_transform(), | |
1506 content_rect)) | |
1507 continue; | |
1508 | |
1509 // At this point, we think the point does hit the layer, but we need to walk | |
1510 // up the parents to ensure that the layer was not clipped in such a way | |
1511 // that the hit point actually should not hit the layer. | |
1512 if (PointIsClippedBySurfaceOrClipRect(screen_space_point, current_layer)) | |
1513 continue; | |
1514 | |
1515 // Skip the HUD layer. | |
1516 if (current_layer == current_layer->layer_tree_impl()->hud_layer()) | |
1517 continue; | |
1518 | |
1519 found_layer = current_layer; | |
1520 break; | |
1521 } | |
1522 | |
1523 // This can potentially return NULL, which means the screen_space_point did | |
1524 // not successfully hit test any layers, not even the root layer. | |
1525 return found_layer; | |
1526 } | |
1527 | |
1528 LayerImpl* LayerTreeHostCommon::FindLayerThatIsHitByPointInTouchHandlerRegion( | |
1529 gfx::PointF screen_space_point, | |
1530 const std::vector<LayerImpl*>& render_surface_layer_list) { | |
1531 LayerImpl* found_layer = NULL; | |
1532 | |
1533 typedef LayerIterator<LayerImpl, | |
1534 std::vector<LayerImpl*>, | |
1535 RenderSurfaceImpl, | |
1536 LayerIteratorActions::FrontToBack> LayerIteratorType; | |
1537 LayerIteratorType end = LayerIteratorType::End(&render_surface_layer_list); | |
1538 | |
1539 for (LayerIteratorType | |
1540 it = LayerIteratorType::Begin(&render_surface_layer_list); | |
1541 it != end; | |
1542 ++it) { | |
1543 // We don't want to consider render_surfaces for hit testing. | |
1544 if (!it.represents_itself()) | |
1545 continue; | |
1546 | |
1547 LayerImpl* current_layer = (*it); | |
1548 | |
1549 if (!LayerHasTouchEventHandlersAt(screen_space_point, current_layer)) | |
1550 continue; | |
1551 | |
1552 found_layer = current_layer; | |
1553 break; | |
1554 } | |
1555 | |
1556 // This can potentially return NULL, which means the screen_space_point did | |
1557 // not successfully hit test any layers, not even the root layer. | |
1558 return found_layer; | |
1559 } | |
1560 | |
1561 bool LayerTreeHostCommon::LayerHasTouchEventHandlersAt( | |
1562 gfx::PointF screen_space_point, | |
1563 LayerImpl* layer_impl) { | |
1564 if (layer_impl->touch_event_handler_region().IsEmpty()) | |
1565 return false; | |
1566 | |
1567 if (!PointHitsRegion(screen_space_point, | |
1568 layer_impl->screen_space_transform(), | |
1569 layer_impl->touch_event_handler_region(), | |
1570 layer_impl->contents_scale_x(), | |
1571 layer_impl->contents_scale_y())) | |
1572 return false; | |
1573 | |
1574 // At this point, we think the point does hit the touch event handler region | |
1575 // on the layer, but we need to walk up the parents to ensure that the layer | |
1576 // was not clipped in such a way that the hit point actually should not hit | |
1577 // the layer. | |
1578 if (PointIsClippedBySurfaceOrClipRect(screen_space_point, layer_impl)) | |
1579 return false; | |
1580 | 1223 |
1581 return true; | 1224 return true; |
1582 } | 1225 } |
1583 } // namespace cc | 1226 } // namespace cc |
OLD | NEW |