OLD | NEW |
| (Empty) |
1 // Copyright 2012 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include "src/v8.h" | |
6 | |
7 #if V8_TARGET_ARCH_MIPS64 | |
8 | |
9 #include "src/code-stubs.h" | |
10 #include "src/log.h" | |
11 #include "src/macro-assembler.h" | |
12 #include "src/regexp-macro-assembler.h" | |
13 #include "src/regexp-stack.h" | |
14 #include "src/unicode.h" | |
15 | |
16 #include "src/mips64/regexp-macro-assembler-mips64.h" | |
17 | |
18 namespace v8 { | |
19 namespace internal { | |
20 | |
21 #ifndef V8_INTERPRETED_REGEXP | |
22 /* | |
23 * This assembler uses the following register assignment convention | |
24 * - t3 : Temporarily stores the index of capture start after a matching pass | |
25 * for a global regexp. | |
26 * - a5 : Pointer to current code object (Code*) including heap object tag. | |
27 * - a6 : Current position in input, as negative offset from end of string. | |
28 * Please notice that this is the byte offset, not the character offset! | |
29 * - a7 : Currently loaded character. Must be loaded using | |
30 * LoadCurrentCharacter before using any of the dispatch methods. | |
31 * - t0 : Points to tip of backtrack stack | |
32 * - t1 : Unused. | |
33 * - t2 : End of input (points to byte after last character in input). | |
34 * - fp : Frame pointer. Used to access arguments, local variables and | |
35 * RegExp registers. | |
36 * - sp : Points to tip of C stack. | |
37 * | |
38 * The remaining registers are free for computations. | |
39 * Each call to a public method should retain this convention. | |
40 * | |
41 * TODO(plind): O32 documented here with intent of having single 32/64 codebase | |
42 * in the future. | |
43 * | |
44 * The O32 stack will have the following structure: | |
45 * | |
46 * - fp[76] Isolate* isolate (address of the current isolate) | |
47 * - fp[72] direct_call (if 1, direct call from JavaScript code, | |
48 * if 0, call through the runtime system). | |
49 * - fp[68] stack_area_base (High end of the memory area to use as | |
50 * backtracking stack). | |
51 * - fp[64] capture array size (may fit multiple sets of matches) | |
52 * - fp[60] int* capture_array (int[num_saved_registers_], for output). | |
53 * - fp[44..59] MIPS O32 four argument slots | |
54 * - fp[40] secondary link/return address used by native call. | |
55 * --- sp when called --- | |
56 * - fp[36] return address (lr). | |
57 * - fp[32] old frame pointer (r11). | |
58 * - fp[0..31] backup of registers s0..s7. | |
59 * --- frame pointer ---- | |
60 * - fp[-4] end of input (address of end of string). | |
61 * - fp[-8] start of input (address of first character in string). | |
62 * - fp[-12] start index (character index of start). | |
63 * - fp[-16] void* input_string (location of a handle containing the string). | |
64 * - fp[-20] success counter (only for global regexps to count matches). | |
65 * - fp[-24] Offset of location before start of input (effectively character | |
66 * position -1). Used to initialize capture registers to a | |
67 * non-position. | |
68 * - fp[-28] At start (if 1, we are starting at the start of the | |
69 * string, otherwise 0) | |
70 * - fp[-32] register 0 (Only positions must be stored in the first | |
71 * - register 1 num_saved_registers_ registers) | |
72 * - ... | |
73 * - register num_registers-1 | |
74 * --- sp --- | |
75 * | |
76 * | |
77 * The N64 stack will have the following structure: | |
78 * | |
79 * - fp[88] Isolate* isolate (address of the current isolate)
kIsolate | |
80 * - fp[80] secondary link/return address used by exit frame on native call.
kSecondaryReturnAddress | |
81
kStackFrameHeader | |
82 * --- sp when called --- | |
83 * - fp[72] ra Return from RegExp code (ra).
kReturnAddress | |
84 * - fp[64] s9, old-fp Old fp, callee saved(s9). | |
85 * - fp[0..63] s0..s7 Callee-saved registers s0..s7. | |
86 * --- frame pointer ---- | |
87 * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime)
kDirectCall | |
88 * - fp[-16] stack_base (Top of backtracking stack).
kStackHighEnd | |
89 * - fp[-24] capture array size (may fit multiple sets of matches)
kNumOutputRegisters | |
90 * - fp[-32] int* capture_array (int[num_saved_registers_], for output).
kRegisterOutput | |
91 * - fp[-40] end of input (address of end of string).
kInputEnd | |
92 * - fp[-48] start of input (address of first character in string).
kInputStart | |
93 * - fp[-56] start index (character index of start).
kStartIndex | |
94 * - fp[-64] void* input_string (location of a handle containing the string).
kInputString | |
95 * - fp[-72] success counter (only for global regexps to count matches).
kSuccessfulCaptures | |
96 * - fp[-80] Offset of location before start of input (effectively character
kInputStartMinusOne | |
97 * position -1). Used to initialize capture registers to a | |
98 * non-position. | |
99 * --------- The following output registers are 32-bit values. --------- | |
100 * - fp[-88] register 0 (Only positions must be stored in the first
kRegisterZero | |
101 * - register 1 num_saved_registers_ registers) | |
102 * - ... | |
103 * - register num_registers-1 | |
104 * --- sp --- | |
105 * | |
106 * The first num_saved_registers_ registers are initialized to point to | |
107 * "character -1" in the string (i.e., char_size() bytes before the first | |
108 * character of the string). The remaining registers start out as garbage. | |
109 * | |
110 * The data up to the return address must be placed there by the calling | |
111 * code and the remaining arguments are passed in registers, e.g. by calling the | |
112 * code entry as cast to a function with the signature: | |
113 * int (*match)(String* input_string, | |
114 * int start_index, | |
115 * Address start, | |
116 * Address end, | |
117 * Address secondary_return_address, // Only used by native call. | |
118 * int* capture_output_array, | |
119 * byte* stack_area_base, | |
120 * bool direct_call = false, | |
121 * void* return_address, | |
122 * Isolate* isolate); | |
123 * The call is performed by NativeRegExpMacroAssembler::Execute() | |
124 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro | |
125 * in mips/simulator-mips.h. | |
126 * When calling as a non-direct call (i.e., from C++ code), the return address | |
127 * area is overwritten with the ra register by the RegExp code. When doing a | |
128 * direct call from generated code, the return address is placed there by | |
129 * the calling code, as in a normal exit frame. | |
130 */ | |
131 | |
132 #define __ ACCESS_MASM(masm_) | |
133 | |
134 RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone, | |
135 Mode mode, | |
136 int registers_to_save) | |
137 : NativeRegExpMacroAssembler(isolate, zone), | |
138 masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)), | |
139 mode_(mode), | |
140 num_registers_(registers_to_save), | |
141 num_saved_registers_(registers_to_save), | |
142 entry_label_(), | |
143 start_label_(), | |
144 success_label_(), | |
145 backtrack_label_(), | |
146 exit_label_(), | |
147 internal_failure_label_() { | |
148 DCHECK_EQ(0, registers_to_save % 2); | |
149 __ jmp(&entry_label_); // We'll write the entry code later. | |
150 // If the code gets too big or corrupted, an internal exception will be | |
151 // raised, and we will exit right away. | |
152 __ bind(&internal_failure_label_); | |
153 __ li(v0, Operand(FAILURE)); | |
154 __ Ret(); | |
155 __ bind(&start_label_); // And then continue from here. | |
156 } | |
157 | |
158 | |
159 RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() { | |
160 delete masm_; | |
161 // Unuse labels in case we throw away the assembler without calling GetCode. | |
162 entry_label_.Unuse(); | |
163 start_label_.Unuse(); | |
164 success_label_.Unuse(); | |
165 backtrack_label_.Unuse(); | |
166 exit_label_.Unuse(); | |
167 check_preempt_label_.Unuse(); | |
168 stack_overflow_label_.Unuse(); | |
169 internal_failure_label_.Unuse(); | |
170 } | |
171 | |
172 | |
173 int RegExpMacroAssemblerMIPS::stack_limit_slack() { | |
174 return RegExpStack::kStackLimitSlack; | |
175 } | |
176 | |
177 | |
178 void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) { | |
179 if (by != 0) { | |
180 __ Daddu(current_input_offset(), | |
181 current_input_offset(), Operand(by * char_size())); | |
182 } | |
183 } | |
184 | |
185 | |
186 void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) { | |
187 DCHECK(reg >= 0); | |
188 DCHECK(reg < num_registers_); | |
189 if (by != 0) { | |
190 __ ld(a0, register_location(reg)); | |
191 __ Daddu(a0, a0, Operand(by)); | |
192 __ sd(a0, register_location(reg)); | |
193 } | |
194 } | |
195 | |
196 | |
197 void RegExpMacroAssemblerMIPS::Backtrack() { | |
198 CheckPreemption(); | |
199 // Pop Code* offset from backtrack stack, add Code* and jump to location. | |
200 Pop(a0); | |
201 __ Daddu(a0, a0, code_pointer()); | |
202 __ Jump(a0); | |
203 } | |
204 | |
205 | |
206 void RegExpMacroAssemblerMIPS::Bind(Label* label) { | |
207 __ bind(label); | |
208 } | |
209 | |
210 | |
211 void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) { | |
212 BranchOrBacktrack(on_equal, eq, current_character(), Operand(c)); | |
213 } | |
214 | |
215 | |
216 void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) { | |
217 BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit)); | |
218 } | |
219 | |
220 | |
221 void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) { | |
222 Label not_at_start; | |
223 // Did we start the match at the start of the string at all? | |
224 __ lw(a0, MemOperand(frame_pointer(), kStartIndex)); | |
225 BranchOrBacktrack(¬_at_start, ne, a0, Operand(zero_reg)); | |
226 | |
227 // If we did, are we still at the start of the input? | |
228 __ ld(a1, MemOperand(frame_pointer(), kInputStart)); | |
229 __ Daddu(a0, end_of_input_address(), Operand(current_input_offset())); | |
230 BranchOrBacktrack(on_at_start, eq, a0, Operand(a1)); | |
231 __ bind(¬_at_start); | |
232 } | |
233 | |
234 | |
235 void RegExpMacroAssemblerMIPS::CheckNotAtStart(Label* on_not_at_start) { | |
236 // Did we start the match at the start of the string at all? | |
237 __ lw(a0, MemOperand(frame_pointer(), kStartIndex)); | |
238 BranchOrBacktrack(on_not_at_start, ne, a0, Operand(zero_reg)); | |
239 // If we did, are we still at the start of the input? | |
240 __ ld(a1, MemOperand(frame_pointer(), kInputStart)); | |
241 __ Daddu(a0, end_of_input_address(), Operand(current_input_offset())); | |
242 BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1)); | |
243 } | |
244 | |
245 | |
246 void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) { | |
247 BranchOrBacktrack(on_less, lt, current_character(), Operand(limit)); | |
248 } | |
249 | |
250 | |
251 void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) { | |
252 Label backtrack_non_equal; | |
253 __ lw(a0, MemOperand(backtrack_stackpointer(), 0)); | |
254 __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0)); | |
255 __ Daddu(backtrack_stackpointer(), | |
256 backtrack_stackpointer(), | |
257 Operand(kIntSize)); | |
258 __ bind(&backtrack_non_equal); | |
259 BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0)); | |
260 } | |
261 | |
262 | |
263 void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase( | |
264 int start_reg, | |
265 Label* on_no_match) { | |
266 Label fallthrough; | |
267 __ ld(a0, register_location(start_reg)); // Index of start of capture. | |
268 __ ld(a1, register_location(start_reg + 1)); // Index of end of capture. | |
269 __ Dsubu(a1, a1, a0); // Length of capture. | |
270 | |
271 // If length is zero, either the capture is empty or it is not participating. | |
272 // In either case succeed immediately. | |
273 __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); | |
274 | |
275 __ Daddu(t1, a1, current_input_offset()); | |
276 // Check that there are enough characters left in the input. | |
277 BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg)); | |
278 | |
279 if (mode_ == LATIN1) { | |
280 Label success; | |
281 Label fail; | |
282 Label loop_check; | |
283 | |
284 // a0 - offset of start of capture. | |
285 // a1 - length of capture. | |
286 __ Daddu(a0, a0, Operand(end_of_input_address())); | |
287 __ Daddu(a2, end_of_input_address(), Operand(current_input_offset())); | |
288 __ Daddu(a1, a0, Operand(a1)); | |
289 | |
290 // a0 - Address of start of capture. | |
291 // a1 - Address of end of capture. | |
292 // a2 - Address of current input position. | |
293 | |
294 Label loop; | |
295 __ bind(&loop); | |
296 __ lbu(a3, MemOperand(a0, 0)); | |
297 __ daddiu(a0, a0, char_size()); | |
298 __ lbu(a4, MemOperand(a2, 0)); | |
299 __ daddiu(a2, a2, char_size()); | |
300 | |
301 __ Branch(&loop_check, eq, a4, Operand(a3)); | |
302 | |
303 // Mismatch, try case-insensitive match (converting letters to lower-case). | |
304 __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case. | |
305 __ Or(a4, a4, Operand(0x20)); // Also convert input character. | |
306 __ Branch(&fail, ne, a4, Operand(a3)); | |
307 __ Dsubu(a3, a3, Operand('a')); | |
308 __ Branch(&loop_check, ls, a3, Operand('z' - 'a')); | |
309 // Latin-1: Check for values in range [224,254] but not 247. | |
310 __ Dsubu(a3, a3, Operand(224 - 'a')); | |
311 // Weren't Latin-1 letters. | |
312 __ Branch(&fail, hi, a3, Operand(254 - 224)); | |
313 // Check for 247. | |
314 __ Branch(&fail, eq, a3, Operand(247 - 224)); | |
315 | |
316 __ bind(&loop_check); | |
317 __ Branch(&loop, lt, a0, Operand(a1)); | |
318 __ jmp(&success); | |
319 | |
320 __ bind(&fail); | |
321 GoTo(on_no_match); | |
322 | |
323 __ bind(&success); | |
324 // Compute new value of character position after the matched part. | |
325 __ Dsubu(current_input_offset(), a2, end_of_input_address()); | |
326 } else { | |
327 DCHECK(mode_ == UC16); | |
328 // Put regexp engine registers on stack. | |
329 RegList regexp_registers_to_retain = current_input_offset().bit() | | |
330 current_character().bit() | backtrack_stackpointer().bit(); | |
331 __ MultiPush(regexp_registers_to_retain); | |
332 | |
333 int argument_count = 4; | |
334 __ PrepareCallCFunction(argument_count, a2); | |
335 | |
336 // a0 - offset of start of capture. | |
337 // a1 - length of capture. | |
338 | |
339 // Put arguments into arguments registers. | |
340 // Parameters are | |
341 // a0: Address byte_offset1 - Address captured substring's start. | |
342 // a1: Address byte_offset2 - Address of current character position. | |
343 // a2: size_t byte_length - length of capture in bytes(!). | |
344 // a3: Isolate* isolate. | |
345 | |
346 // Address of start of capture. | |
347 __ Daddu(a0, a0, Operand(end_of_input_address())); | |
348 // Length of capture. | |
349 __ mov(a2, a1); | |
350 // Save length in callee-save register for use on return. | |
351 __ mov(s3, a1); | |
352 // Address of current input position. | |
353 __ Daddu(a1, current_input_offset(), Operand(end_of_input_address())); | |
354 // Isolate. | |
355 __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate()))); | |
356 | |
357 { | |
358 AllowExternalCallThatCantCauseGC scope(masm_); | |
359 ExternalReference function = | |
360 ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate()); | |
361 __ CallCFunction(function, argument_count); | |
362 } | |
363 | |
364 // Restore regexp engine registers. | |
365 __ MultiPop(regexp_registers_to_retain); | |
366 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); | |
367 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); | |
368 | |
369 // Check if function returned non-zero for success or zero for failure. | |
370 BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg)); | |
371 // On success, increment position by length of capture. | |
372 __ Daddu(current_input_offset(), current_input_offset(), Operand(s3)); | |
373 } | |
374 | |
375 __ bind(&fallthrough); | |
376 } | |
377 | |
378 | |
379 void RegExpMacroAssemblerMIPS::CheckNotBackReference( | |
380 int start_reg, | |
381 Label* on_no_match) { | |
382 Label fallthrough; | |
383 Label success; | |
384 | |
385 // Find length of back-referenced capture. | |
386 __ ld(a0, register_location(start_reg)); | |
387 __ ld(a1, register_location(start_reg + 1)); | |
388 __ Dsubu(a1, a1, a0); // Length to check. | |
389 // Succeed on empty capture (including no capture). | |
390 __ Branch(&fallthrough, eq, a1, Operand(zero_reg)); | |
391 | |
392 __ Daddu(t1, a1, current_input_offset()); | |
393 // Check that there are enough characters left in the input. | |
394 BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg)); | |
395 | |
396 // Compute pointers to match string and capture string. | |
397 __ Daddu(a0, a0, Operand(end_of_input_address())); | |
398 __ Daddu(a2, end_of_input_address(), Operand(current_input_offset())); | |
399 __ Daddu(a1, a1, Operand(a0)); | |
400 | |
401 Label loop; | |
402 __ bind(&loop); | |
403 if (mode_ == LATIN1) { | |
404 __ lbu(a3, MemOperand(a0, 0)); | |
405 __ daddiu(a0, a0, char_size()); | |
406 __ lbu(a4, MemOperand(a2, 0)); | |
407 __ daddiu(a2, a2, char_size()); | |
408 } else { | |
409 DCHECK(mode_ == UC16); | |
410 __ lhu(a3, MemOperand(a0, 0)); | |
411 __ daddiu(a0, a0, char_size()); | |
412 __ lhu(a4, MemOperand(a2, 0)); | |
413 __ daddiu(a2, a2, char_size()); | |
414 } | |
415 BranchOrBacktrack(on_no_match, ne, a3, Operand(a4)); | |
416 __ Branch(&loop, lt, a0, Operand(a1)); | |
417 | |
418 // Move current character position to position after match. | |
419 __ Dsubu(current_input_offset(), a2, end_of_input_address()); | |
420 __ bind(&fallthrough); | |
421 } | |
422 | |
423 | |
424 void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c, | |
425 Label* on_not_equal) { | |
426 BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c)); | |
427 } | |
428 | |
429 | |
430 void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c, | |
431 uint32_t mask, | |
432 Label* on_equal) { | |
433 __ And(a0, current_character(), Operand(mask)); | |
434 Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); | |
435 BranchOrBacktrack(on_equal, eq, a0, rhs); | |
436 } | |
437 | |
438 | |
439 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c, | |
440 uint32_t mask, | |
441 Label* on_not_equal) { | |
442 __ And(a0, current_character(), Operand(mask)); | |
443 Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c); | |
444 BranchOrBacktrack(on_not_equal, ne, a0, rhs); | |
445 } | |
446 | |
447 | |
448 void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd( | |
449 uc16 c, | |
450 uc16 minus, | |
451 uc16 mask, | |
452 Label* on_not_equal) { | |
453 DCHECK(minus < String::kMaxUtf16CodeUnit); | |
454 __ Dsubu(a0, current_character(), Operand(minus)); | |
455 __ And(a0, a0, Operand(mask)); | |
456 BranchOrBacktrack(on_not_equal, ne, a0, Operand(c)); | |
457 } | |
458 | |
459 | |
460 void RegExpMacroAssemblerMIPS::CheckCharacterInRange( | |
461 uc16 from, | |
462 uc16 to, | |
463 Label* on_in_range) { | |
464 __ Dsubu(a0, current_character(), Operand(from)); | |
465 // Unsigned lower-or-same condition. | |
466 BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from)); | |
467 } | |
468 | |
469 | |
470 void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange( | |
471 uc16 from, | |
472 uc16 to, | |
473 Label* on_not_in_range) { | |
474 __ Dsubu(a0, current_character(), Operand(from)); | |
475 // Unsigned higher condition. | |
476 BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from)); | |
477 } | |
478 | |
479 | |
480 void RegExpMacroAssemblerMIPS::CheckBitInTable( | |
481 Handle<ByteArray> table, | |
482 Label* on_bit_set) { | |
483 __ li(a0, Operand(table)); | |
484 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) { | |
485 __ And(a1, current_character(), Operand(kTableSize - 1)); | |
486 __ Daddu(a0, a0, a1); | |
487 } else { | |
488 __ Daddu(a0, a0, current_character()); | |
489 } | |
490 | |
491 __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize)); | |
492 BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg)); | |
493 } | |
494 | |
495 | |
496 bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type, | |
497 Label* on_no_match) { | |
498 // Range checks (c in min..max) are generally implemented by an unsigned | |
499 // (c - min) <= (max - min) check. | |
500 switch (type) { | |
501 case 's': | |
502 // Match space-characters. | |
503 if (mode_ == LATIN1) { | |
504 // One byte space characters are '\t'..'\r', ' ' and \u00a0. | |
505 Label success; | |
506 __ Branch(&success, eq, current_character(), Operand(' ')); | |
507 // Check range 0x09..0x0d. | |
508 __ Dsubu(a0, current_character(), Operand('\t')); | |
509 __ Branch(&success, ls, a0, Operand('\r' - '\t')); | |
510 // \u00a0 (NBSP). | |
511 BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t')); | |
512 __ bind(&success); | |
513 return true; | |
514 } | |
515 return false; | |
516 case 'S': | |
517 // The emitted code for generic character classes is good enough. | |
518 return false; | |
519 case 'd': | |
520 // Match Latin1 digits ('0'..'9'). | |
521 __ Dsubu(a0, current_character(), Operand('0')); | |
522 BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0')); | |
523 return true; | |
524 case 'D': | |
525 // Match non Latin1-digits. | |
526 __ Dsubu(a0, current_character(), Operand('0')); | |
527 BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0')); | |
528 return true; | |
529 case '.': { | |
530 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029). | |
531 __ Xor(a0, current_character(), Operand(0x01)); | |
532 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c. | |
533 __ Dsubu(a0, a0, Operand(0x0b)); | |
534 BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b)); | |
535 if (mode_ == UC16) { | |
536 // Compare original value to 0x2028 and 0x2029, using the already | |
537 // computed (current_char ^ 0x01 - 0x0b). I.e., check for | |
538 // 0x201d (0x2028 - 0x0b) or 0x201e. | |
539 __ Dsubu(a0, a0, Operand(0x2028 - 0x0b)); | |
540 BranchOrBacktrack(on_no_match, ls, a0, Operand(1)); | |
541 } | |
542 return true; | |
543 } | |
544 case 'n': { | |
545 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029). | |
546 __ Xor(a0, current_character(), Operand(0x01)); | |
547 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c. | |
548 __ Dsubu(a0, a0, Operand(0x0b)); | |
549 if (mode_ == LATIN1) { | |
550 BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b)); | |
551 } else { | |
552 Label done; | |
553 BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b)); | |
554 // Compare original value to 0x2028 and 0x2029, using the already | |
555 // computed (current_char ^ 0x01 - 0x0b). I.e., check for | |
556 // 0x201d (0x2028 - 0x0b) or 0x201e. | |
557 __ Dsubu(a0, a0, Operand(0x2028 - 0x0b)); | |
558 BranchOrBacktrack(on_no_match, hi, a0, Operand(1)); | |
559 __ bind(&done); | |
560 } | |
561 return true; | |
562 } | |
563 case 'w': { | |
564 if (mode_ != LATIN1) { | |
565 // Table is 256 entries, so all Latin1 characters can be tested. | |
566 BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z')); | |
567 } | |
568 ExternalReference map = ExternalReference::re_word_character_map(); | |
569 __ li(a0, Operand(map)); | |
570 __ Daddu(a0, a0, current_character()); | |
571 __ lbu(a0, MemOperand(a0, 0)); | |
572 BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg)); | |
573 return true; | |
574 } | |
575 case 'W': { | |
576 Label done; | |
577 if (mode_ != LATIN1) { | |
578 // Table is 256 entries, so all Latin1 characters can be tested. | |
579 __ Branch(&done, hi, current_character(), Operand('z')); | |
580 } | |
581 ExternalReference map = ExternalReference::re_word_character_map(); | |
582 __ li(a0, Operand(map)); | |
583 __ Daddu(a0, a0, current_character()); | |
584 __ lbu(a0, MemOperand(a0, 0)); | |
585 BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg)); | |
586 if (mode_ != LATIN1) { | |
587 __ bind(&done); | |
588 } | |
589 return true; | |
590 } | |
591 case '*': | |
592 // Match any character. | |
593 return true; | |
594 // No custom implementation (yet): s(UC16), S(UC16). | |
595 default: | |
596 return false; | |
597 } | |
598 } | |
599 | |
600 | |
601 void RegExpMacroAssemblerMIPS::Fail() { | |
602 __ li(v0, Operand(FAILURE)); | |
603 __ jmp(&exit_label_); | |
604 } | |
605 | |
606 | |
607 Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) { | |
608 Label return_v0; | |
609 if (masm_->has_exception()) { | |
610 // If the code gets corrupted due to long regular expressions and lack of | |
611 // space on trampolines, an internal exception flag is set. If this case | |
612 // is detected, we will jump into exit sequence right away. | |
613 __ bind_to(&entry_label_, internal_failure_label_.pos()); | |
614 } else { | |
615 // Finalize code - write the entry point code now we know how many | |
616 // registers we need. | |
617 | |
618 // Entry code: | |
619 __ bind(&entry_label_); | |
620 | |
621 // Tell the system that we have a stack frame. Because the type is MANUAL, | |
622 // no is generated. | |
623 FrameScope scope(masm_, StackFrame::MANUAL); | |
624 | |
625 // Actually emit code to start a new stack frame. | |
626 // Push arguments | |
627 // Save callee-save registers. | |
628 // Start new stack frame. | |
629 // Store link register in existing stack-cell. | |
630 // Order here should correspond to order of offset constants in header file. | |
631 // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs | |
632 // or dont save. | |
633 RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() | | |
634 s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit(); | |
635 RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit(); | |
636 | |
637 if (kMipsAbi == kN64) { | |
638 // TODO(plind): Should probably alias a4-a7, for clarity. | |
639 argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit(); | |
640 } | |
641 | |
642 __ MultiPush(argument_registers | registers_to_retain | ra.bit()); | |
643 // Set frame pointer in space for it if this is not a direct call | |
644 // from generated code. | |
645 // TODO(plind): this 8 is the # of argument regs, should have definition. | |
646 __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize)); | |
647 __ mov(a0, zero_reg); | |
648 __ push(a0); // Make room for success counter and initialize it to 0. | |
649 __ push(a0); // Make room for "position - 1" constant (value irrelevant). | |
650 | |
651 // Check if we have space on the stack for registers. | |
652 Label stack_limit_hit; | |
653 Label stack_ok; | |
654 | |
655 ExternalReference stack_limit = | |
656 ExternalReference::address_of_stack_limit(masm_->isolate()); | |
657 __ li(a0, Operand(stack_limit)); | |
658 __ ld(a0, MemOperand(a0)); | |
659 __ Dsubu(a0, sp, a0); | |
660 // Handle it if the stack pointer is already below the stack limit. | |
661 __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg)); | |
662 // Check if there is room for the variable number of registers above | |
663 // the stack limit. | |
664 __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize)); | |
665 // Exit with OutOfMemory exception. There is not enough space on the stack | |
666 // for our working registers. | |
667 __ li(v0, Operand(EXCEPTION)); | |
668 __ jmp(&return_v0); | |
669 | |
670 __ bind(&stack_limit_hit); | |
671 CallCheckStackGuardState(a0); | |
672 // If returned value is non-zero, we exit with the returned value as result. | |
673 __ Branch(&return_v0, ne, v0, Operand(zero_reg)); | |
674 | |
675 __ bind(&stack_ok); | |
676 // Allocate space on stack for registers. | |
677 __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize)); | |
678 // Load string end. | |
679 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); | |
680 // Load input start. | |
681 __ ld(a0, MemOperand(frame_pointer(), kInputStart)); | |
682 // Find negative length (offset of start relative to end). | |
683 __ Dsubu(current_input_offset(), a0, end_of_input_address()); | |
684 // Set a0 to address of char before start of the input string | |
685 // (effectively string position -1). | |
686 __ ld(a1, MemOperand(frame_pointer(), kStartIndex)); | |
687 __ Dsubu(a0, current_input_offset(), Operand(char_size())); | |
688 __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0); | |
689 __ Dsubu(a0, a0, t1); | |
690 // Store this value in a local variable, for use when clearing | |
691 // position registers. | |
692 __ sd(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); | |
693 | |
694 // Initialize code pointer register | |
695 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); | |
696 | |
697 Label load_char_start_regexp, start_regexp; | |
698 // Load newline if index is at start, previous character otherwise. | |
699 __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg)); | |
700 __ li(current_character(), Operand('\n')); | |
701 __ jmp(&start_regexp); | |
702 | |
703 // Global regexp restarts matching here. | |
704 __ bind(&load_char_start_regexp); | |
705 // Load previous char as initial value of current character register. | |
706 LoadCurrentCharacterUnchecked(-1, 1); | |
707 __ bind(&start_regexp); | |
708 | |
709 // Initialize on-stack registers. | |
710 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp. | |
711 // Fill saved registers with initial value = start offset - 1. | |
712 if (num_saved_registers_ > 8) { | |
713 // Address of register 0. | |
714 __ Daddu(a1, frame_pointer(), Operand(kRegisterZero)); | |
715 __ li(a2, Operand(num_saved_registers_)); | |
716 Label init_loop; | |
717 __ bind(&init_loop); | |
718 __ sd(a0, MemOperand(a1)); | |
719 __ Daddu(a1, a1, Operand(-kPointerSize)); | |
720 __ Dsubu(a2, a2, Operand(1)); | |
721 __ Branch(&init_loop, ne, a2, Operand(zero_reg)); | |
722 } else { | |
723 for (int i = 0; i < num_saved_registers_; i++) { | |
724 __ sd(a0, register_location(i)); | |
725 } | |
726 } | |
727 } | |
728 | |
729 // Initialize backtrack stack pointer. | |
730 __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd)); | |
731 | |
732 __ jmp(&start_label_); | |
733 | |
734 | |
735 // Exit code: | |
736 if (success_label_.is_linked()) { | |
737 // Save captures when successful. | |
738 __ bind(&success_label_); | |
739 if (num_saved_registers_ > 0) { | |
740 // Copy captures to output. | |
741 __ ld(a1, MemOperand(frame_pointer(), kInputStart)); | |
742 __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput)); | |
743 __ ld(a2, MemOperand(frame_pointer(), kStartIndex)); | |
744 __ Dsubu(a1, end_of_input_address(), a1); | |
745 // a1 is length of input in bytes. | |
746 if (mode_ == UC16) { | |
747 __ dsrl(a1, a1, 1); | |
748 } | |
749 // a1 is length of input in characters. | |
750 __ Daddu(a1, a1, Operand(a2)); | |
751 // a1 is length of string in characters. | |
752 | |
753 DCHECK_EQ(0, num_saved_registers_ % 2); | |
754 // Always an even number of capture registers. This allows us to | |
755 // unroll the loop once to add an operation between a load of a register | |
756 // and the following use of that register. | |
757 for (int i = 0; i < num_saved_registers_; i += 2) { | |
758 __ ld(a2, register_location(i)); | |
759 __ ld(a3, register_location(i + 1)); | |
760 if (i == 0 && global_with_zero_length_check()) { | |
761 // Keep capture start in a4 for the zero-length check later. | |
762 __ mov(t3, a2); | |
763 } | |
764 if (mode_ == UC16) { | |
765 __ dsra(a2, a2, 1); | |
766 __ Daddu(a2, a2, a1); | |
767 __ dsra(a3, a3, 1); | |
768 __ Daddu(a3, a3, a1); | |
769 } else { | |
770 __ Daddu(a2, a1, Operand(a2)); | |
771 __ Daddu(a3, a1, Operand(a3)); | |
772 } | |
773 // V8 expects the output to be an int32_t array. | |
774 __ sw(a2, MemOperand(a0)); | |
775 __ Daddu(a0, a0, kIntSize); | |
776 __ sw(a3, MemOperand(a0)); | |
777 __ Daddu(a0, a0, kIntSize); | |
778 } | |
779 } | |
780 | |
781 if (global()) { | |
782 // Restart matching if the regular expression is flagged as global. | |
783 __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); | |
784 __ lw(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); | |
785 __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput)); | |
786 // Increment success counter. | |
787 __ Daddu(a0, a0, 1); | |
788 __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures)); | |
789 // Capture results have been stored, so the number of remaining global | |
790 // output registers is reduced by the number of stored captures. | |
791 __ Dsubu(a1, a1, num_saved_registers_); | |
792 // Check whether we have enough room for another set of capture results. | |
793 __ mov(v0, a0); | |
794 __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_)); | |
795 | |
796 __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters)); | |
797 // Advance the location for output. | |
798 __ Daddu(a2, a2, num_saved_registers_ * kIntSize); | |
799 __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput)); | |
800 | |
801 // Prepare a0 to initialize registers with its value in the next run. | |
802 __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); | |
803 | |
804 if (global_with_zero_length_check()) { | |
805 // Special case for zero-length matches. | |
806 // t3: capture start index | |
807 // Not a zero-length match, restart. | |
808 __ Branch( | |
809 &load_char_start_regexp, ne, current_input_offset(), Operand(t3)); | |
810 // Offset from the end is zero if we already reached the end. | |
811 __ Branch(&exit_label_, eq, current_input_offset(), | |
812 Operand(zero_reg)); | |
813 // Advance current position after a zero-length match. | |
814 __ Daddu(current_input_offset(), | |
815 current_input_offset(), | |
816 Operand((mode_ == UC16) ? 2 : 1)); | |
817 } | |
818 | |
819 __ Branch(&load_char_start_regexp); | |
820 } else { | |
821 __ li(v0, Operand(SUCCESS)); | |
822 } | |
823 } | |
824 // Exit and return v0. | |
825 __ bind(&exit_label_); | |
826 if (global()) { | |
827 __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures)); | |
828 } | |
829 | |
830 __ bind(&return_v0); | |
831 // Skip sp past regexp registers and local variables.. | |
832 __ mov(sp, frame_pointer()); | |
833 // Restore registers s0..s7 and return (restoring ra to pc). | |
834 __ MultiPop(registers_to_retain | ra.bit()); | |
835 __ Ret(); | |
836 | |
837 // Backtrack code (branch target for conditional backtracks). | |
838 if (backtrack_label_.is_linked()) { | |
839 __ bind(&backtrack_label_); | |
840 Backtrack(); | |
841 } | |
842 | |
843 Label exit_with_exception; | |
844 | |
845 // Preempt-code. | |
846 if (check_preempt_label_.is_linked()) { | |
847 SafeCallTarget(&check_preempt_label_); | |
848 // Put regexp engine registers on stack. | |
849 RegList regexp_registers_to_retain = current_input_offset().bit() | | |
850 current_character().bit() | backtrack_stackpointer().bit(); | |
851 __ MultiPush(regexp_registers_to_retain); | |
852 CallCheckStackGuardState(a0); | |
853 __ MultiPop(regexp_registers_to_retain); | |
854 // If returning non-zero, we should end execution with the given | |
855 // result as return value. | |
856 __ Branch(&return_v0, ne, v0, Operand(zero_reg)); | |
857 | |
858 // String might have moved: Reload end of string from frame. | |
859 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); | |
860 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); | |
861 SafeReturn(); | |
862 } | |
863 | |
864 // Backtrack stack overflow code. | |
865 if (stack_overflow_label_.is_linked()) { | |
866 SafeCallTarget(&stack_overflow_label_); | |
867 // Reached if the backtrack-stack limit has been hit. | |
868 // Put regexp engine registers on stack first. | |
869 RegList regexp_registers = current_input_offset().bit() | | |
870 current_character().bit(); | |
871 __ MultiPush(regexp_registers); | |
872 Label grow_failed; | |
873 // Call GrowStack(backtrack_stackpointer(), &stack_base) | |
874 static const int num_arguments = 3; | |
875 __ PrepareCallCFunction(num_arguments, a0); | |
876 __ mov(a0, backtrack_stackpointer()); | |
877 __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd)); | |
878 __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate()))); | |
879 ExternalReference grow_stack = | |
880 ExternalReference::re_grow_stack(masm_->isolate()); | |
881 __ CallCFunction(grow_stack, num_arguments); | |
882 // Restore regexp registers. | |
883 __ MultiPop(regexp_registers); | |
884 // If return NULL, we have failed to grow the stack, and | |
885 // must exit with a stack-overflow exception. | |
886 __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg)); | |
887 // Otherwise use return value as new stack pointer. | |
888 __ mov(backtrack_stackpointer(), v0); | |
889 // Restore saved registers and continue. | |
890 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE); | |
891 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd)); | |
892 SafeReturn(); | |
893 } | |
894 | |
895 if (exit_with_exception.is_linked()) { | |
896 // If any of the code above needed to exit with an exception. | |
897 __ bind(&exit_with_exception); | |
898 // Exit with Result EXCEPTION(-1) to signal thrown exception. | |
899 __ li(v0, Operand(EXCEPTION)); | |
900 __ jmp(&return_v0); | |
901 } | |
902 } | |
903 | |
904 CodeDesc code_desc; | |
905 masm_->GetCode(&code_desc); | |
906 Handle<Code> code = isolate()->factory()->NewCode( | |
907 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject()); | |
908 LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source)); | |
909 return Handle<HeapObject>::cast(code); | |
910 } | |
911 | |
912 | |
913 void RegExpMacroAssemblerMIPS::GoTo(Label* to) { | |
914 if (to == NULL) { | |
915 Backtrack(); | |
916 return; | |
917 } | |
918 __ jmp(to); | |
919 return; | |
920 } | |
921 | |
922 | |
923 void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg, | |
924 int comparand, | |
925 Label* if_ge) { | |
926 __ ld(a0, register_location(reg)); | |
927 BranchOrBacktrack(if_ge, ge, a0, Operand(comparand)); | |
928 } | |
929 | |
930 | |
931 void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg, | |
932 int comparand, | |
933 Label* if_lt) { | |
934 __ ld(a0, register_location(reg)); | |
935 BranchOrBacktrack(if_lt, lt, a0, Operand(comparand)); | |
936 } | |
937 | |
938 | |
939 void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg, | |
940 Label* if_eq) { | |
941 __ ld(a0, register_location(reg)); | |
942 BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset())); | |
943 } | |
944 | |
945 | |
946 RegExpMacroAssembler::IrregexpImplementation | |
947 RegExpMacroAssemblerMIPS::Implementation() { | |
948 return kMIPSImplementation; | |
949 } | |
950 | |
951 | |
952 void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset, | |
953 Label* on_end_of_input, | |
954 bool check_bounds, | |
955 int characters) { | |
956 DCHECK(cp_offset >= -1); // ^ and \b can look behind one character. | |
957 DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works). | |
958 if (check_bounds) { | |
959 CheckPosition(cp_offset + characters - 1, on_end_of_input); | |
960 } | |
961 LoadCurrentCharacterUnchecked(cp_offset, characters); | |
962 } | |
963 | |
964 | |
965 void RegExpMacroAssemblerMIPS::PopCurrentPosition() { | |
966 Pop(current_input_offset()); | |
967 } | |
968 | |
969 | |
970 void RegExpMacroAssemblerMIPS::PopRegister(int register_index) { | |
971 Pop(a0); | |
972 __ sd(a0, register_location(register_index)); | |
973 } | |
974 | |
975 | |
976 void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) { | |
977 if (label->is_bound()) { | |
978 int target = label->pos(); | |
979 __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag)); | |
980 } else { | |
981 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); | |
982 Label after_constant; | |
983 __ Branch(&after_constant); | |
984 int offset = masm_->pc_offset(); | |
985 int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag; | |
986 __ emit(0); | |
987 masm_->label_at_put(label, offset); | |
988 __ bind(&after_constant); | |
989 if (is_int16(cp_offset)) { | |
990 __ lwu(a0, MemOperand(code_pointer(), cp_offset)); | |
991 } else { | |
992 __ Daddu(a0, code_pointer(), cp_offset); | |
993 __ lwu(a0, MemOperand(a0, 0)); | |
994 } | |
995 } | |
996 Push(a0); | |
997 CheckStackLimit(); | |
998 } | |
999 | |
1000 | |
1001 void RegExpMacroAssemblerMIPS::PushCurrentPosition() { | |
1002 Push(current_input_offset()); | |
1003 } | |
1004 | |
1005 | |
1006 void RegExpMacroAssemblerMIPS::PushRegister(int register_index, | |
1007 StackCheckFlag check_stack_limit) { | |
1008 __ ld(a0, register_location(register_index)); | |
1009 Push(a0); | |
1010 if (check_stack_limit) CheckStackLimit(); | |
1011 } | |
1012 | |
1013 | |
1014 void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) { | |
1015 __ ld(current_input_offset(), register_location(reg)); | |
1016 } | |
1017 | |
1018 | |
1019 void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) { | |
1020 __ ld(backtrack_stackpointer(), register_location(reg)); | |
1021 __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd)); | |
1022 __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0)); | |
1023 } | |
1024 | |
1025 | |
1026 void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) { | |
1027 Label after_position; | |
1028 __ Branch(&after_position, | |
1029 ge, | |
1030 current_input_offset(), | |
1031 Operand(-by * char_size())); | |
1032 __ li(current_input_offset(), -by * char_size()); | |
1033 // On RegExp code entry (where this operation is used), the character before | |
1034 // the current position is expected to be already loaded. | |
1035 // We have advanced the position, so it's safe to read backwards. | |
1036 LoadCurrentCharacterUnchecked(-1, 1); | |
1037 __ bind(&after_position); | |
1038 } | |
1039 | |
1040 | |
1041 void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) { | |
1042 DCHECK(register_index >= num_saved_registers_); // Reserved for positions! | |
1043 __ li(a0, Operand(to)); | |
1044 __ sd(a0, register_location(register_index)); | |
1045 } | |
1046 | |
1047 | |
1048 bool RegExpMacroAssemblerMIPS::Succeed() { | |
1049 __ jmp(&success_label_); | |
1050 return global(); | |
1051 } | |
1052 | |
1053 | |
1054 void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg, | |
1055 int cp_offset) { | |
1056 if (cp_offset == 0) { | |
1057 __ sd(current_input_offset(), register_location(reg)); | |
1058 } else { | |
1059 __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size())); | |
1060 __ sd(a0, register_location(reg)); | |
1061 } | |
1062 } | |
1063 | |
1064 | |
1065 void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) { | |
1066 DCHECK(reg_from <= reg_to); | |
1067 __ ld(a0, MemOperand(frame_pointer(), kInputStartMinusOne)); | |
1068 for (int reg = reg_from; reg <= reg_to; reg++) { | |
1069 __ sd(a0, register_location(reg)); | |
1070 } | |
1071 } | |
1072 | |
1073 | |
1074 void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) { | |
1075 __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd)); | |
1076 __ Dsubu(a0, backtrack_stackpointer(), a1); | |
1077 __ sd(a0, register_location(reg)); | |
1078 } | |
1079 | |
1080 | |
1081 bool RegExpMacroAssemblerMIPS::CanReadUnaligned() { | |
1082 return false; | |
1083 } | |
1084 | |
1085 | |
1086 // Private methods: | |
1087 | |
1088 void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) { | |
1089 int stack_alignment = base::OS::ActivationFrameAlignment(); | |
1090 | |
1091 // Align the stack pointer and save the original sp value on the stack. | |
1092 __ mov(scratch, sp); | |
1093 __ Dsubu(sp, sp, Operand(kPointerSize)); | |
1094 DCHECK(base::bits::IsPowerOfTwo32(stack_alignment)); | |
1095 __ And(sp, sp, Operand(-stack_alignment)); | |
1096 __ sd(scratch, MemOperand(sp)); | |
1097 | |
1098 __ mov(a2, frame_pointer()); | |
1099 // Code* of self. | |
1100 __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE); | |
1101 | |
1102 // We need to make room for the return address on the stack. | |
1103 DCHECK(IsAligned(stack_alignment, kPointerSize)); | |
1104 __ Dsubu(sp, sp, Operand(stack_alignment)); | |
1105 | |
1106 // Stack pointer now points to cell where return address is to be written. | |
1107 // Arguments are in registers, meaning we teat the return address as | |
1108 // argument 5. Since DirectCEntryStub will handleallocating space for the C | |
1109 // argument slots, we don't need to care about that here. This is how the | |
1110 // stack will look (sp meaning the value of sp at this moment): | |
1111 // [sp + 3] - empty slot if needed for alignment. | |
1112 // [sp + 2] - saved sp. | |
1113 // [sp + 1] - second word reserved for return value. | |
1114 // [sp + 0] - first word reserved for return value. | |
1115 | |
1116 // a0 will point to the return address, placed by DirectCEntry. | |
1117 __ mov(a0, sp); | |
1118 | |
1119 ExternalReference stack_guard_check = | |
1120 ExternalReference::re_check_stack_guard_state(masm_->isolate()); | |
1121 __ li(t9, Operand(stack_guard_check)); | |
1122 DirectCEntryStub stub(isolate()); | |
1123 stub.GenerateCall(masm_, t9); | |
1124 | |
1125 // DirectCEntryStub allocated space for the C argument slots so we have to | |
1126 // drop them with the return address from the stack with loading saved sp. | |
1127 // At this point stack must look: | |
1128 // [sp + 7] - empty slot if needed for alignment. | |
1129 // [sp + 6] - saved sp. | |
1130 // [sp + 5] - second word reserved for return value. | |
1131 // [sp + 4] - first word reserved for return value. | |
1132 // [sp + 3] - C argument slot. | |
1133 // [sp + 2] - C argument slot. | |
1134 // [sp + 1] - C argument slot. | |
1135 // [sp + 0] - C argument slot. | |
1136 __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize)); | |
1137 | |
1138 __ li(code_pointer(), Operand(masm_->CodeObject())); | |
1139 } | |
1140 | |
1141 | |
1142 // Helper function for reading a value out of a stack frame. | |
1143 template <typename T> | |
1144 static T& frame_entry(Address re_frame, int frame_offset) { | |
1145 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset)); | |
1146 } | |
1147 | |
1148 | |
1149 template <typename T> | |
1150 static T* frame_entry_address(Address re_frame, int frame_offset) { | |
1151 return reinterpret_cast<T*>(re_frame + frame_offset); | |
1152 } | |
1153 | |
1154 | |
1155 int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address, | |
1156 Code* re_code, | |
1157 Address re_frame) { | |
1158 return NativeRegExpMacroAssembler::CheckStackGuardState( | |
1159 frame_entry<Isolate*>(re_frame, kIsolate), | |
1160 frame_entry<int>(re_frame, kStartIndex), | |
1161 frame_entry<int>(re_frame, kDirectCall) == 1, return_address, re_code, | |
1162 frame_entry_address<String*>(re_frame, kInputString), | |
1163 frame_entry_address<const byte*>(re_frame, kInputStart), | |
1164 frame_entry_address<const byte*>(re_frame, kInputEnd)); | |
1165 } | |
1166 | |
1167 | |
1168 MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) { | |
1169 DCHECK(register_index < (1<<30)); | |
1170 if (num_registers_ <= register_index) { | |
1171 num_registers_ = register_index + 1; | |
1172 } | |
1173 return MemOperand(frame_pointer(), | |
1174 kRegisterZero - register_index * kPointerSize); | |
1175 } | |
1176 | |
1177 | |
1178 void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset, | |
1179 Label* on_outside_input) { | |
1180 BranchOrBacktrack(on_outside_input, | |
1181 ge, | |
1182 current_input_offset(), | |
1183 Operand(-cp_offset * char_size())); | |
1184 } | |
1185 | |
1186 | |
1187 void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to, | |
1188 Condition condition, | |
1189 Register rs, | |
1190 const Operand& rt) { | |
1191 if (condition == al) { // Unconditional. | |
1192 if (to == NULL) { | |
1193 Backtrack(); | |
1194 return; | |
1195 } | |
1196 __ jmp(to); | |
1197 return; | |
1198 } | |
1199 if (to == NULL) { | |
1200 __ Branch(&backtrack_label_, condition, rs, rt); | |
1201 return; | |
1202 } | |
1203 __ Branch(to, condition, rs, rt); | |
1204 } | |
1205 | |
1206 | |
1207 void RegExpMacroAssemblerMIPS::SafeCall(Label* to, | |
1208 Condition cond, | |
1209 Register rs, | |
1210 const Operand& rt) { | |
1211 __ BranchAndLink(to, cond, rs, rt); | |
1212 } | |
1213 | |
1214 | |
1215 void RegExpMacroAssemblerMIPS::SafeReturn() { | |
1216 __ pop(ra); | |
1217 __ Daddu(t1, ra, Operand(masm_->CodeObject())); | |
1218 __ Jump(t1); | |
1219 } | |
1220 | |
1221 | |
1222 void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) { | |
1223 __ bind(name); | |
1224 __ Dsubu(ra, ra, Operand(masm_->CodeObject())); | |
1225 __ push(ra); | |
1226 } | |
1227 | |
1228 | |
1229 void RegExpMacroAssemblerMIPS::Push(Register source) { | |
1230 DCHECK(!source.is(backtrack_stackpointer())); | |
1231 __ Daddu(backtrack_stackpointer(), | |
1232 backtrack_stackpointer(), | |
1233 Operand(-kIntSize)); | |
1234 __ sw(source, MemOperand(backtrack_stackpointer())); | |
1235 } | |
1236 | |
1237 | |
1238 void RegExpMacroAssemblerMIPS::Pop(Register target) { | |
1239 DCHECK(!target.is(backtrack_stackpointer())); | |
1240 __ lw(target, MemOperand(backtrack_stackpointer())); | |
1241 __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize); | |
1242 } | |
1243 | |
1244 | |
1245 void RegExpMacroAssemblerMIPS::CheckPreemption() { | |
1246 // Check for preemption. | |
1247 ExternalReference stack_limit = | |
1248 ExternalReference::address_of_stack_limit(masm_->isolate()); | |
1249 __ li(a0, Operand(stack_limit)); | |
1250 __ ld(a0, MemOperand(a0)); | |
1251 SafeCall(&check_preempt_label_, ls, sp, Operand(a0)); | |
1252 } | |
1253 | |
1254 | |
1255 void RegExpMacroAssemblerMIPS::CheckStackLimit() { | |
1256 ExternalReference stack_limit = | |
1257 ExternalReference::address_of_regexp_stack_limit(masm_->isolate()); | |
1258 | |
1259 __ li(a0, Operand(stack_limit)); | |
1260 __ ld(a0, MemOperand(a0)); | |
1261 SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0)); | |
1262 } | |
1263 | |
1264 | |
1265 void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset, | |
1266 int characters) { | |
1267 Register offset = current_input_offset(); | |
1268 if (cp_offset != 0) { | |
1269 // t3 is not being used to store the capture start index at this point. | |
1270 __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size())); | |
1271 offset = t3; | |
1272 } | |
1273 // We assume that we cannot do unaligned loads on MIPS, so this function | |
1274 // must only be used to load a single character at a time. | |
1275 DCHECK(characters == 1); | |
1276 __ Daddu(t1, end_of_input_address(), Operand(offset)); | |
1277 if (mode_ == LATIN1) { | |
1278 __ lbu(current_character(), MemOperand(t1, 0)); | |
1279 } else { | |
1280 DCHECK(mode_ == UC16); | |
1281 __ lhu(current_character(), MemOperand(t1, 0)); | |
1282 } | |
1283 } | |
1284 | |
1285 #undef __ | |
1286 | |
1287 #endif // V8_INTERPRETED_REGEXP | |
1288 | |
1289 } // namespace internal | |
1290 } // namespace v8 | |
1291 | |
1292 #endif // V8_TARGET_ARCH_MIPS64 | |
OLD | NEW |