Index: src/pathops/SkPathOpsTypes.h |
=================================================================== |
--- src/pathops/SkPathOpsTypes.h (revision 0) |
+++ src/pathops/SkPathOpsTypes.h (revision 0) |
@@ -0,0 +1,226 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#ifndef SkPathOpsTypes_DEFINED |
+#define SkPathOpsTypes_DEFINED |
+ |
+#include <float.h> // for FLT_EPSILON |
+#include <math.h> // for fabs, sqrt |
+ |
+#include "SkFloatingPoint.h" |
+#include "SkPathOps.h" |
+#include "SkPathOpsDebug.h" |
+#include "SkScalar.h" |
+ |
+// FIXME: move these into SkTypes.h |
+template <typename T> inline T SkTMax(T a, T b) { |
+ if (a < b) |
+ a = b; |
+ return a; |
+} |
+ |
+template <typename T> inline T SkTMin(T a, T b) { |
+ if (a > b) |
+ a = b; |
+ return a; |
+} |
+ |
+// FIXME: move this into SkFloatingPoint.h |
+#define sk_double_isnan(a) sk_float_isnan(a) |
+ |
+enum SkPathOpsMask { |
+ kWinding_PathOpsMask = -1, |
+ kNo_PathOpsMask = 0, |
+ kEvenOdd_PathOpsMask = 1 |
+}; |
+ |
+extern bool AlmostEqualUlps(float A, float B); |
+inline bool AlmostEqualUlps(double A, double B) { |
+ return AlmostEqualUlps(SkDoubleToScalar(A), SkDoubleToScalar(B)); |
+} |
+ |
+// FLT_EPSILON == 1.19209290E-07 == 1 / (2 ^ 23) |
+// DBL_EPSILON == 2.22045e-16 |
+const double FLT_EPSILON_CUBED = FLT_EPSILON * FLT_EPSILON * FLT_EPSILON; |
+const double FLT_EPSILON_HALF = FLT_EPSILON / 2; |
+const double FLT_EPSILON_SQUARED = FLT_EPSILON * FLT_EPSILON; |
+const double FLT_EPSILON_SQRT = sqrt(FLT_EPSILON); |
+const double FLT_EPSILON_INVERSE = 1 / FLT_EPSILON; |
+const double DBL_EPSILON_ERR = DBL_EPSILON * 4; // FIXME: tune -- allow a few bits of error |
+const double ROUGH_EPSILON = FLT_EPSILON * 64; |
+const double MORE_ROUGH_EPSILON = FLT_EPSILON * 256; |
+ |
+inline bool approximately_zero(double x) { |
+ return fabs(x) < FLT_EPSILON; |
+} |
+ |
+inline bool precisely_zero(double x) { |
+ return fabs(x) < DBL_EPSILON_ERR; |
+} |
+ |
+inline bool approximately_zero(float x) { |
+ return fabs(x) < FLT_EPSILON; |
+} |
+ |
+inline bool approximately_zero_cubed(double x) { |
+ return fabs(x) < FLT_EPSILON_CUBED; |
+} |
+ |
+inline bool approximately_zero_half(double x) { |
+ return fabs(x) < FLT_EPSILON_HALF; |
+} |
+ |
+inline bool approximately_zero_squared(double x) { |
+ return fabs(x) < FLT_EPSILON_SQUARED; |
+} |
+ |
+inline bool approximately_zero_sqrt(double x) { |
+ return fabs(x) < FLT_EPSILON_SQRT; |
+} |
+ |
+inline bool approximately_zero_inverse(double x) { |
+ return fabs(x) > FLT_EPSILON_INVERSE; |
+} |
+ |
+// OPTIMIZATION: if called multiple times with the same denom, we want to pass 1/y instead |
+inline bool approximately_zero_when_compared_to(double x, double y) { |
+ return x == 0 || fabs(x / y) < FLT_EPSILON; |
+} |
+ |
+// Use this for comparing Ts in the range of 0 to 1. For general numbers (larger and smaller) use |
+// AlmostEqualUlps instead. |
+inline bool approximately_equal(double x, double y) { |
+ return approximately_zero(x - y); |
+} |
+ |
+inline bool precisely_equal(double x, double y) { |
+ return precisely_zero(x - y); |
+} |
+ |
+inline bool approximately_equal_half(double x, double y) { |
+ return approximately_zero_half(x - y); |
+} |
+ |
+inline bool approximately_equal_squared(double x, double y) { |
+ return approximately_equal(x, y); |
+} |
+ |
+inline bool approximately_greater(double x, double y) { |
+ return x - FLT_EPSILON >= y; |
+} |
+ |
+inline bool approximately_greater_or_equal(double x, double y) { |
+ return x + FLT_EPSILON > y; |
+} |
+ |
+inline bool approximately_lesser(double x, double y) { |
+ return x + FLT_EPSILON <= y; |
+} |
+ |
+inline bool approximately_lesser_or_equal(double x, double y) { |
+ return x - FLT_EPSILON < y; |
+} |
+ |
+inline double approximately_pin(double x) { |
+ return approximately_zero(x) ? 0 : x; |
+} |
+ |
+inline float approximately_pin(float x) { |
+ return approximately_zero(x) ? 0 : x; |
+} |
+ |
+inline bool approximately_greater_than_one(double x) { |
+ return x > 1 - FLT_EPSILON; |
+} |
+ |
+inline bool precisely_greater_than_one(double x) { |
+ return x > 1 - DBL_EPSILON_ERR; |
+} |
+ |
+inline bool approximately_less_than_zero(double x) { |
+ return x < FLT_EPSILON; |
+} |
+ |
+inline bool precisely_less_than_zero(double x) { |
+ return x < DBL_EPSILON_ERR; |
+} |
+ |
+inline bool approximately_negative(double x) { |
+ return x < FLT_EPSILON; |
+} |
+ |
+inline bool precisely_negative(double x) { |
+ return x < DBL_EPSILON_ERR; |
+} |
+ |
+inline bool approximately_one_or_less(double x) { |
+ return x < 1 + FLT_EPSILON; |
+} |
+ |
+inline bool approximately_positive(double x) { |
+ return x > -FLT_EPSILON; |
+} |
+ |
+inline bool approximately_positive_squared(double x) { |
+ return x > -(FLT_EPSILON_SQUARED); |
+} |
+ |
+inline bool approximately_zero_or_more(double x) { |
+ return x > -FLT_EPSILON; |
+} |
+ |
+inline bool approximately_between(double a, double b, double c) { |
+ return a <= c ? approximately_negative(a - b) && approximately_negative(b - c) |
+ : approximately_negative(b - a) && approximately_negative(c - b); |
+} |
+ |
+// returns true if (a <= b <= c) || (a >= b >= c) |
+inline bool between(double a, double b, double c) { |
+ SkASSERT(((a <= b && b <= c) || (a >= b && b >= c)) == ((a - b) * (c - b) <= 0)); |
+ return (a - b) * (c - b) <= 0; |
+} |
+ |
+inline bool more_roughly_equal(double x, double y) { |
+ return fabs(x - y) < MORE_ROUGH_EPSILON; |
+} |
+ |
+inline bool roughly_equal(double x, double y) { |
+ return fabs(x - y) < ROUGH_EPSILON; |
+} |
+ |
+struct SkDPoint; |
+struct SkDVector; |
+struct SkDLine; |
+struct SkDQuad; |
+struct SkDTriangle; |
+struct SkDCubic; |
+struct SkDRect; |
+ |
+inline double SkDInterp(double A, double B, double t) { |
+ return A + (B - A) * t; |
+} |
+ |
+double SkDCubeRoot(double x); |
+ |
+/* Returns -1 if negative, 0 if zero, 1 if positive |
+*/ |
+inline int SkDSign(double x) { |
+ return (x > 0) - (x < 0); |
+} |
+ |
+/* Returns 0 if negative, 1 if zero, 2 if positive |
+*/ |
+inline int SKDSide(double x) { |
+ return (x > 0) + (x >= 0); |
+} |
+ |
+/* Returns 1 if negative, 2 if zero, 4 if positive |
+*/ |
+inline int SkDSideBit(double x) { |
+ return 1 << SKDSide(x); |
+} |
+ |
+#endif |