| Index: src/pathops/SkPathOpsQuad.cpp
|
| ===================================================================
|
| --- src/pathops/SkPathOpsQuad.cpp (revision 0)
|
| +++ src/pathops/SkPathOpsQuad.cpp (revision 0)
|
| @@ -0,0 +1,293 @@
|
| +/*
|
| + * Copyright 2012 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +#include "SkLineParameters.h"
|
| +#include "SkPathOpsCubic.h"
|
| +#include "SkPathOpsQuad.h"
|
| +#include "SkPathOpsTriangle.h"
|
| +
|
| +// from http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html
|
| +// (currently only used by testing)
|
| +double SkDQuad::nearestT(const SkDPoint& pt) const {
|
| + SkDVector pos = fPts[0] - pt;
|
| + // search points P of bezier curve with PM.(dP / dt) = 0
|
| + // a calculus leads to a 3d degree equation :
|
| + SkDVector A = fPts[1] - fPts[0];
|
| + SkDVector B = fPts[2] - fPts[1];
|
| + B -= A;
|
| + double a = B.dot(B);
|
| + double b = 3 * A.dot(B);
|
| + double c = 2 * A.dot(A) + pos.dot(B);
|
| + double d = pos.dot(A);
|
| + double ts[3];
|
| + int roots = SkDCubic::RootsValidT(a, b, c, d, ts);
|
| + double d0 = pt.distanceSquared(fPts[0]);
|
| + double d2 = pt.distanceSquared(fPts[2]);
|
| + double distMin = SkTMin(d0, d2);
|
| + int bestIndex = -1;
|
| + for (int index = 0; index < roots; ++index) {
|
| + SkDPoint onQuad = xyAtT(ts[index]);
|
| + double dist = pt.distanceSquared(onQuad);
|
| + if (distMin > dist) {
|
| + distMin = dist;
|
| + bestIndex = index;
|
| + }
|
| + }
|
| + if (bestIndex >= 0) {
|
| + return ts[bestIndex];
|
| + }
|
| + return d0 < d2 ? 0 : 1;
|
| +}
|
| +
|
| +bool SkDQuad::pointInHull(const SkDPoint& pt) const {
|
| + return ((const SkDTriangle&) fPts).contains(pt);
|
| +}
|
| +
|
| +SkDPoint SkDQuad::top(double startT, double endT) const {
|
| + SkDQuad sub = subDivide(startT, endT);
|
| + SkDPoint topPt = sub[0];
|
| + if (topPt.fY > sub[2].fY || (topPt.fY == sub[2].fY && topPt.fX > sub[2].fX)) {
|
| + topPt = sub[2];
|
| + }
|
| + if (!between(sub[0].fY, sub[1].fY, sub[2].fY)) {
|
| + double extremeT;
|
| + if (FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, &extremeT)) {
|
| + extremeT = startT + (endT - startT) * extremeT;
|
| + SkDPoint test = xyAtT(extremeT);
|
| + if (topPt.fY > test.fY || (topPt.fY == test.fY && topPt.fX > test.fX)) {
|
| + topPt = test;
|
| + }
|
| + }
|
| + }
|
| + return topPt;
|
| +}
|
| +
|
| +int SkDQuad::AddValidTs(double s[], int realRoots, double* t) {
|
| + int foundRoots = 0;
|
| + for (int index = 0; index < realRoots; ++index) {
|
| + double tValue = s[index];
|
| + if (approximately_zero_or_more(tValue) && approximately_one_or_less(tValue)) {
|
| + if (approximately_less_than_zero(tValue)) {
|
| + tValue = 0;
|
| + } else if (approximately_greater_than_one(tValue)) {
|
| + tValue = 1;
|
| + }
|
| + for (int idx2 = 0; idx2 < foundRoots; ++idx2) {
|
| + if (approximately_equal(t[idx2], tValue)) {
|
| + goto nextRoot;
|
| + }
|
| + }
|
| + t[foundRoots++] = tValue;
|
| + }
|
| + nextRoot:
|
| + {}
|
| + }
|
| + return foundRoots;
|
| +}
|
| +
|
| +// note: caller expects multiple results to be sorted smaller first
|
| +// note: http://en.wikipedia.org/wiki/Loss_of_significance has an interesting
|
| +// analysis of the quadratic equation, suggesting why the following looks at
|
| +// the sign of B -- and further suggesting that the greatest loss of precision
|
| +// is in b squared less two a c
|
| +int SkDQuad::RootsValidT(double A, double B, double C, double t[2]) {
|
| + double s[2];
|
| + int realRoots = RootsReal(A, B, C, s);
|
| + int foundRoots = AddValidTs(s, realRoots, t);
|
| + return foundRoots;
|
| +}
|
| +
|
| +/*
|
| +Numeric Solutions (5.6) suggests to solve the quadratic by computing
|
| + Q = -1/2(B + sgn(B)Sqrt(B^2 - 4 A C))
|
| +and using the roots
|
| + t1 = Q / A
|
| + t2 = C / Q
|
| +*/
|
| +// this does not discard real roots <= 0 or >= 1
|
| +int SkDQuad::RootsReal(const double A, const double B, const double C, double s[2]) {
|
| + const double p = B / (2 * A);
|
| + const double q = C / A;
|
| + if (approximately_zero(A) && (approximately_zero_inverse(p) || approximately_zero_inverse(q))) {
|
| + if (approximately_zero(B)) {
|
| + s[0] = 0;
|
| + return C == 0;
|
| + }
|
| + s[0] = -C / B;
|
| + return 1;
|
| + }
|
| + /* normal form: x^2 + px + q = 0 */
|
| + const double p2 = p * p;
|
| + if (!AlmostEqualUlps(p2, q) && p2 < q) {
|
| + return 0;
|
| + }
|
| + double sqrt_D = 0;
|
| + if (p2 > q) {
|
| + sqrt_D = sqrt(p2 - q);
|
| + }
|
| + s[0] = sqrt_D - p;
|
| + s[1] = -sqrt_D - p;
|
| + return 1 + !AlmostEqualUlps(s[0], s[1]);
|
| +}
|
| +
|
| +bool SkDQuad::isLinear(int startIndex, int endIndex) const {
|
| + SkLineParameters lineParameters;
|
| + lineParameters.quadEndPoints(*this, startIndex, endIndex);
|
| + // FIXME: maybe it's possible to avoid this and compare non-normalized
|
| + lineParameters.normalize();
|
| + double distance = lineParameters.controlPtDistance(*this);
|
| + return approximately_zero(distance);
|
| +}
|
| +
|
| +SkDCubic SkDQuad::toCubic() const {
|
| + SkDCubic cubic;
|
| + cubic[0] = fPts[0];
|
| + cubic[2] = fPts[1];
|
| + cubic[3] = fPts[2];
|
| + cubic[1].fX = (cubic[0].fX + cubic[2].fX * 2) / 3;
|
| + cubic[1].fY = (cubic[0].fY + cubic[2].fY * 2) / 3;
|
| + cubic[2].fX = (cubic[3].fX + cubic[2].fX * 2) / 3;
|
| + cubic[2].fY = (cubic[3].fY + cubic[2].fY * 2) / 3;
|
| + return cubic;
|
| +}
|
| +
|
| +SkDVector SkDQuad::dxdyAtT(double t) const {
|
| + double a = t - 1;
|
| + double b = 1 - 2 * t;
|
| + double c = t;
|
| + SkDVector result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
|
| + a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
|
| + return result;
|
| +}
|
| +
|
| +SkDPoint SkDQuad::xyAtT(double t) const {
|
| + double one_t = 1 - t;
|
| + double a = one_t * one_t;
|
| + double b = 2 * one_t * t;
|
| + double c = t * t;
|
| + SkDPoint result = { a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX,
|
| + a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY };
|
| + return result;
|
| +}
|
| +
|
| +/*
|
| +Given a quadratic q, t1, and t2, find a small quadratic segment.
|
| +
|
| +The new quadratic is defined by A, B, and C, where
|
| + A = c[0]*(1 - t1)*(1 - t1) + 2*c[1]*t1*(1 - t1) + c[2]*t1*t1
|
| + C = c[3]*(1 - t1)*(1 - t1) + 2*c[2]*t1*(1 - t1) + c[1]*t1*t1
|
| +
|
| +To find B, compute the point halfway between t1 and t2:
|
| +
|
| +q(at (t1 + t2)/2) == D
|
| +
|
| +Next, compute where D must be if we know the value of B:
|
| +
|
| +_12 = A/2 + B/2
|
| +12_ = B/2 + C/2
|
| +123 = A/4 + B/2 + C/4
|
| + = D
|
| +
|
| +Group the known values on one side:
|
| +
|
| +B = D*2 - A/2 - C/2
|
| +*/
|
| +
|
| +static double interp_quad_coords(const double* src, double t) {
|
| + double ab = SkDInterp(src[0], src[2], t);
|
| + double bc = SkDInterp(src[2], src[4], t);
|
| + double abc = SkDInterp(ab, bc, t);
|
| + return abc;
|
| +}
|
| +
|
| +bool SkDQuad::monotonicInY() const {
|
| + return between(fPts[0].fY, fPts[1].fY, fPts[2].fY);
|
| +}
|
| +
|
| +SkDQuad SkDQuad::subDivide(double t1, double t2) const {
|
| + SkDQuad dst;
|
| + double ax = dst[0].fX = interp_quad_coords(&fPts[0].fX, t1);
|
| + double ay = dst[0].fY = interp_quad_coords(&fPts[0].fY, t1);
|
| + double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
|
| + double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
|
| + double cx = dst[2].fX = interp_quad_coords(&fPts[0].fX, t2);
|
| + double cy = dst[2].fY = interp_quad_coords(&fPts[0].fY, t2);
|
| + /* bx = */ dst[1].fX = 2*dx - (ax + cx)/2;
|
| + /* by = */ dst[1].fY = 2*dy - (ay + cy)/2;
|
| + return dst;
|
| +}
|
| +
|
| +SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
|
| + SkDPoint b;
|
| + double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
|
| + double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
|
| + b.fX = 2 * dx - (a.fX + c.fX) / 2;
|
| + b.fY = 2 * dy - (a.fY + c.fY) / 2;
|
| + return b;
|
| +}
|
| +
|
| +/* classic one t subdivision */
|
| +static void interp_quad_coords(const double* src, double* dst, double t) {
|
| + double ab = SkDInterp(src[0], src[2], t);
|
| + double bc = SkDInterp(src[2], src[4], t);
|
| + dst[0] = src[0];
|
| + dst[2] = ab;
|
| + dst[4] = SkDInterp(ab, bc, t);
|
| + dst[6] = bc;
|
| + dst[8] = src[4];
|
| +}
|
| +
|
| +SkDQuadPair SkDQuad::chopAt(double t) const
|
| +{
|
| + SkDQuadPair dst;
|
| + interp_quad_coords(&fPts[0].fX, &dst.pts[0].fX, t);
|
| + interp_quad_coords(&fPts[0].fY, &dst.pts[0].fY, t);
|
| + return dst;
|
| +}
|
| +
|
| +static int valid_unit_divide(double numer, double denom, double* ratio)
|
| +{
|
| + if (numer < 0) {
|
| + numer = -numer;
|
| + denom = -denom;
|
| + }
|
| + if (denom == 0 || numer == 0 || numer >= denom) {
|
| + return 0;
|
| + }
|
| + double r = numer / denom;
|
| + if (r == 0) { // catch underflow if numer <<<< denom
|
| + return 0;
|
| + }
|
| + *ratio = r;
|
| + return 1;
|
| +}
|
| +
|
| +/** Quad'(t) = At + B, where
|
| + A = 2(a - 2b + c)
|
| + B = 2(b - a)
|
| + Solve for t, only if it fits between 0 < t < 1
|
| +*/
|
| +int SkDQuad::FindExtrema(double a, double b, double c, double tValue[1]) {
|
| + /* At + B == 0
|
| + t = -B / A
|
| + */
|
| + return valid_unit_divide(a - b, a - b - b + c, tValue);
|
| +}
|
| +
|
| +/* Parameterization form, given A*t*t + 2*B*t*(1-t) + C*(1-t)*(1-t)
|
| + *
|
| + * a = A - 2*B + C
|
| + * b = 2*B - 2*C
|
| + * c = C
|
| + */
|
| +void SkDQuad::SetABC(const double* quad, double* a, double* b, double* c) {
|
| + *a = quad[0]; // a = A
|
| + *b = 2 * quad[2]; // b = 2*B
|
| + *c = quad[4]; // c = C
|
| + *b -= *c; // b = 2*B - C
|
| + *a -= *b; // a = A - 2*B + C
|
| + *b -= *c; // b = 2*B - 2*C
|
| +}
|
|
|