Index: src/pathops/SkPathOpsCubic.cpp |
=================================================================== |
--- src/pathops/SkPathOpsCubic.cpp (revision 0) |
+++ src/pathops/SkPathOpsCubic.cpp (revision 0) |
@@ -0,0 +1,463 @@ |
+/* |
+ * Copyright 2012 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+#include "SkLineParameters.h" |
+#include "SkPathOpsCubic.h" |
+#include "SkPathOpsLine.h" |
+#include "SkPathOpsQuad.h" |
+#include "SkPathOpsRect.h" |
+ |
+const int SkDCubic::gPrecisionUnit = 256; // FIXME: test different values in test framework |
+ |
+// FIXME: cache keep the bounds and/or precision with the caller? |
+double SkDCubic::calcPrecision() const { |
+ SkDRect dRect; |
+ dRect.setBounds(*this); // OPTIMIZATION: just use setRawBounds ? |
+ double width = dRect.fRight - dRect.fLeft; |
+ double height = dRect.fBottom - dRect.fTop; |
+ return (width > height ? width : height) / gPrecisionUnit; |
+} |
+ |
+bool SkDCubic::clockwise() const { |
+ double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY); |
+ for (int idx = 0; idx < 3; ++idx) { |
+ sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); |
+ } |
+ return sum <= 0; |
+} |
+ |
+void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) { |
+ *A = src[6]; // d |
+ *B = src[4] * 3; // 3*c |
+ *C = src[2] * 3; // 3*b |
+ *D = src[0]; // a |
+ *A -= *D - *C + *B; // A = -a + 3*b - 3*c + d |
+ *B += 3 * *D - 2 * *C; // B = 3*a - 6*b + 3*c |
+ *C -= 3 * *D; // C = -3*a + 3*b |
+} |
+ |
+bool SkDCubic::controlsContainedByEnds() const { |
+ SkDVector startTan = fPts[1] - fPts[0]; |
+ if (startTan.fX == 0 && startTan.fY == 0) { |
+ startTan = fPts[2] - fPts[0]; |
+ } |
+ SkDVector endTan = fPts[2] - fPts[3]; |
+ if (endTan.fX == 0 && endTan.fY == 0) { |
+ endTan = fPts[1] - fPts[3]; |
+ } |
+ if (startTan.dot(endTan) >= 0) { |
+ return false; |
+ } |
+ SkDLine startEdge = {{fPts[0], fPts[0]}}; |
+ startEdge[1].fX -= startTan.fY; |
+ startEdge[1].fY += startTan.fX; |
+ SkDLine endEdge = {{fPts[3], fPts[3]}}; |
+ endEdge[1].fX -= endTan.fY; |
+ endEdge[1].fY += endTan.fX; |
+ double leftStart1 = startEdge.isLeft(fPts[1]); |
+ if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) { |
+ return false; |
+ } |
+ double leftEnd1 = endEdge.isLeft(fPts[1]); |
+ if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) { |
+ return false; |
+ } |
+ return leftStart1 * leftEnd1 >= 0; |
+} |
+ |
+bool SkDCubic::endsAreExtremaInXOrY() const { |
+ return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX) |
+ && between(fPts[0].fX, fPts[2].fX, fPts[3].fX)) |
+ || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY) |
+ && between(fPts[0].fY, fPts[2].fY, fPts[3].fY)); |
+} |
+ |
+bool SkDCubic::isLinear(int startIndex, int endIndex) const { |
+ SkLineParameters lineParameters; |
+ lineParameters.cubicEndPoints(*this, startIndex, endIndex); |
+ // FIXME: maybe it's possible to avoid this and compare non-normalized |
+ lineParameters.normalize(); |
+ double distance = lineParameters.controlPtDistance(*this, 1); |
+ if (!approximately_zero(distance)) { |
+ return false; |
+ } |
+ distance = lineParameters.controlPtDistance(*this, 2); |
+ return approximately_zero(distance); |
+} |
+ |
+bool SkDCubic::monotonicInY() const { |
+ return between(fPts[0].fY, fPts[1].fY, fPts[3].fY) |
+ && between(fPts[0].fY, fPts[2].fY, fPts[3].fY); |
+} |
+ |
+bool SkDCubic::serpentine() const { |
+ if (!controlsContainedByEnds()) { |
+ return false; |
+ } |
+ double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY); |
+ for (int idx = 0; idx < 2; ++idx) { |
+ wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); |
+ } |
+ double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY); |
+ for (int idx = 1; idx < 3; ++idx) { |
+ waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx].fY); |
+ } |
+ return wiggle * waggle < 0; |
+} |
+ |
+// cubic roots |
+ |
+static const double PI = 3.141592653589793; |
+ |
+// from SkGeometry.cpp (and Numeric Solutions, 5.6) |
+int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) { |
+ double s[3]; |
+ int realRoots = RootsReal(A, B, C, D, s); |
+ int foundRoots = SkDQuad::AddValidTs(s, realRoots, t); |
+ return foundRoots; |
+} |
+ |
+int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) { |
+#ifdef SK_DEBUG |
+ // create a string mathematica understands |
+ // GDB set print repe 15 # if repeated digits is a bother |
+ // set print elements 400 # if line doesn't fit |
+ char str[1024]; |
+ bzero(str, sizeof(str)); |
+ snprintf(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]", |
+ A, B, C, D); |
+ mathematica_ize(str, sizeof(str)); |
+#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
+ SkDebugf("%s\n", str); |
+#endif |
+#endif |
+ if (approximately_zero(A) |
+ && approximately_zero_when_compared_to(A, B) |
+ && approximately_zero_when_compared_to(A, C) |
+ && approximately_zero_when_compared_to(A, D)) { // we're just a quadratic |
+ return SkDQuad::RootsReal(B, C, D, s); |
+ } |
+ if (approximately_zero_when_compared_to(D, A) |
+ && approximately_zero_when_compared_to(D, B) |
+ && approximately_zero_when_compared_to(D, C)) { // 0 is one root |
+ int num = SkDQuad::RootsReal(A, B, C, s); |
+ for (int i = 0; i < num; ++i) { |
+ if (approximately_zero(s[i])) { |
+ return num; |
+ } |
+ } |
+ s[num++] = 0; |
+ return num; |
+ } |
+ if (approximately_zero(A + B + C + D)) { // 1 is one root |
+ int num = SkDQuad::RootsReal(A, A + B, -D, s); |
+ for (int i = 0; i < num; ++i) { |
+ if (AlmostEqualUlps(s[i], 1)) { |
+ return num; |
+ } |
+ } |
+ s[num++] = 1; |
+ return num; |
+ } |
+ double a, b, c; |
+ { |
+ double invA = 1 / A; |
+ a = B * invA; |
+ b = C * invA; |
+ c = D * invA; |
+ } |
+ double a2 = a * a; |
+ double Q = (a2 - b * 3) / 9; |
+ double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
+ double R2 = R * R; |
+ double Q3 = Q * Q * Q; |
+ double R2MinusQ3 = R2 - Q3; |
+ double adiv3 = a / 3; |
+ double r; |
+ double* roots = s; |
+ if (R2MinusQ3 < 0) { // we have 3 real roots |
+ double theta = acos(R / sqrt(Q3)); |
+ double neg2RootQ = -2 * sqrt(Q); |
+ |
+ r = neg2RootQ * cos(theta / 3) - adiv3; |
+ *roots++ = r; |
+ |
+ r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
+ if (!AlmostEqualUlps(s[0], r)) { |
+ *roots++ = r; |
+ } |
+ r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
+ if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1], r))) { |
+ *roots++ = r; |
+ } |
+ } else { // we have 1 real root |
+ double sqrtR2MinusQ3 = sqrt(R2MinusQ3); |
+ double A = fabs(R) + sqrtR2MinusQ3; |
+ A = SkDCubeRoot(A); |
+ if (R > 0) { |
+ A = -A; |
+ } |
+ if (A != 0) { |
+ A += Q / A; |
+ } |
+ r = A - adiv3; |
+ *roots++ = r; |
+ if (AlmostEqualUlps(R2, Q3)) { |
+ r = -A / 2 - adiv3; |
+ if (!AlmostEqualUlps(s[0], r)) { |
+ *roots++ = r; |
+ } |
+ } |
+ } |
+ return static_cast<int>(roots - s); |
+} |
+ |
+// from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf |
+// c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 |
+// c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 |
+// = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 |
+static double derivative_at_t(const double* src, double t) { |
+ double one_t = 1 - t; |
+ double a = src[0]; |
+ double b = src[2]; |
+ double c = src[4]; |
+ double d = src[6]; |
+ return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t); |
+} |
+ |
+// OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version of derivative at t? |
+SkDVector SkDCubic::dxdyAtT(double t) const { |
+ SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[0].fY, t) }; |
+ return result; |
+} |
+ |
+// OPTIMIZE? share code with formulate_F1DotF2 |
+int SkDCubic::findInflections(double tValues[]) const { |
+ double Ax = fPts[1].fX - fPts[0].fX; |
+ double Ay = fPts[1].fY - fPts[0].fY; |
+ double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX; |
+ double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY; |
+ double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX; |
+ double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY; |
+ return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); |
+} |
+ |
+static void formulate_F1DotF2(const double src[], double coeff[4]) { |
+ double a = src[2] - src[0]; |
+ double b = src[4] - 2 * src[2] + src[0]; |
+ double c = src[6] + 3 * (src[2] - src[4]) - src[0]; |
+ coeff[0] = c * c; |
+ coeff[1] = 3 * b * c; |
+ coeff[2] = 2 * b * b + c * a; |
+ coeff[3] = a * b; |
+} |
+ |
+/** SkDCubic'(t) = At^2 + Bt + C, where |
+ A = 3(-a + 3(b - c) + d) |
+ B = 6(a - 2b + c) |
+ C = 3(b - a) |
+ Solve for t, keeping only those that fit between 0 < t < 1 |
+*/ |
+int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues[2]) { |
+ // we divide A,B,C by 3 to simplify |
+ double A = d - a + 3*(b - c); |
+ double B = 2*(a - b - b + c); |
+ double C = b - a; |
+ |
+ return SkDQuad::RootsValidT(A, B, C, tValues); |
+} |
+ |
+/* from SkGeometry.cpp |
+ Looking for F' dot F'' == 0 |
+ |
+ A = b - a |
+ B = c - 2b + a |
+ C = d - 3c + 3b - a |
+ |
+ F' = 3Ct^2 + 6Bt + 3A |
+ F'' = 6Ct + 6B |
+ |
+ F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
+*/ |
+int SkDCubic::findMaxCurvature(double tValues[]) const { |
+ double coeffX[4], coeffY[4]; |
+ int i; |
+ formulate_F1DotF2(&fPts[0].fX, coeffX); |
+ formulate_F1DotF2(&fPts[0].fY, coeffY); |
+ for (i = 0; i < 4; i++) { |
+ coeffX[i] = coeffX[i] + coeffY[i]; |
+ } |
+ return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues); |
+} |
+ |
+SkDPoint SkDCubic::top(double startT, double endT) const { |
+ SkDCubic sub = subDivide(startT, endT); |
+ SkDPoint topPt = sub[0]; |
+ if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) { |
+ topPt = sub[3]; |
+ } |
+ double extremeTs[2]; |
+ if (!sub.monotonicInY()) { |
+ int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extremeTs); |
+ for (int index = 0; index < roots; ++index) { |
+ double t = startT + (endT - startT) * extremeTs[index]; |
+ SkDPoint mid = xyAtT(t); |
+ if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) { |
+ topPt = mid; |
+ } |
+ } |
+ } |
+ return topPt; |
+} |
+ |
+SkDPoint SkDCubic::xyAtT(double t) const { |
+ double one_t = 1 - t; |
+ double one_t2 = one_t * one_t; |
+ double a = one_t2 * one_t; |
+ double b = 3 * one_t2 * t; |
+ double t2 = t * t; |
+ double c = 3 * one_t * t2; |
+ double d = t2 * t; |
+ SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fPts[3].fX, |
+ a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY}; |
+ return result; |
+} |
+ |
+/* |
+ Given a cubic c, t1, and t2, find a small cubic segment. |
+ |
+ The new cubic is defined as points A, B, C, and D, where |
+ s1 = 1 - t1 |
+ s2 = 1 - t2 |
+ A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1 |
+ D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2 |
+ |
+ We don't have B or C. So We define two equations to isolate them. |
+ First, compute two reference T values 1/3 and 2/3 from t1 to t2: |
+ |
+ c(at (2*t1 + t2)/3) == E |
+ c(at (t1 + 2*t2)/3) == F |
+ |
+ Next, compute where those values must be if we know the values of B and C: |
+ |
+ _12 = A*2/3 + B*1/3 |
+ 12_ = A*1/3 + B*2/3 |
+ _23 = B*2/3 + C*1/3 |
+ 23_ = B*1/3 + C*2/3 |
+ _34 = C*2/3 + D*1/3 |
+ 34_ = C*1/3 + D*2/3 |
+ _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9 |
+ 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9 |
+ _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9 |
+ 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9 |
+ _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3 |
+ = A*8/27 + B*12/27 + C*6/27 + D*1/27 |
+ = E |
+ 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3 |
+ = A*1/27 + B*6/27 + C*12/27 + D*8/27 |
+ = F |
+ E*27 = A*8 + B*12 + C*6 + D |
+ F*27 = A + B*6 + C*12 + D*8 |
+ |
+Group the known values on one side: |
+ |
+ M = E*27 - A*8 - D = B*12 + C* 6 |
+ N = F*27 - A - D*8 = B* 6 + C*12 |
+ M*2 - N = B*18 |
+ N*2 - M = C*18 |
+ B = (M*2 - N)/18 |
+ C = (N*2 - M)/18 |
+ */ |
+ |
+static double interp_cubic_coords(const double* src, double t) { |
+ double ab = SkDInterp(src[0], src[2], t); |
+ double bc = SkDInterp(src[2], src[4], t); |
+ double cd = SkDInterp(src[4], src[6], t); |
+ double abc = SkDInterp(ab, bc, t); |
+ double bcd = SkDInterp(bc, cd, t); |
+ double abcd = SkDInterp(abc, bcd, t); |
+ return abcd; |
+} |
+ |
+SkDCubic SkDCubic::subDivide(double t1, double t2) const { |
+ if (t1 == 0 && t2 == 1) { |
+ return *this; |
+ } |
+ SkDCubic dst; |
+ double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1); |
+ double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1); |
+ double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3); |
+ double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3); |
+ double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3); |
+ double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3); |
+ double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2); |
+ double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2); |
+ double mx = ex * 27 - ax * 8 - dx; |
+ double my = ey * 27 - ay * 8 - dy; |
+ double nx = fx * 27 - ax - dx * 8; |
+ double ny = fy * 27 - ay - dy * 8; |
+ /* bx = */ dst[1].fX = (mx * 2 - nx) / 18; |
+ /* by = */ dst[1].fY = (my * 2 - ny) / 18; |
+ /* cx = */ dst[2].fX = (nx * 2 - mx) / 18; |
+ /* cy = */ dst[2].fY = (ny * 2 - my) / 18; |
+ return dst; |
+} |
+ |
+void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d, |
+ double t1, double t2, SkDPoint dst[2]) const { |
+ double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3); |
+ double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3); |
+ double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3); |
+ double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3); |
+ double mx = ex * 27 - a.fX * 8 - d.fX; |
+ double my = ey * 27 - a.fY * 8 - d.fY; |
+ double nx = fx * 27 - a.fX - d.fX * 8; |
+ double ny = fy * 27 - a.fY - d.fY * 8; |
+ /* bx = */ dst[0].fX = (mx * 2 - nx) / 18; |
+ /* by = */ dst[0].fY = (my * 2 - ny) / 18; |
+ /* cx = */ dst[1].fX = (nx * 2 - mx) / 18; |
+ /* cy = */ dst[1].fY = (ny * 2 - my) / 18; |
+} |
+ |
+/* classic one t subdivision */ |
+static void interp_cubic_coords(const double* src, double* dst, double t) { |
+ double ab = SkDInterp(src[0], src[2], t); |
+ double bc = SkDInterp(src[2], src[4], t); |
+ double cd = SkDInterp(src[4], src[6], t); |
+ double abc = SkDInterp(ab, bc, t); |
+ double bcd = SkDInterp(bc, cd, t); |
+ double abcd = SkDInterp(abc, bcd, t); |
+ |
+ dst[0] = src[0]; |
+ dst[2] = ab; |
+ dst[4] = abc; |
+ dst[6] = abcd; |
+ dst[8] = bcd; |
+ dst[10] = cd; |
+ dst[12] = src[6]; |
+} |
+ |
+SkDCubicPair SkDCubic::chopAt(double t) const { |
+ SkDCubicPair dst; |
+ if (t == 0.5) { |
+ dst.pts[0] = fPts[0]; |
+ dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2; |
+ dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2; |
+ dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4; |
+ dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4; |
+ dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX) / 8; |
+ dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY) / 8; |
+ dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4; |
+ dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4; |
+ dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2; |
+ dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2; |
+ dst.pts[6] = fPts[3]; |
+ return dst; |
+ } |
+ interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t); |
+ interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t); |
+ return dst; |
+} |