OLD | NEW |
(Empty) | |
| 1 /* |
| 2 * Copyright 2012 Google Inc. |
| 3 * |
| 4 * Use of this source code is governed by a BSD-style license that can be |
| 5 * found in the LICENSE file. |
| 6 */ |
| 7 #include "SkLineParameters.h" |
| 8 #include "SkPathOpsCubic.h" |
| 9 #include "SkPathOpsLine.h" |
| 10 #include "SkPathOpsQuad.h" |
| 11 #include "SkPathOpsRect.h" |
| 12 |
| 13 const int SkDCubic::gPrecisionUnit = 256; // FIXME: test different values in te
st framework |
| 14 |
| 15 // FIXME: cache keep the bounds and/or precision with the caller? |
| 16 double SkDCubic::calcPrecision() const { |
| 17 SkDRect dRect; |
| 18 dRect.setBounds(*this); // OPTIMIZATION: just use setRawBounds ? |
| 19 double width = dRect.fRight - dRect.fLeft; |
| 20 double height = dRect.fBottom - dRect.fTop; |
| 21 return (width > height ? width : height) / gPrecisionUnit; |
| 22 } |
| 23 |
| 24 bool SkDCubic::clockwise() const { |
| 25 double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY); |
| 26 for (int idx = 0; idx < 3; ++idx) { |
| 27 sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx]
.fY); |
| 28 } |
| 29 return sum <= 0; |
| 30 } |
| 31 |
| 32 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C,
double* D) { |
| 33 *A = src[6]; // d |
| 34 *B = src[4] * 3; // 3*c |
| 35 *C = src[2] * 3; // 3*b |
| 36 *D = src[0]; // a |
| 37 *A -= *D - *C + *B; // A = -a + 3*b - 3*c + d |
| 38 *B += 3 * *D - 2 * *C; // B = 3*a - 6*b + 3*c |
| 39 *C -= 3 * *D; // C = -3*a + 3*b |
| 40 } |
| 41 |
| 42 bool SkDCubic::controlsContainedByEnds() const { |
| 43 SkDVector startTan = fPts[1] - fPts[0]; |
| 44 if (startTan.fX == 0 && startTan.fY == 0) { |
| 45 startTan = fPts[2] - fPts[0]; |
| 46 } |
| 47 SkDVector endTan = fPts[2] - fPts[3]; |
| 48 if (endTan.fX == 0 && endTan.fY == 0) { |
| 49 endTan = fPts[1] - fPts[3]; |
| 50 } |
| 51 if (startTan.dot(endTan) >= 0) { |
| 52 return false; |
| 53 } |
| 54 SkDLine startEdge = {{fPts[0], fPts[0]}}; |
| 55 startEdge[1].fX -= startTan.fY; |
| 56 startEdge[1].fY += startTan.fX; |
| 57 SkDLine endEdge = {{fPts[3], fPts[3]}}; |
| 58 endEdge[1].fX -= endTan.fY; |
| 59 endEdge[1].fY += endTan.fX; |
| 60 double leftStart1 = startEdge.isLeft(fPts[1]); |
| 61 if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) { |
| 62 return false; |
| 63 } |
| 64 double leftEnd1 = endEdge.isLeft(fPts[1]); |
| 65 if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) { |
| 66 return false; |
| 67 } |
| 68 return leftStart1 * leftEnd1 >= 0; |
| 69 } |
| 70 |
| 71 bool SkDCubic::endsAreExtremaInXOrY() const { |
| 72 return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX) |
| 73 && between(fPts[0].fX, fPts[2].fX, fPts[3].fX)) |
| 74 || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY) |
| 75 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY)); |
| 76 } |
| 77 |
| 78 bool SkDCubic::isLinear(int startIndex, int endIndex) const { |
| 79 SkLineParameters lineParameters; |
| 80 lineParameters.cubicEndPoints(*this, startIndex, endIndex); |
| 81 // FIXME: maybe it's possible to avoid this and compare non-normalized |
| 82 lineParameters.normalize(); |
| 83 double distance = lineParameters.controlPtDistance(*this, 1); |
| 84 if (!approximately_zero(distance)) { |
| 85 return false; |
| 86 } |
| 87 distance = lineParameters.controlPtDistance(*this, 2); |
| 88 return approximately_zero(distance); |
| 89 } |
| 90 |
| 91 bool SkDCubic::monotonicInY() const { |
| 92 return between(fPts[0].fY, fPts[1].fY, fPts[3].fY) |
| 93 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY); |
| 94 } |
| 95 |
| 96 bool SkDCubic::serpentine() const { |
| 97 if (!controlsContainedByEnds()) { |
| 98 return false; |
| 99 } |
| 100 double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY); |
| 101 for (int idx = 0; idx < 2; ++idx) { |
| 102 wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[i
dx].fY); |
| 103 } |
| 104 double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY); |
| 105 for (int idx = 1; idx < 3; ++idx) { |
| 106 waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[i
dx].fY); |
| 107 } |
| 108 return wiggle * waggle < 0; |
| 109 } |
| 110 |
| 111 // cubic roots |
| 112 |
| 113 static const double PI = 3.141592653589793; |
| 114 |
| 115 // from SkGeometry.cpp (and Numeric Solutions, 5.6) |
| 116 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) { |
| 117 double s[3]; |
| 118 int realRoots = RootsReal(A, B, C, D, s); |
| 119 int foundRoots = SkDQuad::AddValidTs(s, realRoots, t); |
| 120 return foundRoots; |
| 121 } |
| 122 |
| 123 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) { |
| 124 #ifdef SK_DEBUG |
| 125 // create a string mathematica understands |
| 126 // GDB set print repe 15 # if repeated digits is a bother |
| 127 // set print elements 400 # if line doesn't fit |
| 128 char str[1024]; |
| 129 bzero(str, sizeof(str)); |
| 130 snprintf(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19
g == 0, x]", |
| 131 A, B, C, D); |
| 132 mathematica_ize(str, sizeof(str)); |
| 133 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA |
| 134 SkDebugf("%s\n", str); |
| 135 #endif |
| 136 #endif |
| 137 if (approximately_zero(A) |
| 138 && approximately_zero_when_compared_to(A, B) |
| 139 && approximately_zero_when_compared_to(A, C) |
| 140 && approximately_zero_when_compared_to(A, D)) { // we're just a qua
dratic |
| 141 return SkDQuad::RootsReal(B, C, D, s); |
| 142 } |
| 143 if (approximately_zero_when_compared_to(D, A) |
| 144 && approximately_zero_when_compared_to(D, B) |
| 145 && approximately_zero_when_compared_to(D, C)) { // 0 is one root |
| 146 int num = SkDQuad::RootsReal(A, B, C, s); |
| 147 for (int i = 0; i < num; ++i) { |
| 148 if (approximately_zero(s[i])) { |
| 149 return num; |
| 150 } |
| 151 } |
| 152 s[num++] = 0; |
| 153 return num; |
| 154 } |
| 155 if (approximately_zero(A + B + C + D)) { // 1 is one root |
| 156 int num = SkDQuad::RootsReal(A, A + B, -D, s); |
| 157 for (int i = 0; i < num; ++i) { |
| 158 if (AlmostEqualUlps(s[i], 1)) { |
| 159 return num; |
| 160 } |
| 161 } |
| 162 s[num++] = 1; |
| 163 return num; |
| 164 } |
| 165 double a, b, c; |
| 166 { |
| 167 double invA = 1 / A; |
| 168 a = B * invA; |
| 169 b = C * invA; |
| 170 c = D * invA; |
| 171 } |
| 172 double a2 = a * a; |
| 173 double Q = (a2 - b * 3) / 9; |
| 174 double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; |
| 175 double R2 = R * R; |
| 176 double Q3 = Q * Q * Q; |
| 177 double R2MinusQ3 = R2 - Q3; |
| 178 double adiv3 = a / 3; |
| 179 double r; |
| 180 double* roots = s; |
| 181 if (R2MinusQ3 < 0) { // we have 3 real roots |
| 182 double theta = acos(R / sqrt(Q3)); |
| 183 double neg2RootQ = -2 * sqrt(Q); |
| 184 |
| 185 r = neg2RootQ * cos(theta / 3) - adiv3; |
| 186 *roots++ = r; |
| 187 |
| 188 r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; |
| 189 if (!AlmostEqualUlps(s[0], r)) { |
| 190 *roots++ = r; |
| 191 } |
| 192 r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; |
| 193 if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1
], r))) { |
| 194 *roots++ = r; |
| 195 } |
| 196 } else { // we have 1 real root |
| 197 double sqrtR2MinusQ3 = sqrt(R2MinusQ3); |
| 198 double A = fabs(R) + sqrtR2MinusQ3; |
| 199 A = SkDCubeRoot(A); |
| 200 if (R > 0) { |
| 201 A = -A; |
| 202 } |
| 203 if (A != 0) { |
| 204 A += Q / A; |
| 205 } |
| 206 r = A - adiv3; |
| 207 *roots++ = r; |
| 208 if (AlmostEqualUlps(R2, Q3)) { |
| 209 r = -A / 2 - adiv3; |
| 210 if (!AlmostEqualUlps(s[0], r)) { |
| 211 *roots++ = r; |
| 212 } |
| 213 } |
| 214 } |
| 215 return static_cast<int>(roots - s); |
| 216 } |
| 217 |
| 218 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf |
| 219 // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 |
| 220 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 |
| 221 // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 |
| 222 static double derivative_at_t(const double* src, double t) { |
| 223 double one_t = 1 - t; |
| 224 double a = src[0]; |
| 225 double b = src[2]; |
| 226 double c = src[4]; |
| 227 double d = src[6]; |
| 228 return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t
* t); |
| 229 } |
| 230 |
| 231 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version o
f derivative at t? |
| 232 SkDVector SkDCubic::dxdyAtT(double t) const { |
| 233 SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[
0].fY, t) }; |
| 234 return result; |
| 235 } |
| 236 |
| 237 // OPTIMIZE? share code with formulate_F1DotF2 |
| 238 int SkDCubic::findInflections(double tValues[]) const { |
| 239 double Ax = fPts[1].fX - fPts[0].fX; |
| 240 double Ay = fPts[1].fY - fPts[0].fY; |
| 241 double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX; |
| 242 double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY; |
| 243 double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX; |
| 244 double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY; |
| 245 return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By -
Ay * Bx, tValues); |
| 246 } |
| 247 |
| 248 static void formulate_F1DotF2(const double src[], double coeff[4]) { |
| 249 double a = src[2] - src[0]; |
| 250 double b = src[4] - 2 * src[2] + src[0]; |
| 251 double c = src[6] + 3 * (src[2] - src[4]) - src[0]; |
| 252 coeff[0] = c * c; |
| 253 coeff[1] = 3 * b * c; |
| 254 coeff[2] = 2 * b * b + c * a; |
| 255 coeff[3] = a * b; |
| 256 } |
| 257 |
| 258 /** SkDCubic'(t) = At^2 + Bt + C, where |
| 259 A = 3(-a + 3(b - c) + d) |
| 260 B = 6(a - 2b + c) |
| 261 C = 3(b - a) |
| 262 Solve for t, keeping only those that fit between 0 < t < 1 |
| 263 */ |
| 264 int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues
[2]) { |
| 265 // we divide A,B,C by 3 to simplify |
| 266 double A = d - a + 3*(b - c); |
| 267 double B = 2*(a - b - b + c); |
| 268 double C = b - a; |
| 269 |
| 270 return SkDQuad::RootsValidT(A, B, C, tValues); |
| 271 } |
| 272 |
| 273 /* from SkGeometry.cpp |
| 274 Looking for F' dot F'' == 0 |
| 275 |
| 276 A = b - a |
| 277 B = c - 2b + a |
| 278 C = d - 3c + 3b - a |
| 279 |
| 280 F' = 3Ct^2 + 6Bt + 3A |
| 281 F'' = 6Ct + 6B |
| 282 |
| 283 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB |
| 284 */ |
| 285 int SkDCubic::findMaxCurvature(double tValues[]) const { |
| 286 double coeffX[4], coeffY[4]; |
| 287 int i; |
| 288 formulate_F1DotF2(&fPts[0].fX, coeffX); |
| 289 formulate_F1DotF2(&fPts[0].fY, coeffY); |
| 290 for (i = 0; i < 4; i++) { |
| 291 coeffX[i] = coeffX[i] + coeffY[i]; |
| 292 } |
| 293 return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues); |
| 294 } |
| 295 |
| 296 SkDPoint SkDCubic::top(double startT, double endT) const { |
| 297 SkDCubic sub = subDivide(startT, endT); |
| 298 SkDPoint topPt = sub[0]; |
| 299 if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX))
{ |
| 300 topPt = sub[3]; |
| 301 } |
| 302 double extremeTs[2]; |
| 303 if (!sub.monotonicInY()) { |
| 304 int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extr
emeTs); |
| 305 for (int index = 0; index < roots; ++index) { |
| 306 double t = startT + (endT - startT) * extremeTs[index]; |
| 307 SkDPoint mid = xyAtT(t); |
| 308 if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX))
{ |
| 309 topPt = mid; |
| 310 } |
| 311 } |
| 312 } |
| 313 return topPt; |
| 314 } |
| 315 |
| 316 SkDPoint SkDCubic::xyAtT(double t) const { |
| 317 double one_t = 1 - t; |
| 318 double one_t2 = one_t * one_t; |
| 319 double a = one_t2 * one_t; |
| 320 double b = 3 * one_t2 * t; |
| 321 double t2 = t * t; |
| 322 double c = 3 * one_t * t2; |
| 323 double d = t2 * t; |
| 324 SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fP
ts[3].fX, |
| 325 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY}; |
| 326 return result; |
| 327 } |
| 328 |
| 329 /* |
| 330 Given a cubic c, t1, and t2, find a small cubic segment. |
| 331 |
| 332 The new cubic is defined as points A, B, C, and D, where |
| 333 s1 = 1 - t1 |
| 334 s2 = 1 - t2 |
| 335 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1 |
| 336 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2 |
| 337 |
| 338 We don't have B or C. So We define two equations to isolate them. |
| 339 First, compute two reference T values 1/3 and 2/3 from t1 to t2: |
| 340 |
| 341 c(at (2*t1 + t2)/3) == E |
| 342 c(at (t1 + 2*t2)/3) == F |
| 343 |
| 344 Next, compute where those values must be if we know the values of B and C: |
| 345 |
| 346 _12 = A*2/3 + B*1/3 |
| 347 12_ = A*1/3 + B*2/3 |
| 348 _23 = B*2/3 + C*1/3 |
| 349 23_ = B*1/3 + C*2/3 |
| 350 _34 = C*2/3 + D*1/3 |
| 351 34_ = C*1/3 + D*2/3 |
| 352 _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9 |
| 353 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9 |
| 354 _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9 |
| 355 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9 |
| 356 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3 |
| 357 = A*8/27 + B*12/27 + C*6/27 + D*1/27 |
| 358 = E |
| 359 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3 |
| 360 = A*1/27 + B*6/27 + C*12/27 + D*8/27 |
| 361 = F |
| 362 E*27 = A*8 + B*12 + C*6 + D |
| 363 F*27 = A + B*6 + C*12 + D*8 |
| 364 |
| 365 Group the known values on one side: |
| 366 |
| 367 M = E*27 - A*8 - D = B*12 + C* 6 |
| 368 N = F*27 - A - D*8 = B* 6 + C*12 |
| 369 M*2 - N = B*18 |
| 370 N*2 - M = C*18 |
| 371 B = (M*2 - N)/18 |
| 372 C = (N*2 - M)/18 |
| 373 */ |
| 374 |
| 375 static double interp_cubic_coords(const double* src, double t) { |
| 376 double ab = SkDInterp(src[0], src[2], t); |
| 377 double bc = SkDInterp(src[2], src[4], t); |
| 378 double cd = SkDInterp(src[4], src[6], t); |
| 379 double abc = SkDInterp(ab, bc, t); |
| 380 double bcd = SkDInterp(bc, cd, t); |
| 381 double abcd = SkDInterp(abc, bcd, t); |
| 382 return abcd; |
| 383 } |
| 384 |
| 385 SkDCubic SkDCubic::subDivide(double t1, double t2) const { |
| 386 if (t1 == 0 && t2 == 1) { |
| 387 return *this; |
| 388 } |
| 389 SkDCubic dst; |
| 390 double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1); |
| 391 double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1); |
| 392 double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3); |
| 393 double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3); |
| 394 double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3); |
| 395 double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3); |
| 396 double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2); |
| 397 double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2); |
| 398 double mx = ex * 27 - ax * 8 - dx; |
| 399 double my = ey * 27 - ay * 8 - dy; |
| 400 double nx = fx * 27 - ax - dx * 8; |
| 401 double ny = fy * 27 - ay - dy * 8; |
| 402 /* bx = */ dst[1].fX = (mx * 2 - nx) / 18; |
| 403 /* by = */ dst[1].fY = (my * 2 - ny) / 18; |
| 404 /* cx = */ dst[2].fX = (nx * 2 - mx) / 18; |
| 405 /* cy = */ dst[2].fY = (ny * 2 - my) / 18; |
| 406 return dst; |
| 407 } |
| 408 |
| 409 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d, |
| 410 double t1, double t2, SkDPoint dst[2]) const { |
| 411 double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3); |
| 412 double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3); |
| 413 double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3); |
| 414 double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3); |
| 415 double mx = ex * 27 - a.fX * 8 - d.fX; |
| 416 double my = ey * 27 - a.fY * 8 - d.fY; |
| 417 double nx = fx * 27 - a.fX - d.fX * 8; |
| 418 double ny = fy * 27 - a.fY - d.fY * 8; |
| 419 /* bx = */ dst[0].fX = (mx * 2 - nx) / 18; |
| 420 /* by = */ dst[0].fY = (my * 2 - ny) / 18; |
| 421 /* cx = */ dst[1].fX = (nx * 2 - mx) / 18; |
| 422 /* cy = */ dst[1].fY = (ny * 2 - my) / 18; |
| 423 } |
| 424 |
| 425 /* classic one t subdivision */ |
| 426 static void interp_cubic_coords(const double* src, double* dst, double t) { |
| 427 double ab = SkDInterp(src[0], src[2], t); |
| 428 double bc = SkDInterp(src[2], src[4], t); |
| 429 double cd = SkDInterp(src[4], src[6], t); |
| 430 double abc = SkDInterp(ab, bc, t); |
| 431 double bcd = SkDInterp(bc, cd, t); |
| 432 double abcd = SkDInterp(abc, bcd, t); |
| 433 |
| 434 dst[0] = src[0]; |
| 435 dst[2] = ab; |
| 436 dst[4] = abc; |
| 437 dst[6] = abcd; |
| 438 dst[8] = bcd; |
| 439 dst[10] = cd; |
| 440 dst[12] = src[6]; |
| 441 } |
| 442 |
| 443 SkDCubicPair SkDCubic::chopAt(double t) const { |
| 444 SkDCubicPair dst; |
| 445 if (t == 0.5) { |
| 446 dst.pts[0] = fPts[0]; |
| 447 dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2; |
| 448 dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2; |
| 449 dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4; |
| 450 dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4; |
| 451 dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX
) / 8; |
| 452 dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY
) / 8; |
| 453 dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4; |
| 454 dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4; |
| 455 dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2; |
| 456 dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2; |
| 457 dst.pts[6] = fPts[3]; |
| 458 return dst; |
| 459 } |
| 460 interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t); |
| 461 interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t); |
| 462 return dst; |
| 463 } |
OLD | NEW |