OLD | NEW |
---|---|
(Empty) | |
1 /* | |
2 * Copyright 2012 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 #include "SkLineParameters.h" | |
8 #include "SkPathOpsCubic.h" | |
9 #include "SkPathOpsLine.h" | |
10 #include "SkPathOpsQuad.h" | |
11 #include "SkPathOpsRect.h" | |
12 | |
13 const int SkDCubic::gPrecisionUnit = 256; // FIXME: test different values in te st framework | |
14 | |
15 // FIXME: cache keep the bounds and/or precision with the caller? | |
16 double SkDCubic::calcPrecision() const { | |
17 SkDRect dRect; | |
18 dRect.setBounds(*this); // OPTIMIZATION: just use setRawBounds ? | |
19 double width = dRect.fRight - dRect.fLeft; | |
20 double height = dRect.fBottom - dRect.fTop; | |
21 return (width > height ? width : height) / gPrecisionUnit; | |
22 } | |
23 | |
24 bool SkDCubic::clockwise() const { | |
25 double sum = (fPts[0].fX - fPts[3].fX) * (fPts[0].fY + fPts[3].fY); | |
26 for (int idx = 0; idx < 3; ++idx) { | |
27 sum += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[idx] .fY); | |
28 } | |
29 return sum <= 0; | |
30 } | |
31 | |
32 void SkDCubic::Coefficients(const double* src, double* A, double* B, double* C, double* D) { | |
33 *A = src[6]; // d | |
34 *B = src[4] * 3; // 3*c | |
35 *C = src[2] * 3; // 3*b | |
36 *D = src[0]; // a | |
37 *A -= *D - *C + *B; // A = -a + 3*b - 3*c + d | |
38 *B += 3 * *D - 2 * *C; // B = 3*a - 6*b + 3*c | |
39 *C -= 3 * *D; // C = -3*a + 3*b | |
40 } | |
41 | |
42 bool SkDCubic::controlsContainedByEnds() const { | |
43 SkDVector startTan = fPts[1] - fPts[0]; | |
44 if (startTan.fX == 0 && startTan.fY == 0) { | |
45 startTan = fPts[2] - fPts[0]; | |
46 } | |
47 SkDVector endTan = fPts[2] - fPts[3]; | |
48 if (endTan.fX == 0 && endTan.fY == 0) { | |
49 endTan = fPts[1] - fPts[3]; | |
50 } | |
51 if (startTan.dot(endTan) >= 0) { | |
52 return false; | |
53 } | |
54 SkDLine startEdge = {fPts[0], fPts[0]}; | |
55 startEdge[1].fX -= startTan.fY; | |
56 startEdge[1].fY += startTan.fX; | |
57 SkDLine endEdge = {fPts[3], fPts[3]}; | |
58 endEdge[1].fX -= endTan.fY; | |
59 endEdge[1].fY += endTan.fX; | |
60 double leftStart1 = startEdge.isLeft(fPts[1]); | |
61 if (leftStart1 * startEdge.isLeft(fPts[2]) < 0) { | |
62 return false; | |
63 } | |
64 double leftEnd1 = endEdge.isLeft(fPts[1]); | |
65 if (leftEnd1 * endEdge.isLeft(fPts[2]) < 0) { | |
66 return false; | |
67 } | |
68 return leftStart1 * leftEnd1 >= 0; | |
69 } | |
70 | |
71 bool SkDCubic::endsAreExtremaInXOrY() const { | |
72 return (between(fPts[0].fX, fPts[1].fX, fPts[3].fX) | |
73 && between(fPts[0].fX, fPts[2].fX, fPts[3].fX)) | |
74 || (between(fPts[0].fY, fPts[1].fY, fPts[3].fY) | |
75 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY)); | |
76 } | |
77 | |
78 bool SkDCubic::isLinear(int startIndex, int endIndex) const { | |
79 SkLineParameters lineParameters; | |
80 lineParameters.cubicEndPoints(*this, startIndex, endIndex); | |
81 // FIXME: maybe it's possible to avoid this and compare non-normalized | |
82 lineParameters.normalize(); | |
83 double distance = lineParameters.controlPtDistance(*this, 1); | |
84 if (!approximately_zero(distance)) { | |
85 return false; | |
86 } | |
87 distance = lineParameters.controlPtDistance(*this, 2); | |
88 return approximately_zero(distance); | |
89 } | |
90 | |
91 bool SkDCubic::monotonicInY() const { | |
92 return between(fPts[0].fY, fPts[1].fY, fPts[3].fY) | |
93 && between(fPts[0].fY, fPts[2].fY, fPts[3].fY); | |
94 } | |
95 | |
96 bool SkDCubic::serpentine() const { | |
97 if (!controlsContainedByEnds()) { | |
98 return false; | |
99 } | |
100 double wiggle = (fPts[0].fX - fPts[2].fX) * (fPts[0].fY + fPts[2].fY); | |
101 for (int idx = 0; idx < 2; ++idx) { | |
102 wiggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[i dx].fY); | |
103 } | |
104 double waggle = (fPts[1].fX - fPts[3].fX) * (fPts[1].fY + fPts[3].fY); | |
105 for (int idx = 1; idx < 3; ++idx) { | |
106 waggle += (fPts[idx + 1].fX - fPts[idx].fX) * (fPts[idx + 1].fY + fPts[i dx].fY); | |
107 } | |
108 return wiggle * waggle < 0; | |
109 } | |
110 | |
111 // cubic roots | |
112 | |
113 static const double PI = 4 * atan(1); | |
whunt
2013/03/22 18:16:06
Is this allowed in skia? In chromium statics be i
caryclark
2013/03/22 20:05:00
Done.
| |
114 | |
115 // from SkGeometry.cpp (and Numeric Solutions, 5.6) | |
116 int SkDCubic::RootsValidT(double A, double B, double C, double D, double t[3]) { | |
117 double s[3]; | |
118 int realRoots = RootsReal(A, B, C, D, s); | |
119 int foundRoots = SkDQuad::AddValidTs(s, realRoots, t); | |
120 return foundRoots; | |
121 } | |
122 | |
123 int SkDCubic::RootsReal(double A, double B, double C, double D, double s[3]) { | |
124 #ifdef SK_DEBUG | |
125 // create a string mathematica understands | |
126 // GDB set print repe 15 # if repeated digits is a bother | |
127 // set print elements 400 # if line doesn't fit | |
128 char str[1024]; | |
129 bzero(str, sizeof(str)); | |
130 snprintf(str, sizeof(str), "Solve[%1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19 g == 0, x]", | |
131 A, B, C, D); | |
132 mathematica_ize(str, sizeof(str)); | |
133 #if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA | |
134 SkDebugf("%s\n", str); | |
135 #endif | |
136 #endif | |
137 if (approximately_zero(A) | |
138 && approximately_zero_when_compared_to(A, B) | |
139 && approximately_zero_when_compared_to(A, C) | |
140 && approximately_zero_when_compared_to(A, D)) { // we're just a qua dratic | |
141 return SkDQuad::RootsReal(B, C, D, s); | |
142 } | |
143 if (approximately_zero_when_compared_to(D, A) | |
144 && approximately_zero_when_compared_to(D, B) | |
145 && approximately_zero_when_compared_to(D, C)) { // 0 is one root | |
146 int num = SkDQuad::RootsReal(A, B, C, s); | |
147 for (int i = 0; i < num; ++i) { | |
148 if (approximately_zero(s[i])) { | |
149 return num; | |
150 } | |
151 } | |
152 s[num++] = 0; | |
153 return num; | |
154 } | |
155 if (approximately_zero(A + B + C + D)) { // 1 is one root | |
156 int num = SkDQuad::RootsReal(A, A + B, -D, s); | |
157 for (int i = 0; i < num; ++i) { | |
158 if (AlmostEqualUlps(s[i], 1)) { | |
159 return num; | |
160 } | |
161 } | |
162 s[num++] = 1; | |
163 return num; | |
164 } | |
165 double a, b, c; | |
166 { | |
167 double invA = 1 / A; | |
168 a = B * invA; | |
169 b = C * invA; | |
170 c = D * invA; | |
171 } | |
172 double a2 = a * a; | |
173 double Q = (a2 - b * 3) / 9; | |
174 double R = (2 * a2 * a - 9 * a * b + 27 * c) / 54; | |
175 double R2 = R * R; | |
176 double Q3 = Q * Q * Q; | |
177 double R2MinusQ3 = R2 - Q3; | |
178 double adiv3 = a / 3; | |
179 double r; | |
180 double* roots = s; | |
181 if (R2MinusQ3 < 0) { // we have 3 real roots | |
182 double theta = acos(R / sqrt(Q3)); | |
183 double neg2RootQ = -2 * sqrt(Q); | |
184 | |
185 r = neg2RootQ * cos(theta / 3) - adiv3; | |
186 *roots++ = r; | |
187 | |
188 r = neg2RootQ * cos((theta + 2 * PI) / 3) - adiv3; | |
189 if (!AlmostEqualUlps(s[0], r)) { | |
190 *roots++ = r; | |
191 } | |
192 r = neg2RootQ * cos((theta - 2 * PI) / 3) - adiv3; | |
193 if (!AlmostEqualUlps(s[0], r) && (roots - s == 1 || !AlmostEqualUlps(s[1 ], r))) { | |
194 *roots++ = r; | |
195 } | |
196 } else { // we have 1 real root | |
197 double sqrtR2MinusQ3 = sqrt(R2MinusQ3); | |
198 double A = fabs(R) + sqrtR2MinusQ3; | |
199 A = SkDCubeRoot(A); | |
200 if (R > 0) { | |
201 A = -A; | |
202 } | |
203 if (A != 0) { | |
204 A += Q / A; | |
205 } | |
206 r = A - adiv3; | |
207 *roots++ = r; | |
208 if (AlmostEqualUlps(R2, Q3)) { | |
209 r = -A / 2 - adiv3; | |
210 if (!AlmostEqualUlps(s[0], r)) { | |
211 *roots++ = r; | |
212 } | |
213 } | |
214 } | |
215 return static_cast<int>(roots - s); | |
216 } | |
217 | |
218 // from http://www.cs.sunysb.edu/~qin/courses/geometry/4.pdf | |
219 // c(t) = a(1-t)^3 + 3bt(1-t)^2 + 3c(1-t)t^2 + dt^3 | |
220 // c'(t) = -3a(1-t)^2 + 3b((1-t)^2 - 2t(1-t)) + 3c(2t(1-t) - t^2) + 3dt^2 | |
221 // = 3(b-a)(1-t)^2 + 6(c-b)t(1-t) + 3(d-c)t^2 | |
222 static double derivative_at_t(const double* src, double t) { | |
223 double one_t = 1 - t; | |
224 double a = src[0]; | |
225 double b = src[2]; | |
226 double c = src[4]; | |
227 double d = src[6]; | |
228 return 3 * ((b - a) * one_t * one_t + 2 * (c - b) * t * one_t + (d - c) * t * t); | |
229 } | |
230 | |
231 // OPTIMIZE? compute t^2, t(1-t), and (1-t)^2 and pass them to another version o f derivative at t? | |
232 SkDVector SkDCubic::dxdyAtT(double t) const { | |
233 SkDVector result = { derivative_at_t(&fPts[0].fX, t), derivative_at_t(&fPts[ 0].fY, t) }; | |
234 return result; | |
235 } | |
236 | |
237 // OPTIMIZE? share code with formulate_F1DotF2 | |
238 int SkDCubic::findInflections(double tValues[]) const { | |
239 double Ax = fPts[1].fX - fPts[0].fX; | |
240 double Ay = fPts[1].fY - fPts[0].fY; | |
241 double Bx = fPts[2].fX - 2 * fPts[1].fX + fPts[0].fX; | |
242 double By = fPts[2].fY - 2 * fPts[1].fY + fPts[0].fY; | |
243 double Cx = fPts[3].fX + 3 * (fPts[1].fX - fPts[2].fX) - fPts[0].fX; | |
244 double Cy = fPts[3].fY + 3 * (fPts[1].fY - fPts[2].fY) - fPts[0].fY; | |
245 return SkDQuad::RootsValidT(Bx * Cy - By * Cx, Ax * Cy - Ay * Cx, Ax * By - Ay * Bx, tValues); | |
246 } | |
247 | |
248 static void formulate_F1DotF2(const double src[], double coeff[4]) { | |
249 double a = src[2] - src[0]; | |
250 double b = src[4] - 2 * src[2] + src[0]; | |
251 double c = src[6] + 3 * (src[2] - src[4]) - src[0]; | |
252 coeff[0] = c * c; | |
253 coeff[1] = 3 * b * c; | |
254 coeff[2] = 2 * b * b + c * a; | |
255 coeff[3] = a * b; | |
256 } | |
257 | |
258 /** SkDCubic'(t) = At^2 + Bt + C, where | |
259 A = 3(-a + 3(b - c) + d) | |
260 B = 6(a - 2b + c) | |
261 C = 3(b - a) | |
262 Solve for t, keeping only those that fit between 0 < t < 1 | |
263 */ | |
264 int SkDCubic::FindExtrema(double a, double b, double c, double d, double tValues [2]) { | |
265 // we divide A,B,C by 3 to simplify | |
266 double A = d - a + 3*(b - c); | |
267 double B = 2*(a - b - b + c); | |
268 double C = b - a; | |
269 | |
270 return SkDQuad::RootsValidT(A, B, C, tValues); | |
271 } | |
272 | |
273 /* from SkGeometry.cpp | |
274 Looking for F' dot F'' == 0 | |
275 | |
276 A = b - a | |
277 B = c - 2b + a | |
278 C = d - 3c + 3b - a | |
279 | |
280 F' = 3Ct^2 + 6Bt + 3A | |
281 F'' = 6Ct + 6B | |
282 | |
283 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB | |
284 */ | |
285 int SkDCubic::findMaxCurvature(double tValues[]) const { | |
286 double coeffX[4], coeffY[4]; | |
287 int i; | |
288 formulate_F1DotF2(&fPts[0].fX, coeffX); | |
289 formulate_F1DotF2(&fPts[0].fY, coeffY); | |
290 for (i = 0; i < 4; i++) { | |
291 coeffX[i] = coeffX[i] + coeffY[i]; | |
292 } | |
293 return RootsValidT(coeffX[0], coeffX[1], coeffX[2], coeffX[3], tValues); | |
294 } | |
295 | |
296 SkDPoint SkDCubic::top(double startT, double endT) const { | |
297 SkDCubic sub = subDivide(startT, endT); | |
298 SkDPoint topPt = sub[0]; | |
299 if (topPt.fY > sub[3].fY || (topPt.fY == sub[3].fY && topPt.fX > sub[3].fX)) { | |
300 topPt = sub[3]; | |
301 } | |
302 double extremeTs[2]; | |
303 if (!sub.monotonicInY()) { | |
304 int roots = FindExtrema(sub[0].fY, sub[1].fY, sub[2].fY, sub[3].fY, extr emeTs); | |
305 for (int index = 0; index < roots; ++index) { | |
306 double t = startT + (endT - startT) * extremeTs[index]; | |
307 SkDPoint mid = xyAtT(t); | |
308 if (topPt.fY > mid.fY || (topPt.fY == mid.fY && topPt.fX > mid.fX)) { | |
309 topPt = mid; | |
310 } | |
311 } | |
312 } | |
313 return topPt; | |
314 } | |
315 | |
316 SkDPoint SkDCubic::xyAtT(double t) const { | |
317 double one_t = 1 - t; | |
318 double one_t2 = one_t * one_t; | |
319 double a = one_t2 * one_t; | |
320 double b = 3 * one_t2 * t; | |
321 double t2 = t * t; | |
322 double c = 3 * one_t * t2; | |
323 double d = t2 * t; | |
324 SkDPoint result = {a * fPts[0].fX + b * fPts[1].fX + c * fPts[2].fX + d * fP ts[3].fX, | |
325 a * fPts[0].fY + b * fPts[1].fY + c * fPts[2].fY + d * fPts[3].fY}; | |
326 return result; | |
327 } | |
328 | |
329 /* | |
330 Given a cubic c, t1, and t2, find a small cubic segment. | |
331 | |
332 The new cubic is defined as points A, B, C, and D, where | |
333 s1 = 1 - t1 | |
334 s2 = 1 - t2 | |
335 A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1 | |
336 D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2 | |
337 | |
338 We don't have B or C. So We define two equations to isolate them. | |
339 First, compute two reference T values 1/3 and 2/3 from t1 to t2: | |
340 | |
341 c(at (2*t1 + t2)/3) == E | |
342 c(at (t1 + 2*t2)/3) == F | |
343 | |
344 Next, compute where those values must be if we know the values of B and C: | |
345 | |
346 _12 = A*2/3 + B*1/3 | |
347 12_ = A*1/3 + B*2/3 | |
348 _23 = B*2/3 + C*1/3 | |
349 23_ = B*1/3 + C*2/3 | |
350 _34 = C*2/3 + D*1/3 | |
351 34_ = C*1/3 + D*2/3 | |
352 _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9 | |
353 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9 | |
354 _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9 | |
355 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9 | |
356 _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3 | |
357 = A*8/27 + B*12/27 + C*6/27 + D*1/27 | |
358 = E | |
359 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3 | |
360 = A*1/27 + B*6/27 + C*12/27 + D*8/27 | |
361 = F | |
362 E*27 = A*8 + B*12 + C*6 + D | |
363 F*27 = A + B*6 + C*12 + D*8 | |
364 | |
365 Group the known values on one side: | |
366 | |
367 M = E*27 - A*8 - D = B*12 + C* 6 | |
368 N = F*27 - A - D*8 = B* 6 + C*12 | |
369 M*2 - N = B*18 | |
370 N*2 - M = C*18 | |
371 B = (M*2 - N)/18 | |
372 C = (N*2 - M)/18 | |
373 */ | |
374 | |
375 static double interp_cubic_coords(const double* src, double t) { | |
376 double ab = SkDInterp(src[0], src[2], t); | |
377 double bc = SkDInterp(src[2], src[4], t); | |
378 double cd = SkDInterp(src[4], src[6], t); | |
379 double abc = SkDInterp(ab, bc, t); | |
380 double bcd = SkDInterp(bc, cd, t); | |
381 double abcd = SkDInterp(abc, bcd, t); | |
382 return abcd; | |
383 } | |
384 | |
385 SkDCubic SkDCubic::subDivide(double t1, double t2) const { | |
386 if (t1 == 0 && t2 == 1) { | |
387 return *this; | |
388 } | |
389 SkDCubic dst; | |
390 double ax = dst[0].fX = interp_cubic_coords(&fPts[0].fX, t1); | |
391 double ay = dst[0].fY = interp_cubic_coords(&fPts[0].fY, t1); | |
392 double ex = interp_cubic_coords(&fPts[0].fX, (t1*2+t2)/3); | |
393 double ey = interp_cubic_coords(&fPts[0].fY, (t1*2+t2)/3); | |
394 double fx = interp_cubic_coords(&fPts[0].fX, (t1+t2*2)/3); | |
395 double fy = interp_cubic_coords(&fPts[0].fY, (t1+t2*2)/3); | |
396 double dx = dst[3].fX = interp_cubic_coords(&fPts[0].fX, t2); | |
397 double dy = dst[3].fY = interp_cubic_coords(&fPts[0].fY, t2); | |
398 double mx = ex * 27 - ax * 8 - dx; | |
399 double my = ey * 27 - ay * 8 - dy; | |
400 double nx = fx * 27 - ax - dx * 8; | |
401 double ny = fy * 27 - ay - dy * 8; | |
402 /* bx = */ dst[1].fX = (mx * 2 - nx) / 18; | |
403 /* by = */ dst[1].fY = (my * 2 - ny) / 18; | |
404 /* cx = */ dst[2].fX = (nx * 2 - mx) / 18; | |
405 /* cy = */ dst[2].fY = (ny * 2 - my) / 18; | |
406 return dst; | |
407 } | |
408 | |
409 void SkDCubic::subDivide(const SkDPoint& a, const SkDPoint& d, | |
410 double t1, double t2, SkDPoint dst[2]) const { | |
411 double ex = interp_cubic_coords(&fPts[0].fX, (t1 * 2 + t2) / 3); | |
412 double ey = interp_cubic_coords(&fPts[0].fY, (t1 * 2 + t2) / 3); | |
413 double fx = interp_cubic_coords(&fPts[0].fX, (t1 + t2 * 2) / 3); | |
414 double fy = interp_cubic_coords(&fPts[0].fY, (t1 + t2 * 2) / 3); | |
415 double mx = ex * 27 - a.fX * 8 - d.fX; | |
416 double my = ey * 27 - a.fY * 8 - d.fY; | |
417 double nx = fx * 27 - a.fX - d.fX * 8; | |
418 double ny = fy * 27 - a.fY - d.fY * 8; | |
419 /* bx = */ dst[0].fX = (mx * 2 - nx) / 18; | |
420 /* by = */ dst[0].fY = (my * 2 - ny) / 18; | |
421 /* cx = */ dst[1].fX = (nx * 2 - mx) / 18; | |
422 /* cy = */ dst[1].fY = (ny * 2 - my) / 18; | |
423 } | |
424 | |
425 /* classic one t subdivision */ | |
426 static void interp_cubic_coords(const double* src, double* dst, double t) { | |
427 double ab = SkDInterp(src[0], src[2], t); | |
428 double bc = SkDInterp(src[2], src[4], t); | |
429 double cd = SkDInterp(src[4], src[6], t); | |
430 double abc = SkDInterp(ab, bc, t); | |
431 double bcd = SkDInterp(bc, cd, t); | |
432 double abcd = SkDInterp(abc, bcd, t); | |
433 | |
434 dst[0] = src[0]; | |
435 dst[2] = ab; | |
436 dst[4] = abc; | |
437 dst[6] = abcd; | |
438 dst[8] = bcd; | |
439 dst[10] = cd; | |
440 dst[12] = src[6]; | |
441 } | |
442 | |
443 SkDCubicPair SkDCubic::chopAt(double t) const { | |
444 SkDCubicPair dst; | |
445 if (t == 0.5) { | |
446 dst.pts[0] = fPts[0]; | |
447 dst.pts[1].fX = (fPts[0].fX + fPts[1].fX) / 2; | |
448 dst.pts[1].fY = (fPts[0].fY + fPts[1].fY) / 2; | |
449 dst.pts[2].fX = (fPts[0].fX + 2 * fPts[1].fX + fPts[2].fX) / 4; | |
450 dst.pts[2].fY = (fPts[0].fY + 2 * fPts[1].fY + fPts[2].fY) / 4; | |
451 dst.pts[3].fX = (fPts[0].fX + 3 * (fPts[1].fX + fPts[2].fX) + fPts[3].fX ) / 8; | |
452 dst.pts[3].fY = (fPts[0].fY + 3 * (fPts[1].fY + fPts[2].fY) + fPts[3].fY ) / 8; | |
453 dst.pts[4].fX = (fPts[1].fX + 2 * fPts[2].fX + fPts[3].fX) / 4; | |
454 dst.pts[4].fY = (fPts[1].fY + 2 * fPts[2].fY + fPts[3].fY) / 4; | |
455 dst.pts[5].fX = (fPts[2].fX + fPts[3].fX) / 2; | |
456 dst.pts[5].fY = (fPts[2].fY + fPts[3].fY) / 2; | |
457 dst.pts[6] = fPts[3]; | |
458 return dst; | |
459 } | |
460 interp_cubic_coords(&fPts[0].fX, &dst.pts[0].fX, t); | |
461 interp_cubic_coords(&fPts[0].fY, &dst.pts[0].fY, t); | |
462 return dst; | |
463 } | |
OLD | NEW |