| Index: third_party/go/src/golang.org/x/mobile/sprite/portable/affine.go
|
| diff --git a/third_party/go/src/golang.org/x/mobile/sprite/portable/affine.go b/third_party/go/src/golang.org/x/mobile/sprite/portable/affine.go
|
| deleted file mode 100644
|
| index 28016d87a12a4a6d178eab1abd899986ee5a66a6..0000000000000000000000000000000000000000
|
| --- a/third_party/go/src/golang.org/x/mobile/sprite/portable/affine.go
|
| +++ /dev/null
|
| @@ -1,109 +0,0 @@
|
| -// Copyright 2014 The Go Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style
|
| -// license that can be found in the LICENSE file.
|
| -
|
| -package portable
|
| -
|
| -import (
|
| - "image"
|
| - "image/draw"
|
| -
|
| - "golang.org/x/mobile/f32"
|
| -)
|
| -
|
| -// affine draws each pixel of dst using bilinear interpolation of the
|
| -// affine-transformed position in src. This is equivalent to:
|
| -//
|
| -// for each (x,y) in dst:
|
| -// dst(x,y) = bilinear interpolation of src(a*(x,y))
|
| -//
|
| -// While this is the simpler implementation, it can be counter-
|
| -// intuitive as an affine transformation is usually described in terms
|
| -// of the source, not the destination. For example, a scale transform
|
| -//
|
| -// Affine{{2, 0, 0}, {0, 2, 0}}
|
| -//
|
| -// will produce a dst that is half the size of src. To perform a
|
| -// traditional affine transform, use the inverse of the affine matrix.
|
| -func affine(dst *image.RGBA, src image.Image, srcb image.Rectangle, mask image.Image, a *f32.Affine, op draw.Op) {
|
| - b := dst.Bounds()
|
| - var maskb image.Rectangle
|
| - if mask != nil {
|
| - maskb = mask.Bounds().Add(srcb.Min)
|
| - }
|
| -
|
| - for y := b.Min.Y; y < b.Max.Y; y++ {
|
| - for x := b.Min.X; x < b.Max.X; x++ {
|
| - // Interpolate from the bounds of the src sub-image
|
| - // to the bounds of the dst sub-image.
|
| - ix, iy := pt(a, x-b.Min.X, y-b.Min.Y)
|
| - sx := ix + float32(srcb.Min.X)
|
| - sy := iy + float32(srcb.Min.Y)
|
| - if !inBounds(srcb, sx, sy) {
|
| - continue
|
| - }
|
| -
|
| - // m is the maximum color value returned by image.Color.RGBA.
|
| - const m = 1<<16 - 1
|
| -
|
| - ma := uint32(m)
|
| - if mask != nil {
|
| - mx := ix + float32(maskb.Min.X)
|
| - my := iy + float32(maskb.Min.Y)
|
| - if !inBounds(maskb, mx, my) {
|
| - continue
|
| - }
|
| - _, _, _, ma = bilinear(mask, mx, my).RGBA()
|
| - }
|
| -
|
| - sr, sg, sb, sa := bilinear(src, sx, sy).RGBA()
|
| - off := (y-dst.Rect.Min.Y)*dst.Stride + (x-dst.Rect.Min.X)*4
|
| -
|
| - if op == draw.Over {
|
| - dr := uint32(dst.Pix[off+0])
|
| - dg := uint32(dst.Pix[off+1])
|
| - db := uint32(dst.Pix[off+2])
|
| - da := uint32(dst.Pix[off+3])
|
| -
|
| - // dr, dg, db, and da are all 8-bit color at the moment, ranging
|
| - // in [0,255]. We work in 16-bit color, and so would normally do:
|
| - // dr |= dr << 8
|
| - // and similarly for the other values, but instead we multiply by 0x101
|
| - // to shift these to 16-bit colors, ranging in [0,65535].
|
| - // This yields the same result, but is fewer arithmetic operations.
|
| - //
|
| - // This logic comes from drawCopyOver in the image/draw package.
|
| - a := m - (sa * ma / m)
|
| - a *= 0x101
|
| -
|
| - dst.Pix[off+0] = uint8((dr*a + sr*ma) / m >> 8)
|
| - dst.Pix[off+1] = uint8((dg*a + sg*ma) / m >> 8)
|
| - dst.Pix[off+2] = uint8((db*a + sb*ma) / m >> 8)
|
| - dst.Pix[off+3] = uint8((da*a + sa*ma) / m >> 8)
|
| - } else {
|
| - dst.Pix[off+0] = uint8(sr * ma / m >> 8)
|
| - dst.Pix[off+1] = uint8(sg * ma / m >> 8)
|
| - dst.Pix[off+2] = uint8(sb * ma / m >> 8)
|
| - dst.Pix[off+3] = uint8(sa * ma / m >> 8)
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -func inBounds(b image.Rectangle, x, y float32) bool {
|
| - if x < float32(b.Min.X) || x >= float32(b.Max.X) {
|
| - return false
|
| - }
|
| - if y < float32(b.Min.Y) || y >= float32(b.Max.Y) {
|
| - return false
|
| - }
|
| - return true
|
| -}
|
| -
|
| -func pt(a *f32.Affine, x0, y0 int) (x1, y1 float32) {
|
| - fx := float32(x0) + 0.5
|
| - fy := float32(y0) + 0.5
|
| - x1 = fx*a[0][0] + fy*a[0][1] + a[0][2]
|
| - y1 = fx*a[1][0] + fy*a[1][1] + a[1][2]
|
| - return x1, y1
|
| -}
|
|
|