| Index: third_party/go/src/golang.org/x/mobile/f32/affine.go
|
| diff --git a/third_party/go/src/golang.org/x/mobile/f32/affine.go b/third_party/go/src/golang.org/x/mobile/f32/affine.go
|
| deleted file mode 100644
|
| index 708a309fbab69d48eb063cf47a60d6beb0548d0c..0000000000000000000000000000000000000000
|
| --- a/third_party/go/src/golang.org/x/mobile/f32/affine.go
|
| +++ /dev/null
|
| @@ -1,109 +0,0 @@
|
| -// Copyright 2014 The Go Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style
|
| -// license that can be found in the LICENSE file.
|
| -
|
| -package f32
|
| -
|
| -import "fmt"
|
| -
|
| -// An Affine is a 3x3 matrix of float32 values for which the bottom row is
|
| -// implicitly always equal to [0 0 1].
|
| -// Elements are indexed first by row then column, i.e. m[row][column].
|
| -type Affine [2]Vec3
|
| -
|
| -func (m Affine) String() string {
|
| - return fmt.Sprintf(`Affine[% 0.3f, % 0.3f, % 0.3f,
|
| - % 0.3f, % 0.3f, % 0.3f]`,
|
| - m[0][0], m[0][1], m[0][2],
|
| - m[1][0], m[1][1], m[1][2])
|
| -}
|
| -
|
| -// Identity sets m to be the identity transform.
|
| -func (m *Affine) Identity() {
|
| - *m = Affine{
|
| - {1, 0, 0},
|
| - {0, 1, 0},
|
| - }
|
| -}
|
| -
|
| -// Eq reports whether each component of m is within epsilon of the same
|
| -// component in n.
|
| -func (m *Affine) Eq(n *Affine, epsilon float32) bool {
|
| - for i := range m {
|
| - for j := range m[i] {
|
| - diff := m[i][j] - n[i][j]
|
| - if diff < -epsilon || +epsilon < diff {
|
| - return false
|
| - }
|
| - }
|
| - }
|
| - return true
|
| -}
|
| -
|
| -// Mul sets m to be p × q.
|
| -func (m *Affine) Mul(p, q *Affine) {
|
| - // Store the result in local variables, in case m == a || m == b.
|
| - m00 := p[0][0]*q[0][0] + p[0][1]*q[1][0]
|
| - m01 := p[0][0]*q[0][1] + p[0][1]*q[1][1]
|
| - m02 := p[0][0]*q[0][2] + p[0][1]*q[1][2] + p[0][2]
|
| - m10 := p[1][0]*q[0][0] + p[1][1]*q[1][0]
|
| - m11 := p[1][0]*q[0][1] + p[1][1]*q[1][1]
|
| - m12 := p[1][0]*q[0][2] + p[1][1]*q[1][2] + p[1][2]
|
| - m[0][0] = m00
|
| - m[0][1] = m01
|
| - m[0][2] = m02
|
| - m[1][0] = m10
|
| - m[1][1] = m11
|
| - m[1][2] = m12
|
| -}
|
| -
|
| -// Inverse sets m to be the inverse of p.
|
| -func (m *Affine) Inverse(p *Affine) {
|
| - m00 := p[1][1]
|
| - m01 := -p[0][1]
|
| - m02 := p[1][2]*p[0][1] - p[1][1]*p[0][2]
|
| - m10 := -p[1][0]
|
| - m11 := p[0][0]
|
| - m12 := p[1][0]*p[0][2] - p[1][2]*p[0][0]
|
| -
|
| - det := m00*m11 - m10*m01
|
| -
|
| - m[0][0] = m00 / det
|
| - m[0][1] = m01 / det
|
| - m[0][2] = m02 / det
|
| - m[1][0] = m10 / det
|
| - m[1][1] = m11 / det
|
| - m[1][2] = m12 / det
|
| -}
|
| -
|
| -// Scale sets m to be a scale followed by p.
|
| -// It is equivalent to m.Mul(p, &Affine{{x,0,0}, {0,y,0}}).
|
| -func (m *Affine) Scale(p *Affine, x, y float32) {
|
| - m[0][0] = p[0][0] * x
|
| - m[0][1] = p[0][1] * y
|
| - m[0][2] = p[0][2]
|
| - m[1][0] = p[1][0] * x
|
| - m[1][1] = p[1][1] * y
|
| - m[1][2] = p[1][2]
|
| -}
|
| -
|
| -// Translate sets m to be a translation followed by p.
|
| -// It is equivalent to m.Mul(p, &Affine{{1,0,x}, {0,1,y}}).
|
| -func (m *Affine) Translate(p *Affine, x, y float32) {
|
| - m[0][0] = p[0][0]
|
| - m[0][1] = p[0][1]
|
| - m[0][2] = p[0][0]*x + p[0][1]*y + p[0][2]
|
| - m[1][0] = p[1][0]
|
| - m[1][1] = p[1][1]
|
| - m[1][2] = p[1][0]*x + p[1][1]*y + p[1][2]
|
| -}
|
| -
|
| -// Rotate sets m to a rotation in radians followed by p.
|
| -// It is equivalent to m.Mul(p, affineRotation).
|
| -func (m *Affine) Rotate(p *Affine, radians float32) {
|
| - s, c := Sin(radians), Cos(radians)
|
| - m.Mul(p, &Affine{
|
| - {+c, +s, 0},
|
| - {-s, +c, 0},
|
| - })
|
| -}
|
|
|