Index: src/processor/exploitability_linux.cc |
=================================================================== |
--- src/processor/exploitability_linux.cc (revision 1476) |
+++ src/processor/exploitability_linux.cc (working copy) |
@@ -36,6 +36,16 @@ |
#include "processor/exploitability_linux.h" |
+#include <regex.h> |
+#include <stdio.h> |
+#include <string.h> |
+#include <sysexits.h> |
+#include <sys/types.h> |
+#include <sys/wait.h> |
+ |
+#include <sstream> |
+#include <iterator> |
+ |
#include "google_breakpad/common/minidump_exception_linux.h" |
#include "google_breakpad/processor/call_stack.h" |
#include "google_breakpad/processor/process_state.h" |
@@ -42,6 +52,10 @@ |
#include "google_breakpad/processor/stack_frame.h" |
#include "processor/logging.h" |
+#define MAX_INSTRUCTION_LEN 15 |
+// This is the buffer size for objdump's output. |
+#define MAX_OBJDUMP_BUFFER_LEN 4096 |
+ |
namespace { |
// This function in libc is called if the program was compiled with |
@@ -115,8 +129,10 @@ |
return EXPLOITABILITY_ERR_PROCESSING; |
} |
- // Checking for the instruction pointer in a valid instruction region. |
- if (!this->InstructionPointerInCode(instruction_ptr)) { |
+ // Checking for the instruction pointer in a valid instruction region |
+ // or if the crash resulted during an illegal write. |
+ if (!this->InstructionPointerInCode(instruction_ptr) || |
+ this->EndedOnIllegalWrite(instruction_ptr)) { |
return EXPLOITABILITY_HIGH; |
} |
@@ -125,6 +141,305 @@ |
return EXPLOITABILITY_INTERESTING; |
} |
+bool ExploitabilityLinux::EndedOnIllegalWrite(uint64_t instruction_ptr) { |
+ // Get memory region containing instruction pointer. |
+ MinidumpMemoryList *memory_list = dump_->GetMemoryList(); |
+ MinidumpMemoryRegion *memory_region = |
+ memory_list ? |
+ memory_list->GetMemoryRegionForAddress(instruction_ptr) : NULL; |
+ if (memory_region == NULL) { |
+ BPLOG(ERROR) << "No memory region around instruction pointer."; |
+ return false; |
+ } |
+ |
+ // Get exception data to find architecture. |
+ string architecture = ""; |
+ MinidumpException *exception = dump_->GetException(); |
+ // This should never evaluate to true, since this should not be reachable |
+ // without checking for exception data earlier. |
+ if (exception == NULL) { |
+ BPLOG(INFO) << "No exception data."; |
+ return 0; |
ivanpe
2015/08/10 19:58:04
The return value type is bool
liuandrew
2015/08/10 22:00:40
Done.
|
+ } |
+ const MDRawExceptionStream *raw_exception_stream = exception->exception(); |
+ const MinidumpContext *context = exception->GetContext(); |
+ // This should not evaluate to true, for the same reason mentioned above. |
+ if (raw_exception_stream == NULL || context == NULL) { |
+ BPLOG(INFO) << "No exception or architecture data."; |
+ return false; |
+ } |
+ // Check architecture and set architecture variable to corresponding flag |
+ // in objdump. |
+ switch (context->GetContextCPU()) { |
+ case MD_CONTEXT_X86: |
+ architecture = "i386"; |
+ break; |
+ case MD_CONTEXT_AMD64: |
+ architecture = "i386:x86-64"; |
+ break; |
+ default: |
+ // Unsupported architecture. Note that ARM architectures are not |
+ // supported because objdump does not support ARM. |
+ return false; |
+ break; |
+ } |
+ |
+ // Get memory region around instruction pointer and the number of bytes |
+ // before and after the instruction pointer in the memory region. |
+ const uint8_t *raw_memory = memory_region->GetMemory(); |
+ const uint32_t offset = instruction_ptr - memory_region->GetBase(); |
ivanpe
2015/08/10 19:58:04
Both instruction_ptr and memory_region->GetBase()
liuandrew
2015/08/10 22:00:40
Done.
|
+ if (memory_region->GetSize() - offset < MAX_INSTRUCTION_LEN) { |
+ BPLOG(ERROR) << "Not enough bytes left to guarantee complete instruction"; |
+ return false; |
+ } |
+ |
+ // Write raw bytes around instruction pointer to a temporary file to |
+ // pass as an argument to objdump. |
+ char raw_bytes_tmpfile[] = "/tmp/breakpad_mem_region-raw_bytes-XXXXXX"; |
ivanpe
2015/08/10 19:58:04
const char?
liuandrew
2015/08/10 22:00:40
No, it should not be const. Calling mkstemp modifi
|
+ int raw_bytes_fd = mkstemp(raw_bytes_tmpfile); |
ivanpe
2015/08/10 19:58:04
Please, check return value
liuandrew
2015/08/10 22:00:40
Done.
|
+ if (write(raw_bytes_fd, raw_memory + offset, MAX_INSTRUCTION_LEN) |
+ != MAX_INSTRUCTION_LEN) { |
+ BPLOG(ERROR) << "Writing of raw bytes failed."; |
+ } |
+ |
+ char objdump_output_buffer[MAX_OBJDUMP_BUFFER_LEN]; |
+ int pipe_fd[2]; |
+ |
+ // Open pipe between STDOUT and the objdump output buffer. |
+ if (pipe(pipe_fd) < 0) { |
+ BPLOG(ERROR) << "Failed to pipe."; |
+ unlink(raw_bytes_tmpfile); |
+ return false; |
+ } |
+ |
+ // Fork process to call objdump. |
+ pid_t child_pid; |
+ if ((child_pid = fork()) < 0) { |
+ BPLOG(ERROR) << "Forking failed."; |
+ unlink(raw_bytes_tmpfile); |
+ return false; |
+ } |
+ |
+ if (child_pid) { // Parent code. |
+ close(pipe_fd[1]); |
+ // Read piped output from objdump. |
+ ssize_t bytes_read = read(pipe_fd[0], |
+ objdump_output_buffer, |
+ MAX_OBJDUMP_BUFFER_LEN); |
+ wait(NULL); // Wait for child process to run objdump. |
+ unlink(raw_bytes_tmpfile); |
+ if (bytes_read < 0) { |
+ BPLOG(ERROR) << "Failed to read objdump output."; |
+ return false; |
+ } |
+ close(pipe_fd[0]); |
+ } else { // Child code. |
+ close(pipe_fd[0]); |
+ dup2(pipe_fd[1], STDOUT_FILENO); // Send objdump output across pipe. |
+ // Exec objdump. |
+ execlp("objdump", "objdump", "-D", "-b", "binary", "-M", "intel", |
ivanpe
2015/08/10 19:58:04
This function seems to have lots of portability is
liuandrew
2015/08/10 22:00:40
There looked to be no good disassembler libraries
ivanpe
2015/08/10 23:27:58
Fork and pipe will have portability issues if brea
liuandrew
2015/08/11 22:55:38
I tested objdump, and it works in borg.
If I set
ivanpe
2015/08/11 23:29:43
I guess that if someone wants to compile this on a
liuandrew
2015/08/17 21:37:36
I set an alarm to kill the child process after one
|
+ "-m", architecture.c_str(), raw_bytes_tmpfile, NULL); |
+ BPLOG(ERROR) << "Exec failed."; |
+ exit(EX_OSERR); |
+ } |
+ |
+ // Set up regular expression to catch first instruction from objdump. |
+ // The line with the instruction will begin with "0:". |
+ regex_t regex; |
+ regcomp(®ex, "0:", REG_EXTENDED | REG_NOSUB); |
+ |
+ // Put buffer data into stream to output line-by-line. |
+ std::stringstream objdump_stream; |
+ objdump_stream.str(string(objdump_output_buffer)); |
+ string line; |
+ |
+ // Pipe each output line into the string until the string contains |
+ // the first instruction from objdump. |
+ do { |
+ if (!getline(objdump_stream, line)) { |
+ BPLOG(ERROR) << "Objdump instructions not found"; |
+ return false; |
+ } |
+ } while (regexec(®ex, line.c_str(), 0, NULL, 0)); |
+ regfree(®ex); // Free regex data. |
+ |
+ // Tokenize the objdump line. |
+ vector<string> tokens; |
+ std::istringstream line_stream(line); |
+ copy(std::istream_iterator<string>(line_stream), |
+ std::istream_iterator<string>(), |
+ std::back_inserter(tokens)); |
+ |
+ // Parse out the operator and operands from the instruction. |
+ string instruction = ""; |
+ string operands = ""; |
+ |
+ // Regex for the data in hex form. Each byte is two hex digits. |
+ regcomp(®ex, "^[[:xdigit:]]{2}$", REG_EXTENDED | REG_NOSUB); |
+ |
+ // Find and set the location of the operator. The operator appears |
+ // directly after the chain of bytes that define the instruction. The |
+ // operands will be the last token, given that the instruction has operands. |
+ // If not, the operator is the last token. The loop skips the first token |
+ // because the first token is the instruction number (namely "0:"). |
+ for (size_t i = 1; i < tokens.size(); i++) { |
+ // Check if current token no longer is in byte format. |
+ if (regexec(®ex, tokens[i].c_str(), 0, NULL, 0)) { |
+ instruction = tokens[i]; |
+ // If the operator is the last token, there are no operands. |
+ if (i != tokens.size() - 1) { |
+ operands = tokens[tokens.size() - 1]; |
+ } |
+ break; |
+ } |
+ } |
+ regfree(®ex); |
+ |
+ if (instruction.empty()) { |
+ BPLOG(ERROR) << "Failed to parse out operation from objdump instruction."; |
+ return false; |
+ } |
+ |
+ // Split operands into source and destination (if applicable). |
+ string dest = ""; |
+ string src = ""; |
+ if (!operands.empty()) { |
+ size_t delim = operands.find(','); |
+ if (delim == string::npos) { |
+ dest = operands; |
+ } else { |
+ dest = operands.substr(0, delim); |
+ src = operands.substr(delim + 1); |
+ } |
+ } |
+ |
+ // Check if the operation is a write to memory. First, the instruction |
+ // must one that can write to memory. Second, the write destination |
+ // must be a spot in memory rather than a register. Since there are no |
+ // symbols from objdump, the destination will be enclosed by brackets. |
+ if (dest.at(0) == '[' && dest.at(dest.size() - 1) == ']' && |
+ (!instruction.compare("mov") || !instruction.compare("inc") || |
+ !instruction.compare("dec") || !instruction.compare("and") || |
+ !instruction.compare("or") || !instruction.compare("xor") || |
+ !instruction.compare("not") || !instruction.compare("neg") || |
+ !instruction.compare("add") || !instruction.compare("sub") || |
+ !instruction.compare("shl") || !instruction.compare("shr"))) { |
+ // Strip away enclosing brackets from the destination address. |
+ dest = dest.substr(1, dest.size() - 2); |
+ |
+ // The destination should be the format [reg+a] or [reg-a], where reg |
+ // is a register and a is a hexadecimal constant. Although more complex |
+ // expressions can make valid instructions, objdump's disassembly outputs |
+ // it in this simpler format. |
+ |
+ // Parse out the constant that is added to the address (if it exists). |
+ size_t delim = dest.find('+'); |
+ bool positive_add_constant = true; |
+ // Check if constant is subtracted instead of added. |
+ if (delim == string::npos) { |
+ positive_add_constant = false; |
+ delim = dest.find('-'); |
+ } |
+ uint32_t add_constant = 0; |
+ // Save constant and remove it from the expression. |
+ if (delim != string::npos) { |
+ sscanf(dest.substr(delim + 1).c_str(), "%x", &add_constant); |
+ dest = dest.substr(0, delim); |
+ } |
+ |
+ // Calculate and set the address that is the target of the write operation. |
+ uint64_t write_address = 0; |
+ |
+ // Set the the write address to the corresponding register. |
+ // TODO(liuandrew): Add support for partial registers, such as |
+ // the rax/eax/ax/ah/al chain. |
+ switch (context->GetContextCPU()) { |
+ case MD_CONTEXT_X86: |
+ if (!dest.compare("eax")) { |
+ write_address = context->GetContextX86()->eax; |
+ } else if (!dest.compare("ebx")) { |
+ write_address = context->GetContextX86()->ebx; |
+ } else if (!dest.compare("ecx")) { |
+ write_address = context->GetContextX86()->ecx; |
+ } else if (!dest.compare("edx")) { |
+ write_address = context->GetContextX86()->edx; |
+ } else if (!dest.compare("edi")) { |
+ write_address = context->GetContextX86()->edi; |
+ } else if (!dest.compare("esi")) { |
+ write_address = context->GetContextX86()->esi; |
+ } else if (!dest.compare("ebp")) { |
+ write_address = context->GetContextX86()->ebp; |
+ } else if (!dest.compare("esp")) { |
+ write_address = context->GetContextX86()->esp; |
+ } else if (!dest.compare("eip")) { |
+ write_address = context->GetContextX86()->eip; |
+ } else { |
+ BPLOG(ERROR) << "Unsupported register"; |
+ return false; |
+ } |
+ break; |
+ case MD_CONTEXT_AMD64: |
+ if (!dest.compare("rax")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("rbx")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("rcx")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("rdx")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("rdi")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("rsi")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("rbp")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("rsp")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("rip")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("r8")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("r9")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("r10")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("r11")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("r12")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("r13")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("r14")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else if (!dest.compare("r15")) { |
+ write_address = context->GetContextAMD64()->rax; |
+ } else { |
+ BPLOG(ERROR) << "Unsupported register"; |
+ return false; |
+ } |
+ break; |
+ default: |
+ // This should not occur since the same switch condition |
+ // should have terminated this method. |
+ return false; |
+ break; |
+ } |
+ |
+ // Add or subtract constant from write address (if applicable). |
+ write_address = |
+ positive_add_constant ? |
+ write_address + add_constant : write_address - add_constant; |
+ |
+ // If the program crashed as a result of a write, the destination of |
+ // the write must have been an address that did not permit writing. |
+ // However, if the address is under 4k, due to program protections, |
+ // the crash does not suggest exploitability for writes with such a |
+ // low target address. |
+ return write_address > 4096; |
+ } |
+ return false; |
+} |
+ |
bool ExploitabilityLinux::InstructionPointerInCode(uint64_t instruction_ptr) { |
// Get Linux memory mapping from /proc/self/maps. Checking whether the |
// region the instruction pointer is in has executable permission can tell |