Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(8)

Unified Diff: tools/telemetry/third_party/gsutilz/third_party/crcmod/python2/crcmod/test.py

Issue 1264873003: Add gsutil/third_party to telemetry/third_party/gsutilz/third_party. (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Remove httplib2 Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: tools/telemetry/third_party/gsutilz/third_party/crcmod/python2/crcmod/test.py
diff --git a/tools/telemetry/third_party/gsutilz/third_party/crcmod/python2/crcmod/test.py b/tools/telemetry/third_party/gsutilz/third_party/crcmod/python2/crcmod/test.py
new file mode 100644
index 0000000000000000000000000000000000000000..44af45d3aed47ea00755053477718ed9cbe51d49
--- /dev/null
+++ b/tools/telemetry/third_party/gsutilz/third_party/crcmod/python2/crcmod/test.py
@@ -0,0 +1,500 @@
+#-----------------------------------------------------------------------------
+# Copyright (c) 2010 Raymond L. Buvel
+# Copyright (c) 2010 Craig McQueen
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
+#-----------------------------------------------------------------------------
+'''Unit tests for crcmod functionality'''
+
+
+import unittest
+
+import binascii
+
+from crcmod import mkCrcFun, Crc
+try:
+ from crcmod.crcmod import _usingExtension
+ from crcmod.predefined import PredefinedCrc
+ from crcmod.predefined import mkPredefinedCrcFun
+ from crcmod.predefined import _crc_definitions as _predefined_crc_definitions
+except ImportError:
+ from crcmod import _usingExtension
+ from predefined import PredefinedCrc
+ from predefined import mkPredefinedCrcFun
+ from predefined import _crc_definitions as _predefined_crc_definitions
+
+
+#-----------------------------------------------------------------------------
+# This polynomial was chosen because it is the product of two irreducible
+# polynomials.
+# g8 = (x^7+x+1)*(x+1)
+g8 = 0x185
+
+#-----------------------------------------------------------------------------
+# The following reproduces all of the entries in the Numerical Recipes table.
+# This is the standard CCITT polynomial.
+g16 = 0x11021
+
+#-----------------------------------------------------------------------------
+g24 = 0x15D6DCB
+
+#-----------------------------------------------------------------------------
+# This is the standard AUTODIN-II polynomial which appears to be used in a
+# wide variety of standards and applications.
+g32 = 0x104C11DB7
+
+
+#-----------------------------------------------------------------------------
+# I was able to locate a couple of 64-bit polynomials on the web. To make it
+# easier to input the representation, define a function that builds a
+# polynomial from a list of the bits that need to be turned on.
+
+def polyFromBits(bits):
+ p = 0L
+ for n in bits:
+ p = p | (1L << n)
+ return p
+
+# The following is from the paper "An Improved 64-bit Cyclic Redundancy Check
+# for Protein Sequences" by David T. Jones
+
+g64a = polyFromBits([64, 63, 61, 59, 58, 56, 55, 52, 49, 48, 47, 46, 44, 41,
+ 37, 36, 34, 32, 31, 28, 26, 23, 22, 19, 16, 13, 12, 10, 9, 6, 4,
+ 3, 0])
+
+# The following is from Standard ECMA-182 "Data Interchange on 12,7 mm 48-Track
+# Magnetic Tape Cartridges -DLT1 Format-", December 1992.
+
+g64b = polyFromBits([64, 62, 57, 55, 54, 53, 52, 47, 46, 45, 40, 39, 38, 37,
+ 35, 33, 32, 31, 29, 27, 24, 23, 22, 21, 19, 17, 13, 12, 10, 9, 7,
+ 4, 1, 0])
+
+#-----------------------------------------------------------------------------
+# This class is used to check the CRC calculations against a direct
+# implementation using polynomial division.
+
+class poly:
+ '''Class implementing polynomials over the field of integers mod 2'''
+ def __init__(self,p):
+ p = long(p)
+ if p < 0: raise ValueError('invalid polynomial')
+ self.p = p
+
+ def __long__(self):
+ return self.p
+
+ def __eq__(self,other):
+ return self.p == other.p
+
+ def __ne__(self,other):
+ return self.p != other.p
+
+ # To allow sorting of polynomials, use their long integer form for
+ # comparison
+ def __cmp__(self,other):
+ return cmp(self.p, other.p)
+
+ def __nonzero__(self):
+ return self.p != 0L
+
+ def __neg__(self):
+ return self # These polynomials are their own inverse under addition
+
+ def __invert__(self):
+ n = max(self.deg() + 1, 1)
+ x = (1L << n) - 1
+ return poly(self.p ^ x)
+
+ def __add__(self,other):
+ return poly(self.p ^ other.p)
+
+ def __sub__(self,other):
+ return poly(self.p ^ other.p)
+
+ def __mul__(self,other):
+ a = self.p
+ b = other.p
+ if a == 0 or b == 0: return poly(0)
+ x = 0L
+ while b:
+ if b&1:
+ x = x ^ a
+ a = a<<1
+ b = b>>1
+ return poly(x)
+
+ def __divmod__(self,other):
+ u = self.p
+ m = self.deg()
+ v = other.p
+ n = other.deg()
+ if v == 0: raise ZeroDivisionError('polynomial division by zero')
+ if n == 0: return (self,poly(0))
+ if m < n: return (poly(0),self)
+ k = m-n
+ a = 1L << m
+ v = v << k
+ q = 0L
+ while k > 0:
+ if a & u:
+ u = u ^ v
+ q = q | 1L
+ q = q << 1
+ a = a >> 1
+ v = v >> 1
+ k -= 1
+ if a & u:
+ u = u ^ v
+ q = q | 1L
+ return (poly(q),poly(u))
+
+ def __div__(self,other):
+ return self.__divmod__(other)[0]
+
+ def __mod__(self,other):
+ return self.__divmod__(other)[1]
+
+ def __repr__(self):
+ return 'poly(0x%XL)' % self.p
+
+ def __str__(self):
+ p = self.p
+ if p == 0: return '0'
+ lst = { 0:[], 1:['1'], 2:['x'], 3:['1','x'] }[p&3]
+ p = p>>2
+ n = 2
+ while p:
+ if p&1: lst.append('x^%d' % n)
+ p = p>>1
+ n += 1
+ lst.reverse()
+ return '+'.join(lst)
+
+ def deg(self):
+ '''return the degree of the polynomial'''
+ a = self.p
+ if a == 0: return -1
+ n = 0
+ while a >= 0x10000L:
+ n += 16
+ a = a >> 16
+ a = int(a)
+ while a > 1:
+ n += 1
+ a = a >> 1
+ return n
+
+#-----------------------------------------------------------------------------
+# The following functions compute the CRC using direct polynomial division.
+# These functions are checked against the result of the table driven
+# algorithms.
+
+g8p = poly(g8)
+x8p = poly(1L<<8)
+def crc8p(d):
+ d = map(ord, d)
+ p = 0L
+ for i in d:
+ p = p*256L + i
+ p = poly(p)
+ return long(p*x8p%g8p)
+
+g16p = poly(g16)
+x16p = poly(1L<<16)
+def crc16p(d):
+ d = map(ord, d)
+ p = 0L
+ for i in d:
+ p = p*256L + i
+ p = poly(p)
+ return long(p*x16p%g16p)
+
+g24p = poly(g24)
+x24p = poly(1L<<24)
+def crc24p(d):
+ d = map(ord, d)
+ p = 0L
+ for i in d:
+ p = p*256L + i
+ p = poly(p)
+ return long(p*x24p%g24p)
+
+g32p = poly(g32)
+x32p = poly(1L<<32)
+def crc32p(d):
+ d = map(ord, d)
+ p = 0L
+ for i in d:
+ p = p*256L + i
+ p = poly(p)
+ return long(p*x32p%g32p)
+
+g64ap = poly(g64a)
+x64p = poly(1L<<64)
+def crc64ap(d):
+ d = map(ord, d)
+ p = 0L
+ for i in d:
+ p = p*256L + i
+ p = poly(p)
+ return long(p*x64p%g64ap)
+
+g64bp = poly(g64b)
+def crc64bp(d):
+ d = map(ord, d)
+ p = 0L
+ for i in d:
+ p = p*256L + i
+ p = poly(p)
+ return long(p*x64p%g64bp)
+
+
+class KnownAnswerTests(unittest.TestCase):
+ test_messages = [
+ 'T',
+ 'CatMouse987654321',
+ ]
+
+ known_answers = [
+ [ (g8,0,0), (0xFE, 0x9D) ],
+ [ (g8,-1,1), (0x4F, 0x9B) ],
+ [ (g8,0,1), (0xFE, 0x62) ],
+ [ (g16,0,0), (0x1A71, 0xE556) ],
+ [ (g16,-1,1), (0x1B26, 0xF56E) ],
+ [ (g16,0,1), (0x14A1, 0xC28D) ],
+ [ (g24,0,0), (0xBCC49D, 0xC4B507) ],
+ [ (g24,-1,1), (0x59BD0E, 0x0AAA37) ],
+ [ (g24,0,1), (0xD52B0F, 0x1523AB) ],
+ [ (g32,0,0), (0x6B93DDDB, 0x12DCA0F4) ],
+ [ (g32,0xFFFFFFFFL,1), (0x41FB859FL, 0xF7B400A7L) ],
+ [ (g32,0,1), (0x6C0695EDL, 0xC1A40EE5L) ],
+ [ (g32,0,1,0xFFFFFFFF), (0xBE047A60L, 0x084BFF58L) ],
+ ]
+
+ def test_known_answers(self):
+ for crcfun_params, v in self.known_answers:
+ crcfun = mkCrcFun(*crcfun_params)
+ self.assertEqual(crcfun('',0), 0, "Wrong answer for CRC parameters %s, input ''" % (crcfun_params,))
+ for i, msg in enumerate(self.test_messages):
+ self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
+ self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
+ self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC parameters %s, input '%s'" % (crcfun_params,msg))
+
+
+class CompareReferenceCrcTest(unittest.TestCase):
+ test_messages = [
+ '',
+ 'T',
+ '123456789',
+ 'CatMouse987654321',
+ ]
+
+ test_poly_crcs = [
+ [ (g8,0,0), crc8p ],
+ [ (g16,0,0), crc16p ],
+ [ (g24,0,0), crc24p ],
+ [ (g32,0,0), crc32p ],
+ [ (g64a,0,0), crc64ap ],
+ [ (g64b,0,0), crc64bp ],
+ ]
+
+ @staticmethod
+ def reference_crc32(d, crc=0):
+ """This function modifies the return value of binascii.crc32
+ to be an unsigned 32-bit value. I.e. in the range 0 to 2**32-1."""
+ # Work around the future warning on constants.
+ if crc > 0x7FFFFFFFL:
+ x = int(crc & 0x7FFFFFFFL)
+ crc = x | -2147483648
+ x = binascii.crc32(d,crc)
+ return long(x) & 0xFFFFFFFFL
+
+ def test_compare_crc32(self):
+ """The binascii module has a 32-bit CRC function that is used in a wide range
+ of applications including the checksum used in the ZIP file format.
+ This test compares the CRC-32 implementation of this crcmod module to
+ that of binascii.crc32."""
+ # The following function should produce the same result as
+ # self.reference_crc32 which is derived from binascii.crc32.
+ crc32 = mkCrcFun(g32,0,1,0xFFFFFFFF)
+
+ for msg in self.test_messages:
+ self.assertEqual(crc32(msg), self.reference_crc32(msg))
+
+ def test_compare_poly(self):
+ """Compare various CRCs of this crcmod module to a pure
+ polynomial-based implementation."""
+ for crcfun_params, crc_poly_fun in self.test_poly_crcs:
+ # The following function should produce the same result as
+ # the associated polynomial CRC function.
+ crcfun = mkCrcFun(*crcfun_params)
+
+ for msg in self.test_messages:
+ self.assertEqual(crcfun(msg), crc_poly_fun(msg))
+
+
+class CrcClassTest(unittest.TestCase):
+ """Verify the Crc class"""
+
+ msg = 'CatMouse987654321'
+
+ def test_simple_crc32_class(self):
+ """Verify the CRC class when not using xorOut"""
+ crc = Crc(g32)
+
+ str_rep = \
+'''poly = 0x104C11DB7
+reverse = True
+initCrc = 0xFFFFFFFF
+xorOut = 0x00000000
+crcValue = 0xFFFFFFFF'''
+ self.assertEqual(str(crc), str_rep)
+ self.assertEqual(crc.digest(), '\xff\xff\xff\xff')
+ self.assertEqual(crc.hexdigest(), 'FFFFFFFF')
+
+ crc.update(self.msg)
+ self.assertEqual(crc.crcValue, 0xF7B400A7L)
+ self.assertEqual(crc.digest(), '\xf7\xb4\x00\xa7')
+ self.assertEqual(crc.hexdigest(), 'F7B400A7')
+
+ # Verify the .copy() method
+ x = crc.copy()
+ self.assertTrue(x is not crc)
+ str_rep = \
+'''poly = 0x104C11DB7
+reverse = True
+initCrc = 0xFFFFFFFF
+xorOut = 0x00000000
+crcValue = 0xF7B400A7'''
+ self.assertEqual(str(crc), str_rep)
+ self.assertEqual(str(x), str_rep)
+
+ def test_full_crc32_class(self):
+ """Verify the CRC class when using xorOut"""
+
+ crc = Crc(g32, initCrc=0, xorOut= ~0L)
+
+ str_rep = \
+'''poly = 0x104C11DB7
+reverse = True
+initCrc = 0x00000000
+xorOut = 0xFFFFFFFF
+crcValue = 0x00000000'''
+ self.assertEqual(str(crc), str_rep)
+ self.assertEqual(crc.digest(), '\x00\x00\x00\x00')
+ self.assertEqual(crc.hexdigest(), '00000000')
+
+ crc.update(self.msg)
+ self.assertEqual(crc.crcValue, 0x84BFF58L)
+ self.assertEqual(crc.digest(), '\x08\x4b\xff\x58')
+ self.assertEqual(crc.hexdigest(), '084BFF58')
+
+ # Verify the .copy() method
+ x = crc.copy()
+ self.assertTrue(x is not crc)
+ str_rep = \
+'''poly = 0x104C11DB7
+reverse = True
+initCrc = 0x00000000
+xorOut = 0xFFFFFFFF
+crcValue = 0x084BFF58'''
+ self.assertEqual(str(crc), str_rep)
+ self.assertEqual(str(x), str_rep)
+
+ # Verify the .new() method
+ y = crc.new()
+ self.assertTrue(y is not crc)
+ self.assertTrue(y is not x)
+ str_rep = \
+'''poly = 0x104C11DB7
+reverse = True
+initCrc = 0x00000000
+xorOut = 0xFFFFFFFF
+crcValue = 0x00000000'''
+ self.assertEqual(str(y), str_rep)
+
+
+class PredefinedCrcTest(unittest.TestCase):
+ """Verify the predefined CRCs"""
+
+ test_messages_for_known_answers = [
+ '', # Test cases below depend on this first entry being the empty string.
+ 'T',
+ 'CatMouse987654321',
+ ]
+
+ known_answers = [
+ [ 'crc-aug-ccitt', (0x1D0F, 0xD6ED, 0x5637) ],
+ [ 'x-25', (0x0000, 0xE4D9, 0x0A91) ],
+ [ 'crc-32', (0x00000000, 0xBE047A60, 0x084BFF58) ],
+ ]
+
+ def test_known_answers(self):
+ for crcfun_name, v in self.known_answers:
+ crcfun = mkPredefinedCrcFun(crcfun_name)
+ self.assertEqual(crcfun('',0), 0, "Wrong answer for CRC '%s', input ''" % crcfun_name)
+ for i, msg in enumerate(self.test_messages_for_known_answers):
+ self.assertEqual(crcfun(msg), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
+ self.assertEqual(crcfun(msg[4:], crcfun(msg[:4])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
+ self.assertEqual(crcfun(msg[-1:], crcfun(msg[:-1])), v[i], "Wrong answer for CRC %s, input '%s'" % (crcfun_name,msg))
+
+ def test_class_with_known_answers(self):
+ for crcfun_name, v in self.known_answers:
+ for i, msg in enumerate(self.test_messages_for_known_answers):
+ crc1 = PredefinedCrc(crcfun_name)
+ crc1.update(msg)
+ self.assertEqual(crc1.crcValue, v[i], "Wrong answer for crc1 %s, input '%s'" % (crcfun_name,msg))
+
+ crc2 = crc1.new()
+ # Check that crc1 maintains its same value, after .new() call.
+ self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg))
+ # Check that the new class instance created by .new() contains the initialisation value.
+ # This depends on the first string in self.test_messages_for_known_answers being
+ # the empty string.
+ self.assertEqual(crc2.crcValue, v[0], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg))
+
+ crc2.update(msg)
+ # Check that crc1 maintains its same value, after crc2 has called .update()
+ self.assertEqual(crc1.crcValue, v[i], "Wrong state for crc1 %s, input '%s'" % (crcfun_name,msg))
+ # Check that crc2 contains the right value after calling .update()
+ self.assertEqual(crc2.crcValue, v[i], "Wrong state for crc2 %s, input '%s'" % (crcfun_name,msg))
+
+ def test_function_predefined_table(self):
+ for table_entry in _predefined_crc_definitions:
+ # Check predefined function
+ crc_func = mkPredefinedCrcFun(table_entry['name'])
+ calc_value = crc_func("123456789")
+ self.assertEqual(calc_value, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name'])
+
+ def test_class_predefined_table(self):
+ for table_entry in _predefined_crc_definitions:
+ # Check predefined class
+ crc1 = PredefinedCrc(table_entry['name'])
+ crc1.update("123456789")
+ self.assertEqual(crc1.crcValue, table_entry['check'], "Wrong answer for CRC '%s'" % table_entry['name'])
+
+
+def runtests():
+ print "Using extension:", _usingExtension
+ print
+ unittest.main()
+
+
+if __name__ == '__main__':
+ runtests()

Powered by Google App Engine
This is Rietveld 408576698