| Index: src/effects/SkPoint3.cpp
|
| diff --git a/src/effects/SkPoint3.cpp b/src/effects/SkPoint3.cpp
|
| deleted file mode 100644
|
| index 3b5586b067077b4bcf03f37d31ac65e43ef043af..0000000000000000000000000000000000000000
|
| --- a/src/effects/SkPoint3.cpp
|
| +++ /dev/null
|
| @@ -1,80 +0,0 @@
|
| -/*
|
| - * Copyright 2015 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#include "SkPoint3.h"
|
| -
|
| -// Returns the square of the Euclidian distance to (x,y,z).
|
| -static inline float get_length_squared(float x, float y, float z) {
|
| - return x * x + y * y + z * z;
|
| -}
|
| -
|
| -// Calculates the square of the Euclidian distance to (x,y,z) and stores it in
|
| -// *lengthSquared. Returns true if the distance is judged to be "nearly zero".
|
| -//
|
| -// This logic is encapsulated in a helper method to make it explicit that we
|
| -// always perform this check in the same manner, to avoid inconsistencies
|
| -// (see http://code.google.com/p/skia/issues/detail?id=560 ).
|
| -static inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) {
|
| - *lengthSquared = get_length_squared(x, y, z);
|
| - return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
|
| -}
|
| -
|
| -SkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) {
|
| - float magSq = get_length_squared(x, y, z);
|
| - if (SkScalarIsFinite(magSq)) {
|
| - return sk_float_sqrt(magSq);
|
| - } else {
|
| - double xx = x;
|
| - double yy = y;
|
| - double zz = z;
|
| - return (float)sqrt(xx * xx + yy * yy + zz * zz);
|
| - }
|
| -}
|
| -
|
| -/*
|
| - * We have to worry about 2 tricky conditions:
|
| - * 1. underflow of magSq (compared against nearlyzero^2)
|
| - * 2. overflow of magSq (compared w/ isfinite)
|
| - *
|
| - * If we underflow, we return false. If we overflow, we compute again using
|
| - * doubles, which is much slower (3x in a desktop test) but will not overflow.
|
| - */
|
| -bool SkPoint3::normalize() {
|
| - float magSq;
|
| - if (is_length_nearly_zero(fX, fY, fZ, &magSq)) {
|
| - this->set(0, 0, 0);
|
| - return false;
|
| - }
|
| -
|
| - float scale;
|
| - if (SkScalarIsFinite(magSq)) {
|
| - scale = 1.0f / sk_float_sqrt(magSq);
|
| - } else {
|
| - // our magSq step overflowed to infinity, so use doubles instead.
|
| - // much slower, but needed when x, y or z is very large, otherwise we
|
| - // divide by inf. and return (0,0,0) vector.
|
| - double xx = fX;
|
| - double yy = fY;
|
| - double zz = fZ;
|
| -#ifdef SK_CPU_FLUSH_TO_ZERO
|
| - // The iOS ARM processor discards small denormalized numbers to go faster.
|
| - // Casting this to a float would cause the scale to go to zero. Keeping it
|
| - // as a double for the multiply keeps the scale non-zero.
|
| - double dscale = 1.0f / sqrt(xx * xx + yy * yy + zz * zz);
|
| - fX = x * dscale;
|
| - fY = y * dscale;
|
| - fZ = z * dscale;
|
| - return true;
|
| -#else
|
| - scale = (float)(1.0f / sqrt(xx * xx + yy * yy + zz * zz));
|
| -#endif
|
| - }
|
| - fX *= scale;
|
| - fY *= scale;
|
| - fZ *= scale;
|
| - return true;
|
| -}
|
|
|