OLD | NEW |
| (Empty) |
1 | |
2 /* | |
3 * Copyright 2015 Google Inc. | |
4 * | |
5 * Use of this source code is governed by a BSD-style license that can be | |
6 * found in the LICENSE file. | |
7 */ | |
8 | |
9 #include "SkBitmapProcState.h" | |
10 #include "SkColor.h" | |
11 #include "SkEmptyShader.h" | |
12 #include "SkErrorInternals.h" | |
13 #include "SkLightingShader.h" | |
14 #include "SkMathPriv.h" | |
15 #include "SkReadBuffer.h" | |
16 #include "SkWriteBuffer.h" | |
17 | |
18 //////////////////////////////////////////////////////////////////////////// | |
19 | |
20 /* | |
21 SkLightingShader TODOs: | |
22 support other than clamp mode | |
23 allow 'diffuse' & 'normal' to be of different dimensions? | |
24 support different light types | |
25 support multiple lights | |
26 enforce normal map is 4 channel | |
27 use SkImages instead if SkBitmaps | |
28 | |
29 To Test: | |
30 non-opaque diffuse textures | |
31 A8 diffuse textures | |
32 down & upsampled draws | |
33 */ | |
34 | |
35 | |
36 | |
37 /** \class SkLightingShaderImpl | |
38 This subclass of shader applies lighting. | |
39 */ | |
40 class SK_API SkLightingShaderImpl : public SkShader { | |
41 public: | |
42 | |
43 /** Create a new lighting shader that use the provided normal map, light | |
44 and ambient color to light the diffuse bitmap. | |
45 @param diffuse the diffuse bitmap | |
46 @param normal the normal map | |
47 @param light the light applied to the normal map | |
48 @param ambient the linear (unpremul) ambient light color | |
49 */ | |
50 SkLightingShaderImpl(const SkBitmap& diffuse, const SkBitmap& normal, | |
51 const SkLightingShader::Light& light, | |
52 const SkColor3f& ambient, const SkMatrix* localMatrix) | |
53 : INHERITED(localMatrix) | |
54 , fDiffuseMap(diffuse) | |
55 , fNormalMap(normal) | |
56 , fLight(light) | |
57 , fAmbientColor(ambient) { | |
58 if (!fLight.fDirection.normalize()) { | |
59 fLight.fDirection = SkPoint3::Make(0.0f, 0.0f, 1.0f); | |
60 } | |
61 } | |
62 | |
63 bool isOpaque() const override; | |
64 | |
65 bool asFragmentProcessor(GrContext*, const SkPaint& paint, const SkMatrix& v
iewM, | |
66 const SkMatrix* localMatrix, GrColor* color, | |
67 GrProcessorDataManager*, GrFragmentProcessor** fp)
const override; | |
68 | |
69 size_t contextSize() const override; | |
70 | |
71 class LightingShaderContext : public SkShader::Context { | |
72 public: | |
73 // The context takes ownership of the states. It will call their destruc
tors | |
74 // but will NOT free the memory. | |
75 LightingShaderContext(const SkLightingShaderImpl&, const ContextRec&, | |
76 SkBitmapProcState* diffuseState, SkBitmapProcState
* normalState); | |
77 ~LightingShaderContext() override; | |
78 | |
79 void shadeSpan(int x, int y, SkPMColor[], int count) override; | |
80 | |
81 uint32_t getFlags() const override { return fFlags; } | |
82 | |
83 private: | |
84 SkBitmapProcState* fDiffuseState; | |
85 SkBitmapProcState* fNormalState; | |
86 uint32_t fFlags; | |
87 | |
88 typedef SkShader::Context INHERITED; | |
89 }; | |
90 | |
91 SK_TO_STRING_OVERRIDE() | |
92 SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(SkLightingShaderImpl) | |
93 | |
94 protected: | |
95 void flatten(SkWriteBuffer&) const override; | |
96 Context* onCreateContext(const ContextRec&, void*) const override; | |
97 | |
98 private: | |
99 SkBitmap fDiffuseMap; | |
100 SkBitmap fNormalMap; | |
101 SkLightingShader::Light fLight; | |
102 SkColor3f fAmbientColor; // linear (unpremul) color. Range is
0..1/channel. | |
103 | |
104 friend class SkLightingShader; | |
105 | |
106 typedef SkShader INHERITED; | |
107 }; | |
108 | |
109 //////////////////////////////////////////////////////////////////////////// | |
110 | |
111 #if SK_SUPPORT_GPU | |
112 | |
113 #include "GrCoordTransform.h" | |
114 #include "GrFragmentProcessor.h" | |
115 #include "GrTextureAccess.h" | |
116 #include "gl/GrGLProcessor.h" | |
117 #include "gl/builders/GrGLProgramBuilder.h" | |
118 #include "SkGr.h" | |
119 | |
120 class LightingFP : public GrFragmentProcessor { | |
121 public: | |
122 LightingFP(GrTexture* diffuse, GrTexture* normal, const SkMatrix& matrix, | |
123 const SkVector3& lightDir, const SkColor3f& lightColor, | |
124 const SkColor3f& ambientColor) | |
125 : fDeviceTransform(kDevice_GrCoordSet, matrix) | |
126 , fDiffuseTextureAccess(diffuse) | |
127 , fNormalTextureAccess(normal) | |
128 , fLightDir(lightDir) | |
129 , fLightColor(lightColor) | |
130 , fAmbientColor(ambientColor) { | |
131 this->addCoordTransform(&fDeviceTransform); | |
132 this->addTextureAccess(&fDiffuseTextureAccess); | |
133 this->addTextureAccess(&fNormalTextureAccess); | |
134 | |
135 this->initClassID<LightingFP>(); | |
136 } | |
137 | |
138 class LightingGLFP : public GrGLFragmentProcessor { | |
139 public: | |
140 LightingGLFP() { | |
141 fLightDir.fX = 10000.0f; | |
142 fLightColor.fX = 0.0f; | |
143 fAmbientColor.fX = 0.0f; | |
144 } | |
145 | |
146 void emitCode(EmitArgs& args) override { | |
147 | |
148 GrGLFragmentBuilder* fpb = args.fBuilder->getFragmentShaderBuilder()
; | |
149 | |
150 // add uniforms | |
151 const char* lightDirUniName = NULL; | |
152 fLightDirUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFragme
nt_Visibility, | |
153 kVec3f_GrSLType, kDefault_G
rSLPrecision, | |
154 "LightDir", &lightDirUniNam
e); | |
155 | |
156 const char* lightColorUniName = NULL; | |
157 fLightColorUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFrag
ment_Visibility, | |
158 kVec3f_GrSLType, kDefault
_GrSLPrecision, | |
159 "LightColor", &lightColor
UniName); | |
160 | |
161 const char* ambientColorUniName = NULL; | |
162 fAmbientColorUni = args.fBuilder->addUniform(GrGLProgramBuilder::kFr
agment_Visibility, | |
163 kVec3f_GrSLType, kDefau
lt_GrSLPrecision, | |
164 "AmbientColor", &ambien
tColorUniName); | |
165 | |
166 fpb->codeAppend("vec4 diffuseColor = "); | |
167 fpb->appendTextureLookupAndModulate(args.fInputColor, args.fSamplers
[0], | |
168 args.fCoords[0].c_str(), | |
169 args.fCoords[0].getType()); | |
170 fpb->codeAppend(";"); | |
171 | |
172 fpb->codeAppend("vec4 normalColor = "); | |
173 fpb->appendTextureLookup(args.fSamplers[1], | |
174 args.fCoords[0].c_str(), | |
175 args.fCoords[0].getType()); | |
176 fpb->codeAppend(";"); | |
177 | |
178 fpb->codeAppend("vec3 normal = normalize(normalColor.rgb - vec3(0.5)
);"); | |
179 fpb->codeAppendf("vec3 lightDir = normalize(%s);", lightDirUniName); | |
180 fpb->codeAppend("float NdotL = dot(normal, lightDir);"); | |
181 // diffuse light | |
182 fpb->codeAppendf("vec3 result = %s*diffuseColor.rgb*NdotL;", lightCo
lorUniName); | |
183 // ambient light | |
184 fpb->codeAppendf("result += %s;", ambientColorUniName); | |
185 fpb->codeAppendf("%s = vec4(result.rgb, diffuseColor.a);", args.fOut
putColor); | |
186 } | |
187 | |
188 void setData(const GrGLProgramDataManager& pdman, const GrProcessor& pro
c) override { | |
189 const LightingFP& lightingFP = proc.cast<LightingFP>(); | |
190 | |
191 const SkVector3& lightDir = lightingFP.lightDir(); | |
192 if (lightDir != fLightDir) { | |
193 pdman.set3fv(fLightDirUni, 1, &lightDir.fX); | |
194 fLightDir = lightDir; | |
195 } | |
196 | |
197 const SkColor3f& lightColor = lightingFP.lightColor(); | |
198 if (lightColor != fLightColor) { | |
199 pdman.set3fv(fLightColorUni, 1, &lightColor.fX); | |
200 fLightColor = lightColor; | |
201 } | |
202 | |
203 const SkColor3f& ambientColor = lightingFP.ambientColor(); | |
204 if (ambientColor != fAmbientColor) { | |
205 pdman.set3fv(fAmbientColorUni, 1, &ambientColor.fX); | |
206 fAmbientColor = ambientColor; | |
207 } | |
208 } | |
209 | |
210 static void GenKey(const GrProcessor& proc, const GrGLSLCaps&, | |
211 GrProcessorKeyBuilder* b) { | |
212 // const LightingFP& lightingFP = proc.cast<LightingFP>(); | |
213 // only one shader generated currently | |
214 b->add32(0x0); | |
215 } | |
216 | |
217 private: | |
218 SkVector3 fLightDir; | |
219 GrGLProgramDataManager::UniformHandle fLightDirUni; | |
220 | |
221 SkColor3f fLightColor; | |
222 GrGLProgramDataManager::UniformHandle fLightColorUni; | |
223 | |
224 SkColor3f fAmbientColor; | |
225 GrGLProgramDataManager::UniformHandle fAmbientColorUni; | |
226 }; | |
227 | |
228 GrGLFragmentProcessor* createGLInstance() const override { return SkNEW(Ligh
tingGLFP); } | |
229 | |
230 void onGetGLProcessorKey(const GrGLSLCaps& caps, GrProcessorKeyBuilder* b) c
onst override { | |
231 LightingGLFP::GenKey(*this, caps, b); | |
232 } | |
233 | |
234 const char* name() const override { return "LightingFP"; } | |
235 | |
236 void onComputeInvariantOutput(GrInvariantOutput* inout) const override { | |
237 inout->mulByUnknownFourComponents(); | |
238 } | |
239 | |
240 const SkVector3& lightDir() const { return fLightDir; } | |
241 const SkColor3f& lightColor() const { return fLightColor; } | |
242 const SkColor3f& ambientColor() const { return fAmbientColor; } | |
243 | |
244 private: | |
245 bool onIsEqual(const GrFragmentProcessor& proc) const override { | |
246 const LightingFP& lightingFP = proc.cast<LightingFP>(); | |
247 return fDeviceTransform == lightingFP.fDeviceTransform && | |
248 fDiffuseTextureAccess == lightingFP.fDiffuseTextureAccess && | |
249 fNormalTextureAccess == lightingFP.fNormalTextureAccess && | |
250 fLightDir == lightingFP.fLightDir && | |
251 fLightColor == lightingFP.fLightColor && | |
252 fAmbientColor == lightingFP.fAmbientColor; | |
253 } | |
254 | |
255 GrCoordTransform fDeviceTransform; | |
256 GrTextureAccess fDiffuseTextureAccess; | |
257 GrTextureAccess fNormalTextureAccess; | |
258 SkVector3 fLightDir; | |
259 SkColor3f fLightColor; | |
260 SkColor3f fAmbientColor; | |
261 }; | |
262 | |
263 //////////////////////////////////////////////////////////////////////////// | |
264 | |
265 bool SkLightingShaderImpl::asFragmentProcessor(GrContext* context, const SkPaint
& paint, | |
266 const SkMatrix& viewM, const SkMa
trix* localMatrix, | |
267 GrColor* color, GrProcessorDataMa
nager*, | |
268 GrFragmentProcessor** fp) const { | |
269 // we assume diffuse and normal maps have same width and height | |
270 // TODO: support different sizes | |
271 SkASSERT(fDiffuseMap.width() == fNormalMap.width() && | |
272 fDiffuseMap.height() == fNormalMap.height()); | |
273 SkMatrix matrix; | |
274 matrix.setIDiv(fDiffuseMap.width(), fDiffuseMap.height()); | |
275 | |
276 SkMatrix lmInverse; | |
277 if (!this->getLocalMatrix().invert(&lmInverse)) { | |
278 return false; | |
279 } | |
280 if (localMatrix) { | |
281 SkMatrix inv; | |
282 if (!localMatrix->invert(&inv)) { | |
283 return false; | |
284 } | |
285 lmInverse.postConcat(inv); | |
286 } | |
287 matrix.preConcat(lmInverse); | |
288 | |
289 // Must set wrap and filter on the sampler before requesting a texture. In t
wo places below | |
290 // we check the matrix scale factors to determine how to interpret the filte
r quality setting. | |
291 // This completely ignores the complexity of the drawVertices case where exp
licit local coords | |
292 // are provided by the caller. | |
293 GrTextureParams::FilterMode textureFilterMode = GrTextureParams::kBilerp_Fil
terMode; | |
294 switch (paint.getFilterQuality()) { | |
295 case kNone_SkFilterQuality: | |
296 textureFilterMode = GrTextureParams::kNone_FilterMode; | |
297 break; | |
298 case kLow_SkFilterQuality: | |
299 textureFilterMode = GrTextureParams::kBilerp_FilterMode; | |
300 break; | |
301 case kMedium_SkFilterQuality:{ | |
302 SkMatrix matrix; | |
303 matrix.setConcat(viewM, this->getLocalMatrix()); | |
304 if (matrix.getMinScale() < SK_Scalar1) { | |
305 textureFilterMode = GrTextureParams::kMipMap_FilterMode; | |
306 } else { | |
307 // Don't trigger MIP level generation unnecessarily. | |
308 textureFilterMode = GrTextureParams::kBilerp_FilterMode; | |
309 } | |
310 break; | |
311 } | |
312 case kHigh_SkFilterQuality: | |
313 default: | |
314 SkErrorInternals::SetError(kInvalidPaint_SkError, | |
315 "Sorry, I don't understand the filtering " | |
316 "mode you asked for. Falling back to " | |
317 "MIPMaps."); | |
318 textureFilterMode = GrTextureParams::kMipMap_FilterMode; | |
319 break; | |
320 | |
321 } | |
322 | |
323 // TODO: support other tile modes | |
324 GrTextureParams params(kClamp_TileMode, textureFilterMode); | |
325 SkAutoTUnref<GrTexture> diffuseTexture(GrRefCachedBitmapTexture(context, fDi
ffuseMap, ¶ms)); | |
326 if (!diffuseTexture) { | |
327 SkErrorInternals::SetError(kInternalError_SkError, | |
328 "Couldn't convert bitmap to texture."); | |
329 return false; | |
330 } | |
331 | |
332 SkAutoTUnref<GrTexture> normalTexture(GrRefCachedBitmapTexture(context, fNor
malMap, ¶ms)); | |
333 if (!normalTexture) { | |
334 SkErrorInternals::SetError(kInternalError_SkError, | |
335 "Couldn't convert bitmap to texture."); | |
336 return false; | |
337 } | |
338 | |
339 *fp = SkNEW_ARGS(LightingFP, (diffuseTexture, normalTexture, matrix, | |
340 fLight.fDirection, fLight.fColor, fAmbientColo
r)); | |
341 *color = GrColorPackA4(paint.getAlpha()); | |
342 return true; | |
343 } | |
344 #else | |
345 | |
346 bool SkLightingShaderImpl::asFragmentProcessor(GrContext* context, const SkPaint
& paint, | |
347 const SkMatrix& viewM, const SkMa
trix* localMatrix, | |
348 GrColor* color, GrProcessorDataMa
nager*, | |
349 GrFragmentProcessor** fp) const { | |
350 SkDEBUGFAIL("Should not call in GPU-less build"); | |
351 return false; | |
352 } | |
353 | |
354 #endif | |
355 | |
356 //////////////////////////////////////////////////////////////////////////// | |
357 | |
358 bool SkLightingShaderImpl::isOpaque() const { | |
359 return fDiffuseMap.isOpaque(); | |
360 } | |
361 | |
362 size_t SkLightingShaderImpl::contextSize() const { | |
363 return 2 * sizeof(SkBitmapProcState) + sizeof(LightingShaderContext); | |
364 } | |
365 | |
366 SkLightingShaderImpl::LightingShaderContext::LightingShaderContext(const SkLight
ingShaderImpl& shader, | |
367 const Context
Rec& rec, | |
368 SkBitmapProcS
tate* diffuseState, | |
369 SkBitmapProcS
tate* normalState) | |
370 : INHERITED(shader, rec) | |
371 , fDiffuseState(diffuseState) | |
372 , fNormalState(normalState) | |
373 { | |
374 const SkPixmap& pixmap = fDiffuseState->fPixmap; | |
375 bool isOpaque = pixmap.isOpaque(); | |
376 | |
377 // update fFlags | |
378 uint32_t flags = 0; | |
379 if (isOpaque && (255 == this->getPaintAlpha())) { | |
380 flags |= kOpaqueAlpha_Flag; | |
381 } | |
382 | |
383 fFlags = flags; | |
384 } | |
385 | |
386 SkLightingShaderImpl::LightingShaderContext::~LightingShaderContext() { | |
387 // The bitmap proc states have been created outside of the context on memory
that will be freed | |
388 // elsewhere. Call the destructors but leave the freeing of the memory to th
e caller. | |
389 fDiffuseState->~SkBitmapProcState(); | |
390 fNormalState->~SkBitmapProcState(); | |
391 } | |
392 | |
393 static inline int light(SkScalar light, int diff, SkScalar NdotL, SkScalar ambie
nt) { | |
394 SkScalar color = light * diff * NdotL + 255 * ambient; | |
395 if (color <= 0.0f) { | |
396 return 0; | |
397 } else if (color >= 255.0f) { | |
398 return 255; | |
399 } else { | |
400 return (int) color; | |
401 } | |
402 } | |
403 | |
404 // larger is better (fewer times we have to loop), but we shouldn't | |
405 // take up too much stack-space (each could here costs 16 bytes) | |
406 #define TMP_COUNT 16 | |
407 | |
408 void SkLightingShaderImpl::LightingShaderContext::shadeSpan(int x, int y, | |
409 SkPMColor result[],
int count) { | |
410 const SkLightingShaderImpl& lightShader = static_cast<const SkLightingShader
Impl&>(fShader); | |
411 | |
412 SkPMColor tmpColor[TMP_COUNT], tmpColor2[TMP_COUNT]; | |
413 SkPMColor tmpNormal[TMP_COUNT], tmpNormal2[TMP_COUNT]; | |
414 | |
415 SkBitmapProcState::MatrixProc diffMProc = fDiffuseState->getMatrixProc(); | |
416 SkBitmapProcState::SampleProc32 diffSProc = fDiffuseState->getSampleProc32()
; | |
417 | |
418 SkBitmapProcState::MatrixProc normalMProc = fNormalState->getMatrixProc(); | |
419 SkBitmapProcState::SampleProc32 normalSProc = fNormalState->getSampleProc32(
); | |
420 | |
421 SkASSERT(fDiffuseState->fPixmap.addr()); | |
422 SkASSERT(fNormalState->fPixmap.addr()); | |
423 | |
424 SkPoint3 norm; | |
425 SkScalar NdotL; | |
426 int r, g, b; | |
427 | |
428 do { | |
429 int n = count; | |
430 if (n > TMP_COUNT) { | |
431 n = TMP_COUNT; | |
432 } | |
433 | |
434 diffMProc(*fDiffuseState, tmpColor, n, x, y); | |
435 diffSProc(*fDiffuseState, tmpColor, n, tmpColor2); | |
436 | |
437 normalMProc(*fNormalState, tmpNormal, n, x, y); | |
438 normalSProc(*fNormalState, tmpNormal, n, tmpNormal2); | |
439 | |
440 for (int i = 0; i < n; ++i) { | |
441 SkASSERT(0xFF == SkColorGetA(tmpNormal2[i])); // opaque -> unpremul | |
442 norm.set(SkIntToScalar(SkGetPackedR32(tmpNormal2[i]))-127.0f, | |
443 SkIntToScalar(SkGetPackedG32(tmpNormal2[i]))-127.0f, | |
444 SkIntToScalar(SkGetPackedB32(tmpNormal2[i]))-127.0f); | |
445 norm.normalize(); | |
446 | |
447 SkColor diffColor = SkUnPreMultiply::PMColorToColor(tmpColor2[i]); | |
448 NdotL = norm.dot(lightShader.fLight.fDirection); | |
449 | |
450 // This is all done in linear unpremul color space | |
451 r = light(lightShader.fLight.fColor.fX, SkColorGetR(diffColor), Ndot
L, | |
452 lightShader.fAmbientColor.fX); | |
453 g = light(lightShader.fLight.fColor.fY, SkColorGetG(diffColor), Ndot
L, | |
454 lightShader.fAmbientColor.fY); | |
455 b = light(lightShader.fLight.fColor.fZ, SkColorGetB(diffColor), Ndot
L, | |
456 lightShader.fAmbientColor.fZ); | |
457 | |
458 result[i] = SkPreMultiplyARGB(SkColorGetA(diffColor), r, g, b); | |
459 } | |
460 | |
461 result += n; | |
462 x += n; | |
463 count -= n; | |
464 } while (count > 0); | |
465 } | |
466 | |
467 //////////////////////////////////////////////////////////////////////////// | |
468 | |
469 #ifndef SK_IGNORE_TO_STRING | |
470 void SkLightingShaderImpl::toString(SkString* str) const { | |
471 str->appendf("LightingShader: ()"); | |
472 } | |
473 #endif | |
474 | |
475 SkFlattenable* SkLightingShaderImpl::CreateProc(SkReadBuffer& buf) { | |
476 SkMatrix localMatrix; | |
477 buf.readMatrix(&localMatrix); | |
478 | |
479 SkBitmap diffuse; | |
480 if (!buf.readBitmap(&diffuse)) { | |
481 return NULL; | |
482 } | |
483 diffuse.setImmutable(); | |
484 | |
485 SkBitmap normal; | |
486 if (!buf.readBitmap(&normal)) { | |
487 return NULL; | |
488 } | |
489 normal.setImmutable(); | |
490 | |
491 SkLightingShader::Light light; | |
492 if (!buf.readScalarArray(&light.fDirection.fX, 3)) { | |
493 return NULL; | |
494 } | |
495 if (!buf.readScalarArray(&light.fColor.fX, 3)) { | |
496 return NULL; | |
497 } | |
498 | |
499 SkColor3f ambient; | |
500 if (!buf.readScalarArray(&ambient.fX, 3)) { | |
501 return NULL; | |
502 } | |
503 | |
504 return SkNEW_ARGS(SkLightingShaderImpl, (diffuse, normal, light, ambient, &l
ocalMatrix)); | |
505 } | |
506 | |
507 void SkLightingShaderImpl::flatten(SkWriteBuffer& buf) const { | |
508 buf.writeMatrix(this->getLocalMatrix()); | |
509 | |
510 buf.writeBitmap(fDiffuseMap); | |
511 buf.writeBitmap(fNormalMap); | |
512 buf.writeScalarArray(&fLight.fDirection.fX, 3); | |
513 buf.writeScalarArray(&fLight.fColor.fX, 3); | |
514 buf.writeScalarArray(&fAmbientColor.fX, 3); | |
515 } | |
516 | |
517 SkShader::Context* SkLightingShaderImpl::onCreateContext(const ContextRec& rec, | |
518 void* storage) const { | |
519 | |
520 SkMatrix totalInverse; | |
521 // Do this first, so we know the matrix can be inverted. | |
522 if (!this->computeTotalInverse(rec, &totalInverse)) { | |
523 return NULL; | |
524 } | |
525 | |
526 void* diffuseStateStorage = (char*)storage + sizeof(LightingShaderContext); | |
527 SkBitmapProcState* diffuseState = SkNEW_PLACEMENT(diffuseStateStorage, SkBit
mapProcState); | |
528 SkASSERT(diffuseState); | |
529 | |
530 diffuseState->fTileModeX = SkShader::kClamp_TileMode; | |
531 diffuseState->fTileModeY = SkShader::kClamp_TileMode; | |
532 diffuseState->fOrigBitmap = fDiffuseMap; | |
533 if (!diffuseState->chooseProcs(totalInverse, *rec.fPaint)) { | |
534 diffuseState->~SkBitmapProcState(); | |
535 return NULL; | |
536 } | |
537 | |
538 void* normalStateStorage = (char*)storage + sizeof(LightingShaderContext) +
sizeof(SkBitmapProcState); | |
539 SkBitmapProcState* normalState = SkNEW_PLACEMENT(normalStateStorage, SkBitma
pProcState); | |
540 SkASSERT(normalState); | |
541 | |
542 normalState->fTileModeX = SkShader::kClamp_TileMode; | |
543 normalState->fTileModeY = SkShader::kClamp_TileMode; | |
544 normalState->fOrigBitmap = fNormalMap; | |
545 if (!normalState->chooseProcs(totalInverse, *rec.fPaint)) { | |
546 diffuseState->~SkBitmapProcState(); | |
547 normalState->~SkBitmapProcState(); | |
548 return NULL; | |
549 } | |
550 | |
551 return SkNEW_PLACEMENT_ARGS(storage, LightingShaderContext, (*this, rec, | |
552 diffuseState, n
ormalState)); | |
553 } | |
554 | |
555 /////////////////////////////////////////////////////////////////////////////// | |
556 | |
557 static bool bitmap_is_too_big(const SkBitmap& bm) { | |
558 // SkBitmapProcShader stores bitmap coordinates in a 16bit buffer, as it | |
559 // communicates between its matrix-proc and its sampler-proc. Until we can | |
560 // widen that, we have to reject bitmaps that are larger. | |
561 // | |
562 static const int kMaxSize = 65535; | |
563 | |
564 return bm.width() > kMaxSize || bm.height() > kMaxSize; | |
565 } | |
566 | |
567 SkShader* SkLightingShader::Create(const SkBitmap& diffuse, const SkBitmap& norm
al, | |
568 const SkLightingShader::Light& light, | |
569 const SkColor3f& ambient, | |
570 const SkMatrix* localMatrix) { | |
571 if (diffuse.isNull() || bitmap_is_too_big(diffuse) || | |
572 normal.isNull() || bitmap_is_too_big(normal) || | |
573 diffuse.width() != normal.width() || | |
574 diffuse.height() != normal.height()) { | |
575 return nullptr; | |
576 } | |
577 | |
578 return SkNEW_ARGS(SkLightingShaderImpl, (diffuse, normal, light, ambient, lo
calMatrix)); | |
579 } | |
580 | |
581 /////////////////////////////////////////////////////////////////////////////// | |
582 | |
583 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_START(SkLightingShader) | |
584 SK_DEFINE_FLATTENABLE_REGISTRAR_ENTRY(SkLightingShaderImpl) | |
585 SK_DEFINE_FLATTENABLE_REGISTRAR_GROUP_END | |
586 | |
587 /////////////////////////////////////////////////////////////////////////////// | |
OLD | NEW |