Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(52)

Unified Diff: tools/telemetry/third_party/gsutil/third_party/rsa/rsa/key.py

Issue 1260493004: Revert "Add gsutil 4.13 to telemetry/third_party" (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: tools/telemetry/third_party/gsutil/third_party/rsa/rsa/key.py
diff --git a/tools/telemetry/third_party/gsutil/third_party/rsa/rsa/key.py b/tools/telemetry/third_party/gsutil/third_party/rsa/rsa/key.py
deleted file mode 100644
index b6de7b3f3b0e939b9b47a74d205f9320a7c49124..0000000000000000000000000000000000000000
--- a/tools/telemetry/third_party/gsutil/third_party/rsa/rsa/key.py
+++ /dev/null
@@ -1,612 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# Copyright 2011 Sybren A. Stüvel <sybren@stuvel.eu>
-#
-# Licensed under the Apache License, Version 2.0 (the "License");
-# you may not use this file except in compliance with the License.
-# You may obtain a copy of the License at
-#
-# http://www.apache.org/licenses/LICENSE-2.0
-#
-# Unless required by applicable law or agreed to in writing, software
-# distributed under the License is distributed on an "AS IS" BASIS,
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-# See the License for the specific language governing permissions and
-# limitations under the License.
-
-'''RSA key generation code.
-
-Create new keys with the newkeys() function. It will give you a PublicKey and a
-PrivateKey object.
-
-Loading and saving keys requires the pyasn1 module. This module is imported as
-late as possible, such that other functionality will remain working in absence
-of pyasn1.
-
-'''
-
-import logging
-from rsa._compat import b, bytes_type
-
-import rsa.prime
-import rsa.pem
-import rsa.common
-
-log = logging.getLogger(__name__)
-
-
-
-class AbstractKey(object):
- '''Abstract superclass for private and public keys.'''
-
- @classmethod
- def load_pkcs1(cls, keyfile, format='PEM'):
- r'''Loads a key in PKCS#1 DER or PEM format.
-
- :param keyfile: contents of a DER- or PEM-encoded file that contains
- the public key.
- :param format: the format of the file to load; 'PEM' or 'DER'
-
- :return: a PublicKey object
-
- '''
-
- methods = {
- 'PEM': cls._load_pkcs1_pem,
- 'DER': cls._load_pkcs1_der,
- }
-
- if format not in methods:
- formats = ', '.join(sorted(methods.keys()))
- raise ValueError('Unsupported format: %r, try one of %s' % (format,
- formats))
-
- method = methods[format]
- return method(keyfile)
-
- def save_pkcs1(self, format='PEM'):
- '''Saves the public key in PKCS#1 DER or PEM format.
-
- :param format: the format to save; 'PEM' or 'DER'
- :returns: the DER- or PEM-encoded public key.
-
- '''
-
- methods = {
- 'PEM': self._save_pkcs1_pem,
- 'DER': self._save_pkcs1_der,
- }
-
- if format not in methods:
- formats = ', '.join(sorted(methods.keys()))
- raise ValueError('Unsupported format: %r, try one of %s' % (format,
- formats))
-
- method = methods[format]
- return method()
-
-class PublicKey(AbstractKey):
- '''Represents a public RSA key.
-
- This key is also known as the 'encryption key'. It contains the 'n' and 'e'
- values.
-
- Supports attributes as well as dictionary-like access. Attribute accesss is
- faster, though.
-
- >>> PublicKey(5, 3)
- PublicKey(5, 3)
-
- >>> key = PublicKey(5, 3)
- >>> key.n
- 5
- >>> key['n']
- 5
- >>> key.e
- 3
- >>> key['e']
- 3
-
- '''
-
- __slots__ = ('n', 'e')
-
- def __init__(self, n, e):
- self.n = n
- self.e = e
-
- def __getitem__(self, key):
- return getattr(self, key)
-
- def __repr__(self):
- return 'PublicKey(%i, %i)' % (self.n, self.e)
-
- def __eq__(self, other):
- if other is None:
- return False
-
- if not isinstance(other, PublicKey):
- return False
-
- return self.n == other.n and self.e == other.e
-
- def __ne__(self, other):
- return not (self == other)
-
- @classmethod
- def _load_pkcs1_der(cls, keyfile):
- r'''Loads a key in PKCS#1 DER format.
-
- @param keyfile: contents of a DER-encoded file that contains the public
- key.
- @return: a PublicKey object
-
- First let's construct a DER encoded key:
-
- >>> import base64
- >>> b64der = 'MAwCBQCNGmYtAgMBAAE='
- >>> der = base64.decodestring(b64der)
-
- This loads the file:
-
- >>> PublicKey._load_pkcs1_der(der)
- PublicKey(2367317549, 65537)
-
- '''
-
- from pyasn1.codec.der import decoder
- from rsa.asn1 import AsnPubKey
-
- (priv, _) = decoder.decode(keyfile, asn1Spec=AsnPubKey())
- return cls(n=int(priv['modulus']), e=int(priv['publicExponent']))
-
- def _save_pkcs1_der(self):
- '''Saves the public key in PKCS#1 DER format.
-
- @returns: the DER-encoded public key.
- '''
-
- from pyasn1.codec.der import encoder
- from rsa.asn1 import AsnPubKey
-
- # Create the ASN object
- asn_key = AsnPubKey()
- asn_key.setComponentByName('modulus', self.n)
- asn_key.setComponentByName('publicExponent', self.e)
-
- return encoder.encode(asn_key)
-
- @classmethod
- def _load_pkcs1_pem(cls, keyfile):
- '''Loads a PKCS#1 PEM-encoded public key file.
-
- The contents of the file before the "-----BEGIN RSA PUBLIC KEY-----" and
- after the "-----END RSA PUBLIC KEY-----" lines is ignored.
-
- @param keyfile: contents of a PEM-encoded file that contains the public
- key.
- @return: a PublicKey object
- '''
-
- der = rsa.pem.load_pem(keyfile, 'RSA PUBLIC KEY')
- return cls._load_pkcs1_der(der)
-
- def _save_pkcs1_pem(self):
- '''Saves a PKCS#1 PEM-encoded public key file.
-
- @return: contents of a PEM-encoded file that contains the public key.
- '''
-
- der = self._save_pkcs1_der()
- return rsa.pem.save_pem(der, 'RSA PUBLIC KEY')
-
- @classmethod
- def load_pkcs1_openssl_pem(cls, keyfile):
- '''Loads a PKCS#1.5 PEM-encoded public key file from OpenSSL.
-
- These files can be recognised in that they start with BEGIN PUBLIC KEY
- rather than BEGIN RSA PUBLIC KEY.
-
- The contents of the file before the "-----BEGIN PUBLIC KEY-----" and
- after the "-----END PUBLIC KEY-----" lines is ignored.
-
- @param keyfile: contents of a PEM-encoded file that contains the public
- key, from OpenSSL.
- @return: a PublicKey object
- '''
-
- der = rsa.pem.load_pem(keyfile, 'PUBLIC KEY')
- return cls.load_pkcs1_openssl_der(der)
-
- @classmethod
- def load_pkcs1_openssl_der(cls, keyfile):
- '''Loads a PKCS#1 DER-encoded public key file from OpenSSL.
-
- @param keyfile: contents of a DER-encoded file that contains the public
- key, from OpenSSL.
- @return: a PublicKey object
- '''
-
- from rsa.asn1 import OpenSSLPubKey
- from pyasn1.codec.der import decoder
- from pyasn1.type import univ
-
- (keyinfo, _) = decoder.decode(keyfile, asn1Spec=OpenSSLPubKey())
-
- if keyinfo['header']['oid'] != univ.ObjectIdentifier('1.2.840.113549.1.1.1'):
- raise TypeError("This is not a DER-encoded OpenSSL-compatible public key")
-
- return cls._load_pkcs1_der(keyinfo['key'][1:])
-
-
-
-
-class PrivateKey(AbstractKey):
- '''Represents a private RSA key.
-
- This key is also known as the 'decryption key'. It contains the 'n', 'e',
- 'd', 'p', 'q' and other values.
-
- Supports attributes as well as dictionary-like access. Attribute accesss is
- faster, though.
-
- >>> PrivateKey(3247, 65537, 833, 191, 17)
- PrivateKey(3247, 65537, 833, 191, 17)
-
- exp1, exp2 and coef don't have to be given, they will be calculated:
-
- >>> pk = PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
- >>> pk.exp1
- 55063
- >>> pk.exp2
- 10095
- >>> pk.coef
- 50797
-
- If you give exp1, exp2 or coef, they will be used as-is:
-
- >>> pk = PrivateKey(1, 2, 3, 4, 5, 6, 7, 8)
- >>> pk.exp1
- 6
- >>> pk.exp2
- 7
- >>> pk.coef
- 8
-
- '''
-
- __slots__ = ('n', 'e', 'd', 'p', 'q', 'exp1', 'exp2', 'coef')
-
- def __init__(self, n, e, d, p, q, exp1=None, exp2=None, coef=None):
- self.n = n
- self.e = e
- self.d = d
- self.p = p
- self.q = q
-
- # Calculate the other values if they aren't supplied
- if exp1 is None:
- self.exp1 = int(d % (p - 1))
- else:
- self.exp1 = exp1
-
- if exp1 is None:
- self.exp2 = int(d % (q - 1))
- else:
- self.exp2 = exp2
-
- if coef is None:
- self.coef = rsa.common.inverse(q, p)
- else:
- self.coef = coef
-
- def __getitem__(self, key):
- return getattr(self, key)
-
- def __repr__(self):
- return 'PrivateKey(%(n)i, %(e)i, %(d)i, %(p)i, %(q)i)' % self
-
- def __eq__(self, other):
- if other is None:
- return False
-
- if not isinstance(other, PrivateKey):
- return False
-
- return (self.n == other.n and
- self.e == other.e and
- self.d == other.d and
- self.p == other.p and
- self.q == other.q and
- self.exp1 == other.exp1 and
- self.exp2 == other.exp2 and
- self.coef == other.coef)
-
- def __ne__(self, other):
- return not (self == other)
-
- @classmethod
- def _load_pkcs1_der(cls, keyfile):
- r'''Loads a key in PKCS#1 DER format.
-
- @param keyfile: contents of a DER-encoded file that contains the private
- key.
- @return: a PrivateKey object
-
- First let's construct a DER encoded key:
-
- >>> import base64
- >>> b64der = 'MC4CAQACBQDeKYlRAgMBAAECBQDHn4npAgMA/icCAwDfxwIDANcXAgInbwIDAMZt'
- >>> der = base64.decodestring(b64der)
-
- This loads the file:
-
- >>> PrivateKey._load_pkcs1_der(der)
- PrivateKey(3727264081, 65537, 3349121513, 65063, 57287)
-
- '''
-
- from pyasn1.codec.der import decoder
- (priv, _) = decoder.decode(keyfile)
-
- # ASN.1 contents of DER encoded private key:
- #
- # RSAPrivateKey ::= SEQUENCE {
- # version Version,
- # modulus INTEGER, -- n
- # publicExponent INTEGER, -- e
- # privateExponent INTEGER, -- d
- # prime1 INTEGER, -- p
- # prime2 INTEGER, -- q
- # exponent1 INTEGER, -- d mod (p-1)
- # exponent2 INTEGER, -- d mod (q-1)
- # coefficient INTEGER, -- (inverse of q) mod p
- # otherPrimeInfos OtherPrimeInfos OPTIONAL
- # }
-
- if priv[0] != 0:
- raise ValueError('Unable to read this file, version %s != 0' % priv[0])
-
- as_ints = tuple(int(x) for x in priv[1:9])
- return cls(*as_ints)
-
- def _save_pkcs1_der(self):
- '''Saves the private key in PKCS#1 DER format.
-
- @returns: the DER-encoded private key.
- '''
-
- from pyasn1.type import univ, namedtype
- from pyasn1.codec.der import encoder
-
- class AsnPrivKey(univ.Sequence):
- componentType = namedtype.NamedTypes(
- namedtype.NamedType('version', univ.Integer()),
- namedtype.NamedType('modulus', univ.Integer()),
- namedtype.NamedType('publicExponent', univ.Integer()),
- namedtype.NamedType('privateExponent', univ.Integer()),
- namedtype.NamedType('prime1', univ.Integer()),
- namedtype.NamedType('prime2', univ.Integer()),
- namedtype.NamedType('exponent1', univ.Integer()),
- namedtype.NamedType('exponent2', univ.Integer()),
- namedtype.NamedType('coefficient', univ.Integer()),
- )
-
- # Create the ASN object
- asn_key = AsnPrivKey()
- asn_key.setComponentByName('version', 0)
- asn_key.setComponentByName('modulus', self.n)
- asn_key.setComponentByName('publicExponent', self.e)
- asn_key.setComponentByName('privateExponent', self.d)
- asn_key.setComponentByName('prime1', self.p)
- asn_key.setComponentByName('prime2', self.q)
- asn_key.setComponentByName('exponent1', self.exp1)
- asn_key.setComponentByName('exponent2', self.exp2)
- asn_key.setComponentByName('coefficient', self.coef)
-
- return encoder.encode(asn_key)
-
- @classmethod
- def _load_pkcs1_pem(cls, keyfile):
- '''Loads a PKCS#1 PEM-encoded private key file.
-
- The contents of the file before the "-----BEGIN RSA PRIVATE KEY-----" and
- after the "-----END RSA PRIVATE KEY-----" lines is ignored.
-
- @param keyfile: contents of a PEM-encoded file that contains the private
- key.
- @return: a PrivateKey object
- '''
-
- der = rsa.pem.load_pem(keyfile, b('RSA PRIVATE KEY'))
- return cls._load_pkcs1_der(der)
-
- def _save_pkcs1_pem(self):
- '''Saves a PKCS#1 PEM-encoded private key file.
-
- @return: contents of a PEM-encoded file that contains the private key.
- '''
-
- der = self._save_pkcs1_der()
- return rsa.pem.save_pem(der, b('RSA PRIVATE KEY'))
-
-def find_p_q(nbits, getprime_func=rsa.prime.getprime, accurate=True):
- ''''Returns a tuple of two different primes of nbits bits each.
-
- The resulting p * q has exacty 2 * nbits bits, and the returned p and q
- will not be equal.
-
- :param nbits: the number of bits in each of p and q.
- :param getprime_func: the getprime function, defaults to
- :py:func:`rsa.prime.getprime`.
-
- *Introduced in Python-RSA 3.1*
-
- :param accurate: whether to enable accurate mode or not.
- :returns: (p, q), where p > q
-
- >>> (p, q) = find_p_q(128)
- >>> from rsa import common
- >>> common.bit_size(p * q)
- 256
-
- When not in accurate mode, the number of bits can be slightly less
-
- >>> (p, q) = find_p_q(128, accurate=False)
- >>> from rsa import common
- >>> common.bit_size(p * q) <= 256
- True
- >>> common.bit_size(p * q) > 240
- True
-
- '''
-
- total_bits = nbits * 2
-
- # Make sure that p and q aren't too close or the factoring programs can
- # factor n.
- shift = nbits // 16
- pbits = nbits + shift
- qbits = nbits - shift
-
- # Choose the two initial primes
- log.debug('find_p_q(%i): Finding p', nbits)
- p = getprime_func(pbits)
- log.debug('find_p_q(%i): Finding q', nbits)
- q = getprime_func(qbits)
-
- def is_acceptable(p, q):
- '''Returns True iff p and q are acceptable:
-
- - p and q differ
- - (p * q) has the right nr of bits (when accurate=True)
- '''
-
- if p == q:
- return False
-
- if not accurate:
- return True
-
- # Make sure we have just the right amount of bits
- found_size = rsa.common.bit_size(p * q)
- return total_bits == found_size
-
- # Keep choosing other primes until they match our requirements.
- change_p = False
- while not is_acceptable(p, q):
- # Change p on one iteration and q on the other
- if change_p:
- p = getprime_func(pbits)
- else:
- q = getprime_func(qbits)
-
- change_p = not change_p
-
- # We want p > q as described on
- # http://www.di-mgt.com.au/rsa_alg.html#crt
- return (max(p, q), min(p, q))
-
-def calculate_keys(p, q, nbits):
- '''Calculates an encryption and a decryption key given p and q, and
- returns them as a tuple (e, d)
-
- '''
-
- phi_n = (p - 1) * (q - 1)
-
- # A very common choice for e is 65537
- e = 65537
-
- try:
- d = rsa.common.inverse(e, phi_n)
- except ValueError:
- raise ValueError("e (%d) and phi_n (%d) are not relatively prime" %
- (e, phi_n))
-
- if (e * d) % phi_n != 1:
- raise ValueError("e (%d) and d (%d) are not mult. inv. modulo "
- "phi_n (%d)" % (e, d, phi_n))
-
- return (e, d)
-
-def gen_keys(nbits, getprime_func, accurate=True):
- '''Generate RSA keys of nbits bits. Returns (p, q, e, d).
-
- Note: this can take a long time, depending on the key size.
-
- :param nbits: the total number of bits in ``p`` and ``q``. Both ``p`` and
- ``q`` will use ``nbits/2`` bits.
- :param getprime_func: either :py:func:`rsa.prime.getprime` or a function
- with similar signature.
- '''
-
- (p, q) = find_p_q(nbits // 2, getprime_func, accurate)
- (e, d) = calculate_keys(p, q, nbits // 2)
-
- return (p, q, e, d)
-
-def newkeys(nbits, accurate=True, poolsize=1):
- '''Generates public and private keys, and returns them as (pub, priv).
-
- The public key is also known as the 'encryption key', and is a
- :py:class:`rsa.PublicKey` object. The private key is also known as the
- 'decryption key' and is a :py:class:`rsa.PrivateKey` object.
-
- :param nbits: the number of bits required to store ``n = p*q``.
- :param accurate: when True, ``n`` will have exactly the number of bits you
- asked for. However, this makes key generation much slower. When False,
- `n`` may have slightly less bits.
- :param poolsize: the number of processes to use to generate the prime
- numbers. If set to a number > 1, a parallel algorithm will be used.
- This requires Python 2.6 or newer.
-
- :returns: a tuple (:py:class:`rsa.PublicKey`, :py:class:`rsa.PrivateKey`)
-
- The ``poolsize`` parameter was added in *Python-RSA 3.1* and requires
- Python 2.6 or newer.
-
- '''
-
- if nbits < 16:
- raise ValueError('Key too small')
-
- if poolsize < 1:
- raise ValueError('Pool size (%i) should be >= 1' % poolsize)
-
- # Determine which getprime function to use
- if poolsize > 1:
- from rsa import parallel
- import functools
-
- getprime_func = functools.partial(parallel.getprime, poolsize=poolsize)
- else: getprime_func = rsa.prime.getprime
-
- # Generate the key components
- (p, q, e, d) = gen_keys(nbits, getprime_func)
-
- # Create the key objects
- n = p * q
-
- return (
- PublicKey(n, e),
- PrivateKey(n, e, d, p, q)
- )
-
-__all__ = ['PublicKey', 'PrivateKey', 'newkeys']
-
-if __name__ == '__main__':
- import doctest
-
- try:
- for count in range(100):
- (failures, tests) = doctest.testmod()
- if failures:
- break
-
- if (count and count % 10 == 0) or count == 1:
- print('%i times' % count)
- except KeyboardInterrupt:
- print('Aborted')
- else:
- print('Doctests done')

Powered by Google App Engine
This is Rietveld 408576698