Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(228)

Unified Diff: tools/telemetry/third_party/gsutil/third_party/pyasn1/doc/pyasn1-tutorial.html

Issue 1260493004: Revert "Add gsutil 4.13 to telemetry/third_party" (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: tools/telemetry/third_party/gsutil/third_party/pyasn1/doc/pyasn1-tutorial.html
diff --git a/tools/telemetry/third_party/gsutil/third_party/pyasn1/doc/pyasn1-tutorial.html b/tools/telemetry/third_party/gsutil/third_party/pyasn1/doc/pyasn1-tutorial.html
deleted file mode 100644
index 2eb82f1e936d568406566584863c22f57fae7696..0000000000000000000000000000000000000000
--- a/tools/telemetry/third_party/gsutil/third_party/pyasn1/doc/pyasn1-tutorial.html
+++ /dev/null
@@ -1,2405 +0,0 @@
-<html>
-<title>
-PyASN1 programmer's manual
-</title>
-<head>
-</head>
-<body>
-<center>
-<table width=60%>
-<tr>
-<td>
-
-<h3>
-PyASN1 programmer's manual
-</h3>
-
-<p align=right>
-<i>written by <a href=mailto:ilya@glas.net>Ilya Etingof</a>, 2011-2012</i>
-</p>
-
-<p>
-Free and open-source pyasn1 library makes it easier for programmers and
-network engineers to develop, debug and experiment with ASN.1-based protocols
-using Python programming language as a tool.
-</p>
-
-<p>
-Abstract Syntax Notation One
-(<a href=http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_1x>ASN.1</a>)
-is a set of
-<a href=http://www.itu.int/ITU-T/studygroups/com17/languages/X.680-X.693-0207w.zip>
-ITU standards</a> concered with provisioning instrumentation for developing
-data exchange protocols in a robust, clear and interoperabable way for
-various IT systems and applications. Most of the efforts are targeting the
-following areas:
-<ul>
-<li>Data structures: the standard introduces a collection of basic data types
-(similar to integers, bits, strings, arrays and records in a programming
-language) that can be used for defining complex, possibly nested data
-structures representing domain-specific data units.
-<li>Serialization protocols: domain-specific data units expressed in ASN.1
-types could be converted into a series of octets for storage or transmission
-over the wire and then recovered back into their structured form on the
-receiving end. This process is immune to various hardware and software
-related dependencies.
-<li>Data description language: could be used to describe particular set of
-domain-specific data structures and their relationships. Such a description
-could be passed to an ASN.1 compiler for automated generation of program
-code that represents ASN.1 data structures in language-native environment
-and handles data serialization issues.
-</ul>
-</p>
-
-<p>
-This tutorial and algorithms, implemented by pyasn1 library, are
-largely based on the information read in the book
-<a href="http://www.oss.com/asn1/dubuisson.html">
-ASN.1 - Communication between heterogeneous systems</a>
-by Olivier Dubuisson. Another relevant resource is
-<a href=ftp://ftp.rsasecurity.com/pub/pkcs/ascii/layman.asc>
-A Layman's Guide to a Subset of ASN.1, BER, and DER</a> by Burton S. Kaliski.
-It's advised to refer to these books for more in-depth knowledge on the
-subject of ASN.1.
-</p>
-
-<p>
-As of this writing, pyasn1 library implements most of standard ASN.1 data
-structures in a rather detailed and feature-rich manner. Another highly
-important capability of the library is its data serialization facilities.
-The last component of the standard - ASN.1 compiler is planned for
-implementation in the future.
-</p>
-
-</p>
-The pyasn1 library was designed to follow the pre-1995 ASN.1 specification
-(also known as X.208). Later, post 1995, revision (X.680) introduced
-significant changes most of which have not yet been supported by pyasn1.
-</p>
-
-<h3>
-Table of contents
-</h3>
-
-<p>
-<ul>
-<li><a href="#1">1. Data model for ASN.1 types</a>
-<li><a href="#1.1">1.1 Scalar types</a>
-<li><a href="#1.1.1">1.1.1 Boolean type</a>
-<li><a href="#1.1.2">1.1.2 Null type</a>
-<li><a href="#1.1.3">1.1.3 Integer type</a>
-<li><a href="#1.1.4">1.1.4 Enumerated type</a>
-<li><a href="#1.1.5">1.1.5 Real type</a>
-<li><a href="#1.1.6">1.1.6 Bit string type</a>
-<li><a href="#1.1.7">1.1.7 OctetString type</a>
-<li><a href="#1.1.8">1.1.8 ObjectIdentifier type</a>
-<li><a href="#1.1.9">1.1.9 Character string types</a>
-<li><a href="#1.1.10">1.1.10 Useful types</a>
-<li><a href="#1.2">1.2 Tagging</a>
-<li><a href="#1.3">1.3 Constructed types</a>
-<li><a href="#1.3.1">1.3.1 Sequence and Set types</a>
-<li><a href="#1.3.2">1.3.2 SequenceOf and SetOf types</a>
-<li><a href="#1.3.3">1.3.3 Choice type</a>
-<li><a href="#1.3.4">1.3.4 Any type</a>
-<li><a href="#1.4">1.4 Subtype constraints</a>
-<li><a href="#1.4.1">1.4.1 Single value constraint</a>
-<li><a href="#1.4.2">1.4.2 Value range constraint</a>
-<li><a href="#1.4.3">1.4.3 Size constraint</a>
-<li><a href="#1.4.4">1.4.4 Alphabet constraint</a>
-<li><a href="#1.4.5">1.4.5 Constraint combinations</a>
-<li><a href="#1.5">1.5 Types relationships</a>
-<li><a href="#2">2. Codecs</a>
-<li><a href="#2.1">2.1 Encoders</a>
-<li><a href="#2.2">2.2 Decoders</a>
-<li><a href="#2.2.1">2.2.1 Decoding untagged types</a>
-<li><a href="#2.2.2">2.2.2 Ignoring unknown types</a>
-<li><a href="#3">3. Feedback and getting help</a>
-</ul>
-
-
-<a name="1"></a>
-<h3>
-1. Data model for ASN.1 types
-</h3>
-
-<p>
-All ASN.1 types could be categorized into two groups: scalar (also called
-simple or primitive) and constructed. The first group is populated by
-well-known types like Integer or String. Members of constructed group
-hold other types (simple or constructed) as their inner components, thus
-they are semantically close to a programming language records or lists.
-</p>
-
-<p>
-In pyasn1, all ASN.1 types and values are implemented as Python objects.
-The same pyasn1 object can represent either ASN.1 type and/or value
-depending of the presense of value initializer on object instantiation.
-We will further refer to these as <i>pyasn1 type object</i> versus <i>pyasn1
-value object</i>.
-</p>
-
-<p>
-Primitive ASN.1 types are implemented as immutable scalar objects. There values
-could be used just like corresponding native Python values (integers,
-strings/bytes etc) and freely mixed with them in expressions.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> asn1IntegerValue = univ.Integer(12)
->>> asn1IntegerValue - 2
-10
->>> univ.OctetString('abc') == 'abc'
-True # Python 2
->>> univ.OctetString(b'abc') == b'abc'
-True # Python 3
-</pre>
-</td></tr></table>
-
-<p>
-It would be an error to perform an operation on a pyasn1 type object
-as it holds no value to deal with:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> asn1IntegerType = univ.Integer()
->>> asn1IntegerType - 2
-...
-pyasn1.error.PyAsn1Error: No value for __coerce__()
-</pre>
-</td></tr></table>
-
-<a name="1.1"></a>
-<h4>
-1.1 Scalar types
-</h4>
-
-<p>
-In the sub-sections that follow we will explain pyasn1 mapping to those
-primitive ASN.1 types. Both, ASN.1 notation and corresponding pyasn1
-syntax will be given in each case.
-</p>
-
-<a name="1.1.1"></a>
-<h4>
-1.1.1 Boolean type
-</h4>
-
-<p>
-This is the simplest type those values could be either True or False.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-;; type specification
-FunFactorPresent ::= BOOLEAN
-
-;; values declaration and assignment
-pythonFunFactor FunFactorPresent ::= TRUE
-cobolFunFactor FunFactorPresent :: FALSE
-</pre>
-</td></tr></table>
-
-<p>
-And here's pyasn1 version of it:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> class FunFactorPresent(univ.Boolean): pass
-...
->>> pythonFunFactor = FunFactorPresent(True)
->>> cobolFunFactor = FunFactorPresent(False)
->>> pythonFunFactor
-FunFactorPresent('True(1)')
->>> cobolFunFactor
-FunFactorPresent('False(0)')
->>> pythonFunFactor == cobolFunFactor
-False
->>>
-</pre>
-</td></tr></table>
-
-<a name="1.1.2"></a>
-<h4>
-1.1.2 Null type
-</h4>
-
-<p>
-The NULL type is sometimes used to express the absense of any information.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-;; type specification
-Vote ::= CHOICE {
- agreed BOOLEAN,
- skip NULL
-}
-</td></tr></table>
-
-;; value declaration and assignment
-myVote Vote ::= skip:NULL
-</pre>
-
-<p>
-We will explain the CHOICE type later in this paper, meanwhile the NULL
-type:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> skip = univ.Null()
->>> skip
-Null('')
->>>
-</pre>
-</td></tr></table>
-
-<a name="1.1.3"></a>
-<h4>
-1.1.3 Integer type
-</h4>
-
-<p>
-ASN.1 defines the values of Integer type as negative or positive of whatever
-length. This definition plays nicely with Python as the latter places no
-limit on Integers. However, some ASN.1 implementations may impose certain
-limits of integer value ranges. Keep that in mind when designing new
-data structures.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-;; values specification
-age-of-universe INTEGER ::= 13750000000
-mean-martian-surface-temperature INTEGER ::= -63
-</pre>
-</td></tr></table>
-
-<p>
-A rather strigntforward mapping into pyasn1:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> ageOfUniverse = univ.Integer(13750000000)
->>> ageOfUniverse
-Integer(13750000000)
->>>
->>> meanMartianSurfaceTemperature = univ.Integer(-63)
->>> meanMartianSurfaceTemperature
-Integer(-63)
->>>
-</pre>
-</td></tr></table>
-
-<p>
-ASN.1 allows to assign human-friendly names to particular values of
-an INTEGER type.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-Temperature ::= INTEGER {
- freezing(0),
- boiling(100)
-}
-</pre>
-</td></tr></table>
-
-<p>
-The Temperature type expressed in pyasn1:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, namedval
->>> class Temperature(univ.Integer):
-... namedValues = namedval.NamedValues(('freezing', 0), ('boiling', 100))
-...
->>> t = Temperature(0)
->>> t
-Temperature('freezing(0)')
->>> t + 1
-Temperature(1)
->>> t + 100
-Temperature('boiling(100)')
->>> t = Temperature('boiling')
->>> t
-Temperature('boiling(100)')
->>> Temperature('boiling') / 2
-Temperature(50)
->>> -1 < Temperature('freezing')
-True
->>> 47 > Temperature('boiling')
-False
->>>
-</pre>
-</td></tr></table>
-
-<p>
-These values labels have no effect on Integer type operations, any value
-still could be assigned to a type (information on value constraints will
-follow further in this paper).
-</p>
-
-<a name="1.1.4"></a>
-<h4>
-1.1.4 Enumerated type
-</h4>
-
-<p>
-ASN.1 Enumerated type differs from an Integer type in a number of ways.
-Most important is that its instance can only hold a value that belongs
-to a set of values specified on type declaration.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-error-status ::= ENUMERATED {
- no-error(0),
- authentication-error(10),
- authorization-error(20),
- general-failure(51)
-}
-</pre>
-</td></tr></table>
-
-<p>
-When constructing Enumerated type we will use two pyasn1 features: values
-labels (as mentioned above) and value constraint (will be described in
-more details later on).
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, namedval, constraint
->>> class ErrorStatus(univ.Enumerated):
-... namedValues = namedval.NamedValues(
-... ('no-error', 0),
-... ('authentication-error', 10),
-... ('authorization-error', 20),
-... ('general-failure', 51)
-... )
-... subtypeSpec = univ.Enumerated.subtypeSpec + \
-... constraint.SingleValueConstraint(0, 10, 20, 51)
-...
->>> errorStatus = univ.ErrorStatus('no-error')
->>> errorStatus
-ErrorStatus('no-error(0)')
->>> errorStatus == univ.ErrorStatus('general-failure')
-False
->>> univ.ErrorStatus('non-existing-state')
-Traceback (most recent call last):
-...
-pyasn1.error.PyAsn1Error: Can't coerce non-existing-state into integer
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Particular integer values associated with Enumerated value states
-have no meaning. They should not be used as such or in any kind of
-math operation. Those integer values are only used by codecs to
-transfer state from one entity to another.
-</p>
-
-<a name="1.1.5"></a>
-<h4>
-1.1.5 Real type
-</h4>
-
-<p>
-Values of the Real type are a three-component tuple of mantissa, base and
-exponent. All three are integers.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-pi ::= REAL { mantissa 314159, base 10, exponent -5 }
-</pre>
-</td></tr></table>
-
-<p>
-Corresponding pyasn1 objects can be initialized with either a three-component
-tuple or a Python float. Infinite values could be expressed in a way,
-compatible with Python float type.
-
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> pi = univ.Real((314159, 10, -5))
->>> pi
-Real((314159, 10,-5))
->>> float(pi)
-3.14159
->>> pi == univ.Real(3.14159)
-True
->>> univ.Real('inf')
-Real('inf')
->>> univ.Real('-inf') == float('-inf')
-True
->>>
-</pre>
-</td></tr></table>
-
-<p>
-If a Real object is initialized from a Python float or yielded by a math
-operation, the base is set to decimal 10 (what affects encoding).
-</p>
-
-<a name="1.1.6"></a>
-<h4>
-1.1.6 Bit string type
-</h4>
-
-<p>
-ASN.1 BIT STRING type holds opaque binary data of an arbitrarily length.
-A BIT STRING value could be initialized by either a binary (base 2) or
-hex (base 16) value.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-public-key BIT STRING ::= '1010111011110001010110101101101
- 1011000101010000010110101100010
- 0110101010000111101010111111110'B
-
-signature BIT STRING ::= 'AF01330CD932093392100B39FF00DE0'H
-</pre>
-</td></tr></table>
-
-<p>
-The pyasn1 BitString objects can initialize from native ASN.1 notation
-(base 2 or base 16 strings) or from a Python tuple of binary components.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> publicKey = univ.BitString(
-... "'1010111011110001010110101101101"
-... "1011000101010000010110101100010"
-... "0110101010000111101010111111110'B"
-)
->>> publicKey
-BitString("'10101110111100010101101011011011011000101010000010110101100010\
-0110101010000111101010111111110'B")
->>> signature = univ.BitString(
-... "'AF01330CD932093392100B39FF00DE0'H"
-... )
->>> signature
-BitString("'101011110000000100110011000011001101100100110010000010010011001\
-1100100100001000000001011001110011111111100000000110111100000'B")
->>> fingerprint = univ.BitString(
-... (1, 0, 1, 1 ,0, 1, 1, 1, 0, 1, 0, 1)
-... )
->>> fingerprint
-BitString("'101101110101'B")
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Another BIT STRING initialization method supported by ASN.1 notation
-is to specify only 1-th bits along with their human-friendly label
-and bit offset relative to the beginning of the bit string. With this
-method, all not explicitly mentioned bits are doomed to be zeros.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-bit-mask BIT STRING ::= {
- read-flag(0),
- write-flag(2),
- run-flag(4)
-}
-</pre>
-</td></tr></table>
-
-<p>
-To express this in pyasn1, we will employ the named values feature (as with
-Enumeration type).
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, namedval
->>> class BitMask(univ.BitString):
-... namedValues = namedval.NamedValues(
-... ('read-flag', 0),
-... ('write-flag', 2),
-... ('run-flag', 4)
-... )
->>> bitMask = BitMask('read-flag,run-flag')
->>> bitMask
-BitMask("'10001'B")
->>> tuple(bitMask)
-(1, 0, 0, 0, 1)
->>> bitMask[4]
-1
->>>
-</pre>
-</td></tr></table>
-
-<p>
-The BitString objects mimic the properties of Python tuple type in part
-of immutable sequence object protocol support.
-</p>
-
-<a name="1.1.7"></a>
-<h4>
-1.1.7 OctetString type
-</h4>
-
-<p>
-The OCTET STRING type is a confusing subject. According to ASN.1
-specification, this type is similar to BIT STRING, the major difference
-is that the former operates in 8-bit chunks of data. What is important
-to note, is that OCTET STRING was NOT designed to handle text strings - the
-standard provides many other types specialized for text content. For that
-reason, ASN.1 forbids to initialize OCTET STRING values with "quoted text
-strings", only binary or hex initializers, similar to BIT STRING ones,
-are allowed.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-thumbnail OCTET STRING ::= '1000010111101110101111000000111011'B
-thumbnail OCTET STRING ::= 'FA9823C43E43510DE3422'H
-</pre>
-</td></tr></table>
-
-<p>
-However, ASN.1 users (e.g. protocols designers) seem to ignore the original
-purpose of the OCTET STRING type - they used it for handling all kinds of
-data, including text strings.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-welcome-message OCTET STRING ::= "Welcome to ASN.1 wilderness!"
-</pre>
-</td></tr></table>
-
-<p>
-In pyasn1, we have taken a liberal approach and allowed both BIT STRING
-style and quoted text initializers for the OctetString objects. To avoid
-possible collisions, quoted text is the default initialization syntax.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> thumbnail = univ.OctetString(
-... binValue='1000010111101110101111000000111011'
-... )
->>> thumbnail
-OctetString(hexValue='85eebcec0')
->>> thumbnail = univ.OctetString(
-... hexValue='FA9823C43E43510DE3422'
-... )
->>> thumbnail
-OctetString(hexValue='fa9823c43e4351de34220')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Most frequent usage of the OctetString class is to instantiate it with
-a text string.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> welcomeMessage = univ.OctetString('Welcome to ASN.1 wilderness!')
->>> welcomeMessage
-OctetString(b'Welcome to ASN.1 wilderness!')
->>> print('%s' % welcomeMessage)
-Welcome to ASN.1 wilderness!
->>> welcomeMessage[11:16]
-OctetString(b'ASN.1')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-OctetString objects support the immutable sequence object protocol.
-In other words, they behave like Python 3 bytes (or Python 2 strings).
-</p>
-
-<p>
-When running pyasn1 on Python 3, it's better to use the bytes objects for
-OctetString instantiation, as it's more reliable and efficient.
-</p>
-
-<p>
-Additionally, OctetString's can also be instantiated with a sequence of
-8-bit integers (ASCII codes).
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> univ.OctetString((77, 101, 101, 103, 111))
-OctetString(b'Meego')
-</pre>
-</td></tr></table>
-
-<p>
-It is sometimes convenient to express OctetString instances as 8-bit
-characters (Python 3 bytes or Python 2 strings) or 8-bit integers.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> octetString = univ.OctetString('ABCDEF')
->>> octetString.asNumbers()
-(65, 66, 67, 68, 69, 70)
->>> octetString.asOctets()
-b'ABCDEF'
-</pre>
-</td></tr></table>
-
-<a name="1.1.8"></a>
-<h4>
-1.1.8 ObjectIdentifier type
-</h4>
-
-<p>
-Values of the OBJECT IDENTIFIER type are sequences of integers that could
-be used to identify virtually anything in the world. Various ASN.1-based
-protocols employ OBJECT IDENTIFIERs for their own identification needs.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-internet-id OBJECT IDENTIFIER ::= {
- iso(1) identified-organization(3) dod(6) internet(1)
-}
-</pre>
-</td></tr></table>
-
-<p>
-One of the natural ways to map OBJECT IDENTIFIER type into a Python
-one is to use Python tuples of integers. So this approach is taken by
-pyasn1.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> internetId = univ.ObjectIdentifier((1, 3, 6, 1))
->>> internetId
-ObjectIdentifier('1.3.6.1')
->>> internetId[2]
-6
->>> internetId[1:3]
-ObjectIdentifier('3.6')
-</pre>
-</td></tr></table>
-
-<p>
-A more human-friendly "dotted" notation is also supported.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> univ.ObjectIdentifier('1.3.6.1')
-ObjectIdentifier('1.3.6.1')
-</pre>
-</td></tr></table>
-
-<p>
-Symbolic names of the arcs of object identifier, sometimes present in
-ASN.1 specifications, are not preserved and used in pyasn1 objects.
-</p>
-
-<p>
-The ObjectIdentifier objects mimic the properties of Python tuple type in
-part of immutable sequence object protocol support.
-</p>
-
-<a name="1.1.9"></a>
-<h4>
-1.1.9 Character string types
-</h4>
-
-<p>
-ASN.1 standard introduces a diverse set of text-specific types. All of them
-were designed to handle various types of characters. Some of these types seem
-be obsolete nowdays, as their target technologies are gone. Another issue
-to be aware of is that raw OCTET STRING type is sometimes used in practice
-by ASN.1 users instead of specialized character string types, despite
-explicit prohibition imposed by ASN.1 specification.
-</p>
-
-<p>
-The two types are specific to ASN.1 are NumericString and PrintableString.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-welcome-message ::= PrintableString {
- "Welcome to ASN.1 text types"
-}
-
-dial-pad-numbers ::= NumericString {
- "0", "1", "2", "3", "4", "5", "6", "7", "8", "9"
-}
-</pre>
-</td></tr></table>
-
-<p>
-Their pyasn1 implementations are:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import char
->>> '%s' % char.PrintableString("Welcome to ASN.1 text types")
-'Welcome to ASN.1 text types'
->>> dialPadNumbers = char.NumericString(
- "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
-)
->>> dialPadNumbers
-NumericString(b'0123456789')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-The following types came to ASN.1 from ISO standards on character sets.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import char
->>> char.VisibleString("abc")
-VisibleString(b'abc')
->>> char.IA5String('abc')
-IA5String(b'abc')
->>> char.TeletexString('abc')
-TeletexString(b'abc')
->>> char.VideotexString('abc')
-VideotexString(b'abc')
->>> char.GraphicString('abc')
-GraphicString(b'abc')
->>> char.GeneralString('abc')
-GeneralString(b'abc')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-The last three types are relatively recent addition to the family of
-character string types: UniversalString, BMPString, UTF8String.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import char
->>> char.UniversalString("abc")
-UniversalString(b'abc')
->>> char.BMPString('abc')
-BMPString(b'abc')
->>> char.UTF8String('abc')
-UTF8String(b'abc')
->>> utf8String = char.UTF8String('У попа была собака')
->>> utf8String
-UTF8String(b'\xd0\xa3 \xd0\xbf\xd0\xbe\xd0\xbf\xd0\xb0 \xd0\xb1\xd1\x8b\xd0\xbb\xd0\xb0 \
-\xd1\x81\xd0\xbe\xd0\xb1\xd0\xb0\xd0\xba\xd0\xb0')
->>> print(utf8String)
-У попа была собака
->>>
-</pre>
-</td></tr></table>
-
-<p>
-In pyasn1, all character type objects behave like Python strings. None of
-them is currently constrained in terms of valid alphabet so it's up to
-the data source to keep an eye on data validation for these types.
-</p>
-
-<a name="1.1.10"></a>
-<h4>
-1.1.10 Useful types
-</h4>
-
-<p>
-There are three so-called useful types defined in the standard:
-ObjectDescriptor, GeneralizedTime, UTCTime. They all are subtypes
-of GraphicString or VisibleString types therefore useful types are
-character string types.
-</p>
-
-<p>
-It's advised by the ASN.1 standard to have an instance of ObjectDescriptor
-type holding a human-readable description of corresponding instance of
-OBJECT IDENTIFIER type. There are no formal linkage between these instances
-and provision for ObjectDescriptor uniqueness in the standard.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import useful
->>> descrBER = useful.ObjectDescriptor(
- "Basic encoding of a single ASN.1 type"
-)
->>>
-</pre>
-</td></tr></table>
-
-<p>
-GeneralizedTime and UTCTime types are designed to hold a human-readable
-timestamp in a universal and unambiguous form. The former provides
-more flexibility in notation while the latter is more strict but has
-Y2K issues.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-;; Mar 8 2010 12:00:00 MSK
-moscow-time GeneralizedTime ::= "20110308120000.0"
-;; Mar 8 2010 12:00:00 UTC
-utc-time GeneralizedTime ::= "201103081200Z"
-;; Mar 8 1999 12:00:00 UTC
-utc-time UTCTime ::= "9803081200Z"
-</pre>
-</td></tr></table>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import useful
->>> moscowTime = useful.GeneralizedTime("20110308120000.0")
->>> utcTime = useful.UTCTime("9803081200Z")
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Despite their intended use, these types possess no special, time-related,
-handling in pyasn1. They are just printable strings.
-</p>
-
-<a name="1.2"></a>
-<h4>
-1.2 Tagging
-</h4>
-
-<p>
-In order to continue with the Constructed ASN.1 types, we will first have
-to introduce the concept of tagging (and its pyasn1 implementation), as
-some of the Constructed types rely upon the tagging feature.
-</p>
-
-<p>
-When a value is coming into an ASN.1-based system (received from a network
-or read from some storage), the receiving entity has to determine the
-type of the value to interpret and verify it accordingly.
-</p>
-
-<p>
-Historically, the first data serialization protocol introduced in
-ASN.1 was BER (Basic Encoding Rules). According to BER, any serialized
-value is packed into a triplet of (Type, Length, Value) where Type is a
-code that identifies the value (which is called <i>tag</i> in ASN.1),
-length is the number of bytes occupied by the value in its serialized form
-and value is ASN.1 value in a form suitable for serial transmission or storage.
-</p>
-
-<p>
-For that reason almost every ASN.1 type has a tag (which is actually a
-BER type) associated with it by default.
-</p>
-
-<p>
-An ASN.1 tag could be viewed as a tuple of three numbers:
-(Class, Format, Number). While Number identifies a tag, Class component
-is used to create scopes for Numbers. Four scopes are currently defined:
-UNIVERSAL, context-specific, APPLICATION and PRIVATE. The Format component
-is actually a one-bit flag - zero for tags associated with scalar types,
-and one for constructed types (will be discussed later on).
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-MyIntegerType ::= [12] INTEGER
-MyOctetString ::= [APPLICATION 0] OCTET STRING
-</pre>
-</td></tr></table>
-
-<p>
-In pyasn1, tags are implemented as immutable, tuple-like objects:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import tag
->>> myTag = tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10)
->>> myTag
-Tag(tagClass=128, tagFormat=0, tagId=10)
->>> tuple(myTag)
-(128, 0, 10)
->>> myTag[2]
-10
->>> myTag == tag.Tag(tag.tagClassApplication, tag.tagFormatSimple, 10)
-False
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Default tag, associated with any ASN.1 type, could be extended or replaced
-to make new type distinguishable from its ancestor. The standard provides
-two modes of tag mangling - IMPLICIT and EXPLICIT.
-</p>
-
-<p>
-EXPLICIT mode works by appending new tag to the existing ones thus creating
-an ordered set of tags. This set will be considered as a whole for type
-identification and encoding purposes. Important property of EXPLICIT tagging
-mode is that it preserves base type information in encoding what makes it
-possible to completely recover type information from encoding.
-</p>
-
-<p>
-When tagging in IMPLICIT mode, the outermost existing tag is dropped and
-replaced with a new one.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-MyIntegerType ::= [12] IMPLICIT INTEGER
-MyOctetString ::= [APPLICATION 0] EXPLICIT OCTET STRING
-</pre>
-</td></tr></table>
-
-<p>
-To model both modes of tagging, a specialized container TagSet object (holding
-zero, one or more Tag objects) is used in pyasn1.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import tag
->>> tagSet = tag.TagSet(
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10), # base tag
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10) # effective tag
-... )
->>> tagSet
-TagSet(Tag(tagClass=128, tagFormat=0, tagId=10))
->>> tagSet.getBaseTag()
-Tag(tagClass=128, tagFormat=0, tagId=10)
->>> tagSet = tagSet.tagExplicitly(
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 20)
-... )
->>> tagSet
-TagSet(Tag(tagClass=128, tagFormat=0, tagId=10),
- Tag(tagClass=128, tagFormat=32, tagId=20))
->>> tagSet = tagSet.tagExplicitly(
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 30)
-... )
->>> tagSet
-TagSet(Tag(tagClass=128, tagFormat=0, tagId=10),
- Tag(tagClass=128, tagFormat=32, tagId=20),
- Tag(tagClass=128, tagFormat=32, tagId=30))
->>> tagSet = tagSet.tagImplicitly(
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 40)
-... )
->>> tagSet
-TagSet(Tag(tagClass=128, tagFormat=0, tagId=10),
- Tag(tagClass=128, tagFormat=32, tagId=20),
- Tag(tagClass=128, tagFormat=32, tagId=40))
->>>
-</pre>
-</td></tr></table>
-
-<p>
-As a side note: the "base tag" concept (accessible through the getBaseTag()
-method) is specific to pyasn1 -- the base tag is used to identify the original
-ASN.1 type of an object in question. Base tag is never occurs in encoding
-and is mostly used internally by pyasn1 for choosing type-specific data
-processing algorithms. The "effective tag" is the one that always appears in
-encoding and is used on tagSets comparation.
-</p>
-
-<p>
-Any two TagSet objects could be compared to see if one is a derivative
-of the other. Figuring this out is also useful in cases when a type-specific
-data processing algorithms are to be chosen.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import tag
->>> tagSet1 = tag.TagSet(
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10) # base tag
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 10) # effective tag
-... )
->>> tagSet2 = tagSet1.tagExplicitly(
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 20)
-... )
->>> tagSet1.isSuperTagSetOf(tagSet2)
-True
->>> tagSet2.isSuperTagSetOf(tagSet1)
-False
->>>
-</pre>
-</td></tr></table>
-
-<p>
-We will complete this discussion on tagging with a real-world example. The
-following ASN.1 tagged type:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-MyIntegerType ::= [12] EXPLICIT INTEGER
-</pre>
-</td></tr></table>
-
-<p>
-could be expressed in pyasn1 like this:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, tag
->>> class MyIntegerType(univ.Integer):
-... tagSet = univ.Integer.tagSet.tagExplicitly(
-... tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 12)
-... )
->>> myInteger = MyIntegerType(12345)
->>> myInteger.getTagSet()
-TagSet(Tag(tagClass=0, tagFormat=0, tagId=2),
- Tag(tagClass=128, tagFormat=32, tagId=12))
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Referring to the above code, the tagSet class attribute is a property of any
-pyasn1 type object that assigns default tagSet to a pyasn1 value object. This
-default tagSet specification can be ignored and effectively replaced by some
-other tagSet value passed on object instantiation.
-</p>
-
-<p>
-It's important to understand that the tag set property of pyasn1 type/value
-object can never be modifed in place. In other words, a pyasn1 type/value
-object can never change its tags. The only way is to create a new pyasn1
-type/value object and associate different tag set with it.
-</p>
-
-
-<a name="1.3"></a>
-<h4>
-1.3 Constructed types
-</h4>
-
-<p>
-Besides scalar types, ASN.1 specifies so-called constructed ones - these
-are capable of holding one or more values of other types, both scalar
-and constructed.
-</p>
-
-<p>
-In pyasn1 implementation, constructed ASN.1 types behave like
-Python sequences, and also support additional component addressing methods,
-specific to particular constructed type.
-</p>
-
-<a name="1.3.1"></a>
-<h4>
-1.3.1 Sequence and Set types
-</h4>
-
-<p>
-The Sequence and Set types have many similar properties:
-</p>
-<ul>
-<li>they can hold any number of inner components of different types
-<li>every component has a human-friendly identifier
-<li>any component can have a default value
-<li>some components can be absent.
-</ul>
-
-<p>
-However, Sequence type guarantees the ordering of Sequence value components
-to match their declaration order. By contrast, components of the
-Set type can be ordered to best suite application's needs.
-<p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-Record ::= SEQUENCE {
- id INTEGER,
- room [0] INTEGER OPTIONAL,
- house [1] INTEGER DEFAULT 0
-}
-</pre>
-</td></tr></table>
-
-<p>
-Up to this moment, the only method we used for creating new pyasn1 types
-is Python sub-classing. With this method, a new, named Python class is created
-what mimics type derivation in ASN.1 grammar. However, ASN.1 also allows for
-defining anonymous subtypes (room and house components in the example above).
-To support anonymous subtyping in pyasn1, a cloning operation on an existing
-pyasn1 type object can be invoked what creates a new instance of original
-object with possibly modified properties.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, namedtype, tag
->>> class Record(univ.Sequence):
-... componentType = namedtype.NamedTypes(
-... namedtype.NamedType('id', univ.Integer()),
-... namedtype.OptionalNamedType(
-... 'room',
-... univ.Integer().subtype(implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 0))
-... ),
-... namedtype.DefaultedNamedType(
-... 'house',
-... univ.Integer(0).subtype(implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 1))
-... )
-... )
->>>
-</pre>
-</td></tr></table>
-
-<p>
-All pyasn1 constructed type classes have a class attribute <b>componentType</b>
-that represent default type specification. Its value is a NamedTypes object.
-</p>
-
-<p>
-The NamedTypes class instance holds a sequence of NameType, OptionalNamedType
-or DefaultedNamedType objects which, in turn, refer to pyasn1 type objects that
-represent inner SEQUENCE components specification.
-</p>
-
-<p>
-Finally, invocation of a subtype() method of pyasn1 type objects in the code
-above returns an implicitly tagged copy of original object.
-</p>
-
-<p>
-Once a SEQUENCE or SET type is decleared with pyasn1, it can be instantiated
-and initialized (continuing the above code):
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> record = Record()
->>> record.setComponentByName('id', 123)
->>> print(record.prettyPrint())
-Record:
- id=123
->>>
->>> record.setComponentByPosition(1, 321)
->>> print(record.prettyPrint())
-Record:
- id=123
- room=321
->>>
->>> record.setDefaultComponents()
->>> print(record.prettyPrint())
-Record:
- id=123
- room=321
- house=0
-</pre>
-</td></tr></table>
-
-<p>
-Inner components of pyasn1 Sequence/Set objects could be accessed using the
-following methods:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> record.getComponentByName('id')
-Integer(123)
->>> record.getComponentByPosition(1)
-Integer(321)
->>> record[2]
-Integer(0)
->>> for idx in range(len(record)):
-... print(record.getNameByPosition(idx), record.getComponentByPosition(idx))
-id 123
-room 321
-house 0
->>>
-</pre>
-</td></tr></table>
-
-<p>
-The Set type share all the properties of Sequence type, and additionally
-support by-tag component addressing (as all Set components have distinct
-types).
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, namedtype, tag
->>> class Gamer(univ.Set):
-... componentType = namedtype.NamedTypes(
-... namedtype.NamedType('score', univ.Integer()),
-... namedtype.NamedType('player', univ.OctetString()),
-... namedtype.NamedType('id', univ.ObjectIdentifier())
-... )
->>> gamer = Gamer()
->>> gamer.setComponentByType(univ.Integer().getTagSet(), 121343)
->>> gamer.setComponentByType(univ.OctetString().getTagSet(), 'Pascal')
->>> gamer.setComponentByType(univ.ObjectIdentifier().getTagSet(), (1,3,7,2))
->>> print(gamer.prettyPrint())
-Gamer:
- score=121343
- player=b'Pascal'
- id=1.3.7.2
->>>
-</pre>
-</td></tr></table>
-
-<a name="1.3.2"></a>
-<h4>
-1.3.2 SequenceOf and SetOf types
-</h4>
-
-<p>
-Both, SequenceOf and SetOf types resemble an unlimited size list of components.
-All the components must be of the same type.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-Progression ::= SEQUENCE OF INTEGER
-
-arithmeticProgression Progression ::= { 1, 3, 5, 7 }
-</pre>
-</td></tr></table>
-
-<p>
-SequenceOf and SetOf types are expressed by the very similar pyasn1 type
-objects. Their components can only be addressed by position and they
-both have a property of automatic resize.
-</p>
-
-<p>
-To specify inner component type, the <b>componentType</b> class attribute
-should refer to another pyasn1 type object.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> class Progression(univ.SequenceOf):
-... componentType = univ.Integer()
->>> arithmeticProgression = Progression()
->>> arithmeticProgression.setComponentByPosition(1, 111)
->>> print(arithmeticProgression.prettyPrint())
-Progression:
--empty- 111
->>> arithmeticProgression.setComponentByPosition(0, 100)
->>> print(arithmeticProgression.prettyPrint())
-Progression:
-100 111
->>>
->>> for idx in range(len(arithmeticProgression)):
-... arithmeticProgression.getComponentByPosition(idx)
-Integer(100)
-Integer(111)
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Any scalar or constructed pyasn1 type object can serve as an inner component.
-Missing components are prohibited in SequenceOf/SetOf value objects.
-</p>
-
-<a name="1.3.3"></a>
-<h4>
-1.3.3 Choice type
-</h4>
-
-<p>
-Values of ASN.1 CHOICE type can contain only a single value of a type from a
-list of possible alternatives. Alternatives must be ASN.1 types with
-distinct tags for the whole structure to remain unambiguous. Unlike most
-other types, CHOICE is an untagged one, e.g. it has no base tag of its own.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-CodeOrMessage ::= CHOICE {
- code INTEGER,
- message OCTET STRING
-}
-</pre>
-</td></tr></table>
-
-<p>
-In pyasn1 implementation, Choice object behaves like Set but accepts only
-a single inner component at a time. It also offers a few additional methods
-specific to its behaviour.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, namedtype
->>> class CodeOrMessage(univ.Choice):
-... componentType = namedtype.NamedTypes(
-... namedtype.NamedType('code', univ.Integer()),
-... namedtype.NamedType('message', univ.OctetString())
-... )
->>>
->>> codeOrMessage = CodeOrMessage()
->>> print(codeOrMessage.prettyPrint())
-CodeOrMessage:
->>> codeOrMessage.setComponentByName('code', 123)
->>> print(codeOrMessage.prettyPrint())
-CodeOrMessage:
- code=123
->>> codeOrMessage.setComponentByName('message', 'my string value')
->>> print(codeOrMessage.prettyPrint())
-CodeOrMessage:
- message=b'my string value'
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Since there could be only a single inner component value in the pyasn1 Choice
-value object, either of the following methods could be used for fetching it
-(continuing previous code):
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> codeOrMessage.getName()
-'message'
->>> codeOrMessage.getComponent()
-OctetString(b'my string value')
->>>
-</pre>
-</td></tr></table>
-
-<a name="1.3.4"></a>
-<h4>
-1.3.4 Any type
-</h4>
-
-<p>
-The ASN.1 ANY type is a kind of wildcard or placeholder that matches
-any other type without knowing it in advance. Like CHOICE type, ANY
-has no base tag.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-Error ::= SEQUENCE {
- code INTEGER,
- parameter ANY DEFINED BY code
-}
-</pre>
-</td></tr></table>
-
-<p>
-The ANY type is frequently used in specifications, where exact type is not
-yet agreed upon between communicating parties or the number of possible
-alternatives of a type is infinite.
-Sometimes an auxiliary selector is kept around to help parties indicate
-the kind of ANY payload in effect ("code" in the example above).
-</p>
-
-<p>
-Values of the ANY type contain serialized ASN.1 value(s) in form of
-an octet string. Therefore pyasn1 Any value object share the properties of
-pyasn1 OctetString object.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> someValue = univ.Any(b'\x02\x01\x01')
->>> someValue
-Any(b'\x02\x01\x01')
->>> str(someValue)
-'\x02\x01\x01'
->>> bytes(someValue)
-b'\x02\x01\x01'
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Receiving application is supposed to explicitly deserialize the content of Any
-value object, possibly using auxiliary selector for figuring out its ASN.1
-type to pick appropriate decoder.
-</p>
-
-<p>
-There will be some more talk and code snippets covering Any type in the codecs
-chapters that follow.
-</p>
-
-<a name="1.4"></a>
-<h4>
-1.4 Subtype constraints
-</h4>
-
-<p>
-Most ASN.1 types can correspond to an infinite set of values. To adapt to
-particular application's data model and needs, ASN.1 provides a mechanism
-for limiting the infinite set to values, that make sense in particular case.
-</p>
-
-<p>
-Imposing value constraints on an ASN.1 type can also be seen as creating
-a subtype from its base type.
-</p>
-
-<p>
-In pyasn1, constraints take shape of immutable objects capable
-of evaluating given value against constraint-specific requirements.
-Constraint object is a property of pyasn1 type. Like TagSet property,
-associated with every pyasn1 type, constraints can never be modified
-in place. The only way to modify pyasn1 type constraint is to associate
-new constraint object to a new pyasn1 type object.
-</p>
-
-<p>
-A handful of different flavors of <i>constraints</i> are defined in ASN.1.
-We will discuss them one by one in the following chapters and also explain
-how to combine and apply them to types.
-</p>
-
-<a name="1.4.1"></a>
-<h4>
-1.4.1 Single value constraint
-</h4>
-
-<p>
-This kind of constraint allows for limiting type to a finite, specified set
-of values.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-DialButton ::= OCTET STRING (
- "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
-)
-</pre>
-</td></tr></table>
-
-<p>
-Its pyasn1 implementation would look like:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import constraint
->>> c = constraint.SingleValueConstraint(
- '0','1','2','3','4','5','6','7','8','9'
-)
->>> c
-SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
->>> c('0')
->>> c('A')
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) failed at: A
->>>
-</pre>
-</td></tr></table>
-
-<p>
-As can be seen in the snippet above, if a value violates the constraint, an
-exception will be thrown. A constrainted pyasn1 type object holds a
-reference to a constraint object (or their combination, as will be explained
-later) and calls it for value verification.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, constraint
->>> class DialButton(univ.OctetString):
-... subtypeSpec = constraint.SingleValueConstraint(
-... '0','1','2','3','4','5','6','7','8','9'
-... )
->>> DialButton('0')
-DialButton(b'0')
->>> DialButton('A')
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- SingleValueConstraint(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) failed at: A
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Constrained pyasn1 value object can never hold a violating value.
-</p>
-
-<a name="1.4.2"></a>
-<h4>
-1.4.2 Value range constraint
-</h4>
-
-<p>
-A pair of values, compliant to a type to be constrained, denote low and upper
-bounds of allowed range of values of a type.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-Teenagers ::= INTEGER (13..19)
-</pre>
-</td></tr></table>
-
-<p>
-And in pyasn1 terms:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, constraint
->>> class Teenagers(univ.Integer):
-... subtypeSpec = constraint.ValueRangeConstraint(13, 19)
->>> Teenagers(14)
-Teenagers(14)
->>> Teenagers(20)
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- ValueRangeConstraint(13, 19) failed at: 20
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Value range constraint usually applies numeric types.
-</p>
-
-<a name="1.4.3"></a>
-<h4>
-1.4.3 Size constraint
-</h4>
-
-<p>
-It is sometimes convenient to set or limit the allowed size of a data item
-to be sent from one application to another to manage bandwidth and memory
-consumption issues. Size constraint specifies the lower and upper bounds
-of the size of a valid value.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-TwoBits ::= BIT STRING (SIZE (2))
-</pre>
-</td></tr></table>
-
-<p>
-Express the same grammar in pyasn1:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, constraint
->>> class TwoBits(univ.BitString):
-... subtypeSpec = constraint.ValueSizeConstraint(2, 2)
->>> TwoBits((1,1))
-TwoBits("'11'B")
->>> TwoBits((1,1,0))
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- ValueSizeConstraint(2, 2) failed at: (1, 1, 0)
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Size constraint can be applied to potentially massive values - bit or octet
-strings, SEQUENCE OF/SET OF values.
-</p>
-
-<a name="1.4.4"></a>
-<h4>
-1.4.4 Alphabet constraint
-</h4>
-
-<p>
-The permitted alphabet constraint is similar to Single value constraint
-but constraint applies to individual characters of a value.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-MorseCode ::= PrintableString (FROM ("."|"-"|" "))
-</pre>
-</td></tr></table>
-
-<p>
-And in pyasn1:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import char, constraint
->>> class MorseCode(char.PrintableString):
-... subtypeSpec = constraint.PermittedAlphabetConstraint(".", "-", " ")
->>> MorseCode("...---...")
-MorseCode('...---...')
->>> MorseCode("?")
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- PermittedAlphabetConstraint(".", "-", " ") failed at: "?"
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Current implementation does not handle ranges of characters in constraint
-(FROM "A".."Z" syntax), one has to list the whole set in a range.
-</p>
-
-<a name="1.4.5"></a>
-<h4>
-1.4.5 Constraint combinations
-</h4>
-
-<p>
-Up to this moment, we used a single constraint per ASN.1 type. The standard,
-however, allows for combining multiple individual constraints into
-intersections, unions and exclusions.
-</p>
-
-<p>
-In pyasn1 data model, all of these methods of constraint combinations are
-implemented as constraint-like objects holding individual constraint (or
-combination) objects. Like terminal constraint objects, combination objects
-are capable to perform value verification at its set of enclosed constraints
-according to the logic of particular combination.
-</p>
-
-<p>
-Constraints intersection verification succeeds only if a value is
-compliant to each constraint in a set. To begin with, the following
-specification will constitute a valid telephone number:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-PhoneNumber ::= NumericString (FROM ("0".."9")) (SIZE 11)
-</pre>
-</td></tr></table>
-
-<p>
-Constraint intersection object serves the logic above:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import char, constraint
->>> class PhoneNumber(char.NumericString):
-... subtypeSpec = constraint.ConstraintsIntersection(
-... constraint.PermittedAlphabetConstraint('0','1','2','3','4','5','6','7','8','9'),
-... constraint.ValueSizeConstraint(11, 11)
-... )
->>> PhoneNumber('79039343212')
-PhoneNumber('79039343212')
->>> PhoneNumber('?9039343212')
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- ConstraintsIntersection(
- PermittedAlphabetConstraint('0','1','2','3','4','5','6','7','8','9'),
- ValueSizeConstraint(11, 11)) failed at:
- PermittedAlphabetConstraint('0','1','2','3','4','5','6','7','8','9') failed at: "?039343212"
->>> PhoneNumber('9343212')
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- ConstraintsIntersection(
- PermittedAlphabetConstraint('0','1','2','3','4','5','6','7','8','9'),
- ValueSizeConstraint(11, 11)) failed at:
- ValueSizeConstraint(10, 10) failed at: "9343212"
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Union of constraints works by making sure that a value is compliant
-to any of the constraint in a set. For instance:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-CapitalOrSmall ::= IA5String (FROM ('A','B','C') | FROM ('a','b','c'))
-</pre>
-</td></tr></table>
-
-<p>
-It's important to note, that a value must fully comply to any single
-constraint in a set. In the specification above, a value of all small or
-all capital letters is compliant, but a mix of small&capitals is not.
-Here's its pyasn1 analogue:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import char, constraint
->>> class CapitalOrSmall(char.IA5String):
-... subtypeSpec = constraint.ConstraintsUnion(
-... constraint.PermittedAlphabetConstraint('A','B','C'),
-... constraint.PermittedAlphabetConstraint('a','b','c')
-... )
->>> CapitalOrSmall('ABBA')
-CapitalOrSmall('ABBA')
->>> CapitalOrSmall('abba')
-CapitalOrSmall('abba')
->>> CapitalOrSmall('Abba')
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- ConstraintsUnion(PermittedAlphabetConstraint('A', 'B', 'C'),
- PermittedAlphabetConstraint('a', 'b', 'c')) failed at: failed for "Abba"
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Finally, the exclusion constraint simply negates the logic of value
-verification at a constraint. In the following example, any integer value
-is allowed in a type but not zero.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
-NoZero ::= INTEGER (ALL EXCEPT 0)
-</pre>
-</td></tr></table>
-
-<p>
-In pyasn1 the above definition would read:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, constraint
->>> class NoZero(univ.Integer):
-... subtypeSpec = constraint.ConstraintsExclusion(
-... constraint.SingleValueConstraint(0)
-... )
->>> NoZero(1)
-NoZero(1)
->>> NoZero(0)
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- ConstraintsExclusion(SingleValueConstraint(0)) failed at: 0
->>>
-</pre>
-</td></tr></table>
-
-<p>
-The depth of such a constraints tree, built with constraint combination objects
-at its nodes, has not explicit limit. Value verification is performed in a
-recursive manner till a definite solution is found.
-</p>
-
-<a name="1.5"></a>
-<h4>
-1.5 Types relationships
-</h4>
-
-<p>
-In the course of data processing in an application, it is sometimes
-convenient to figure out the type relationships between pyasn1 type or
-value objects. Formally, two things influence pyasn1 types relationship:
-<i>tag set</i> and <i>subtype constraints</i>. One pyasn1 type is considered
-to be a derivative of another if their TagSet and Constraint objects are
-a derivation of one another.
-</p>
-
-<p>
-The following example illustrates the concept (we use the same tagset but
-different constraints for simplicity):
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, constraint
->>> i1 = univ.Integer(subtypeSpec=constraint.ValueRangeConstraint(3,8))
->>> i2 = univ.Integer(subtypeSpec=constraint.ConstraintsIntersection(
-... constraint.ValueRangeConstraint(3,8),
-... constraint.ValueRangeConstraint(4,7)
-... ) )
->>> i1.isSameTypeWith(i2)
-False
->>> i1.isSuperTypeOf(i2)
-True
->>> i1.isSuperTypeOf(i1)
-True
->>> i2.isSuperTypeOf(i1)
-False
->>>
-</pre>
-</td></tr></table>
-
-<p>
-As can be seen in the above code snippet, there are two methods of any pyasn1
-type/value object that test types for their relationship:
-<b>isSameTypeWith</b>() and <b>isSuperTypeOf</b>(). The former is
-self-descriptive while the latter yields true if the argument appears
-to be a pyasn1 object which has tagset and constraints derived from those
-of the object being called.
-</p>
-
-<a name="2"></a>
-<h3>
-2. Codecs
-</h3>
-
-<p>
-In ASN.1 context,
-<a href=http://en.wikipedia.org/wiki/Codec>codec</a>
-is a program that transforms between concrete data structures and a stream
-of octets, suitable for transmission over the wire. This serialized form of
-data is sometimes called <i>substrate</i> or <i>essence</i>.
-</p>
-
-<p>
-In pyasn1 implementation, substrate takes shape of Python 3 bytes or
-Python 2 string objects.
-</p>
-
-<p>
-One of the properties of a codec is its ability to cope with incomplete
-data and/or substrate what implies codec to be stateful. In other words,
-when decoder runs out of substrate and data item being recovered is still
-incomplete, stateful codec would suspend and complete data item recovery
-whenever the rest of substrate becomes available. Similarly, stateful encoder
-would encode data items in multiple steps waiting for source data to
-arrive. Codec restartability is especially important when application deals
-with large volumes of data and/or runs on low RAM. For an interesting
-discussion on codecs options and design choices, refer to
-<a href=http://directory.apache.org/subprojects/asn1/>Apache ASN.1 project</a>
-.
-</p>
-
-<p>
-As of this writing, codecs implemented in pyasn1 are all stateless, mostly
-to keep the code simple.
-</p>
-
-<p>
-The pyasn1 package currently supports
-<a href=http://en.wikipedia.org/wiki/Basic_encoding_rules>BER</a> codec and
-its variations --
-<a href=http://en.wikipedia.org/wiki/Canonical_encoding_rules>CER</a> and
-<a href=http://en.wikipedia.org/wiki/Distinguished_encoding_rules>DER</a>.
-More ASN.1 codecs are planned for implementation in the future.
-</p>
-
-<a name="2.1"></a>
-<h4>
-2.1 Encoders
-</h4>
-
-<p>
-Encoder is used for transforming pyasn1 value objects into substrate. Only
-pyasn1 value objects could be serialized, attempts to process pyasn1 type
-objects will cause encoder failure.
-</p>
-
-<p>
-The following code will create a pyasn1 Integer object and serialize it with
-BER encoder:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> from pyasn1.codec.ber import encoder
->>> encoder.encode(univ.Integer(123456))
-b'\x02\x03\x01\xe2@'
->>>
-</pre>
-</td></tr></table>
-
-<p>
-BER standard also defines a so-called <i>indefinite length</i> encoding form
-which makes large data items processing more memory efficient. It is mostly
-useful when encoder does not have the whole value all at once and the
-length of the value can not be determined at the beginning of encoding.
-</p>
-
-<p>
-<i>Constructed encoding</i> is another feature of BER closely related to the
-indefinite length form. In essence, a large scalar value (such as ASN.1
-character BitString type) could be chopped into smaller chunks by encoder
-and transmitted incrementally to limit memory consumption. Unlike indefinite
-length case, the length of the whole value must be known in advance when
-using constructed, definite length encoding form.
-</p>
-
-<p>
-Since pyasn1 codecs are not restartable, pyasn1 encoder may only encode data
-item all at once. However, even in this case, generating indefinite length
-encoding may help a low-memory receiver, running a restartable decoder,
-to process a large data item.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> from pyasn1.codec.ber import encoder
->>> encoder.encode(
-... univ.OctetString('The quick brown fox jumps over the lazy dog'),
-... defMode=False,
-... maxChunkSize=8
-... )
-b'$\x80\x04\x08The quic\x04\x08k brown \x04\x08fox jump\x04\x08s over \
-t\x04\x08he lazy \x04\x03dog\x00\x00'
->>>
->>> encoder.encode(
-... univ.OctetString('The quick brown fox jumps over the lazy dog'),
-... maxChunkSize=8
-... )
-b'$7\x04\x08The quic\x04\x08k brown \x04\x08fox jump\x04\x08s over \
-t\x04\x08he lazy \x04\x03dog'
-</pre>
-</td></tr></table>
-
-<p>
-The <b>defMode</b> encoder parameter disables definite length encoding mode,
-while the optional <b>maxChunkSize</b> parameter specifies desired
-substrate chunk size that influences memory requirements at the decoder's end.
-</p>
-
-<p>
-To use CER or DER encoders one needs to explicitly import and call them - the
-APIs are all compatible.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> from pyasn1.codec.ber import encoder as ber_encoder
->>> from pyasn1.codec.cer import encoder as cer_encoder
->>> from pyasn1.codec.der import encoder as der_encoder
->>> ber_encoder.encode(univ.Boolean(True))
-b'\x01\x01\x01'
->>> cer_encoder.encode(univ.Boolean(True))
-b'\x01\x01\xff'
->>> der_encoder.encode(univ.Boolean(True))
-b'\x01\x01\xff'
->>>
-</pre>
-</td></tr></table>
-
-<a name="2.2"></a>
-<h4>
-2.2 Decoders
-</h4>
-
-<p>
-In the process of decoding, pyasn1 value objects are created and linked to
-each other, based on the information containted in the substrate. Thus,
-the original pyasn1 value object(s) are recovered.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> from pyasn1.codec.ber import encoder, decoder
->>> substrate = encoder.encode(univ.Boolean(True))
->>> decoder.decode(substrate)
-(Boolean('True(1)'), b'')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Commenting on the code snippet above, pyasn1 decoder accepts substrate
-as an argument and returns a tuple of pyasn1 value object (possibly
-a top-level one in case of constructed object) and unprocessed part
-of input substrate.
-</p>
-
-<p>
-All pyasn1 decoders can handle both definite and indefinite length
-encoding modes automatically, explicit switching into one mode
-to another is not required.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> from pyasn1.codec.ber import encoder, decoder
->>> substrate = encoder.encode(
-... univ.OctetString('The quick brown fox jumps over the lazy dog'),
-... defMode=False,
-... maxChunkSize=8
-... )
->>> decoder.decode(substrate)
-(OctetString(b'The quick brown fox jumps over the lazy dog'), b'')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Speaking of BER/CER/DER encoding, in many situations substrate may not contain
-all necessary information needed for complete and accurate ASN.1 values
-recovery. The most obvious cases include implicitly tagged ASN.1 types
-and constrained types.
-</p>
-
-<p>
-As discussed earlier in this handbook, when an ASN.1 type is implicitly
-tagged, previous outermost tag is lost and never appears in substrate.
-If it is the base tag that gets lost, decoder is unable to pick type-specific
-value decoder at its table of built-in types, and therefore recover
-the value part, based only on the information contained in substrate. The
-approach taken by pyasn1 decoder is to use a prototype pyasn1 type object (or
-a set of them) to <i>guide</i> the decoding process by matching [possibly
-incomplete] tags recovered from substrate with those found in prototype pyasn1
-type objects (also called pyasn1 specification object further in this paper).
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.codec.ber import decoder
->>> decoder.decode(b'\x02\x01\x0c', asn1Spec=univ.Integer())
-Integer(12), b''
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Decoder would neither modify pyasn1 specification object nor use
-its current values (if it's a pyasn1 value object), but rather use it as
-a hint for choosing proper decoder and as a pattern for creating new objects:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, tag
->>> from pyasn1.codec.ber import encoder, decoder
->>> i = univ.Integer(12345).subtype(
-... implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 40)
-... )
->>> substrate = encoder.encode(i)
->>> substrate
-b'\x9f(\x0209'
->>> decoder.decode(substrate)
-Traceback (most recent call last):
-...
-pyasn1.error.PyAsn1Error:
- TagSet(Tag(tagClass=128, tagFormat=0, tagId=40)) not in asn1Spec
->>> decoder.decode(substrate, asn1Spec=i)
-(Integer(12345), b'')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Notice in the example above, that an attempt to run decoder without passing
-pyasn1 specification object fails because recovered tag does not belong
-to any of the built-in types.
-</p>
-
-<p>
-Another important feature of guided decoder operation is the use of
-values constraints possibly present in pyasn1 specification object.
-To explain this, we will decode a random integer object into generic Integer
-and the constrained one.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, constraint
->>> from pyasn1.codec.ber import encoder, decoder
->>> class DialDigit(univ.Integer):
-... subtypeSpec = constraint.ValueRangeConstraint(0,9)
->>> substrate = encoder.encode(univ.Integer(13))
->>> decoder.decode(substrate)
-(Integer(13), b'')
->>> decoder.decode(substrate, asn1Spec=DialDigit())
-Traceback (most recent call last):
-...
-pyasn1.type.error.ValueConstraintError:
- ValueRangeConstraint(0, 9) failed at: 13
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Similarily to encoders, to use CER or DER decoders application has to
-explicitly import and call them - all APIs are compatible.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> from pyasn1.codec.ber import encoder as ber_encoder
->>> substrate = ber_encoder.encode(univ.OctetString('http://pyasn1.sf.net'))
->>>
->>> from pyasn1.codec.ber import decoder as ber_decoder
->>> from pyasn1.codec.cer import decoder as cer_decoder
->>> from pyasn1.codec.der import decoder as der_decoder
->>>
->>> ber_decoder.decode(substrate)
-(OctetString(b'http://pyasn1.sf.net'), b'')
->>> cer_decoder.decode(substrate)
-(OctetString(b'http://pyasn1.sf.net'), b'')
->>> der_decoder.decode(substrate)
-(OctetString(b'http://pyasn1.sf.net'), b'')
->>>
-</pre>
-</td></tr></table>
-
-<a name="2.2.1"></a>
-<h4>
-2.2.1 Decoding untagged types
-</h4>
-
-<p>
-It has already been mentioned, that ASN.1 has two "special case" types:
-CHOICE and ANY. They are different from other types in part of
-tagging - unless these two are additionally tagged, neither of them will
-have their own tag. Therefore these types become invisible in substrate
-and can not be recovered without passing pyasn1 specification object to
-decoder.
-</p>
-
-<p>
-To explain the issue, we will first prepare a Choice object to deal with:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, namedtype
->>> class CodeOrMessage(univ.Choice):
-... componentType = namedtype.NamedTypes(
-... namedtype.NamedType('code', univ.Integer()),
-... namedtype.NamedType('message', univ.OctetString())
-... )
->>>
->>> codeOrMessage = CodeOrMessage()
->>> codeOrMessage.setComponentByName('message', 'my string value')
->>> print(codeOrMessage.prettyPrint())
-CodeOrMessage:
- message=b'my string value'
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Let's now encode this Choice object and then decode its substrate
-with and without pyasn1 specification object:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.codec.ber import encoder, decoder
->>> substrate = encoder.encode(codeOrMessage)
->>> substrate
-b'\x04\x0fmy string value'
->>> encoder.encode(univ.OctetString('my string value'))
-b'\x04\x0fmy string value'
->>>
->>> decoder.decode(substrate)
-(OctetString(b'my string value'), b'')
->>> codeOrMessage, substrate = decoder.decode(substrate, asn1Spec=CodeOrMessage())
->>> print(codeOrMessage.prettyPrint())
-CodeOrMessage:
- message=b'my string value'
->>>
-</pre>
-</td></tr></table>
-
-<p>
-First thing to notice in the listing above is that the substrate produced
-for our Choice value object is equivalent to the substrate for an OctetString
-object initialized to the same value. In other words, any information about
-the Choice component is absent in encoding.
-</p>
-
-<p>
-Sure enough, that kind of substrate will decode into an OctetString object,
-unless original Choice type object is passed to decoder to guide the decoding
-process.
-</p>
-
-<p>
-Similarily untagged ANY type behaves differently on decoding phase - when
-decoder bumps into an Any object in pyasn1 specification, it stops decoding
-and puts all the substrate into a new Any value object in form of an octet
-string. Concerned application could then re-run decoder with an additional,
-more exact pyasn1 specification object to recover the contents of Any
-object.
-</p>
-
-<p>
-As it was mentioned elsewhere in this paper, Any type allows for incomplete
-or changing ASN.1 specification to be handled gracefully by decoder and
-applications.
-</p>
-
-<p>
-To illustrate the working of Any type, we'll have to make the stage
-by encoding a pyasn1 object and then putting its substrate into an any
-object.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> from pyasn1.codec.ber import encoder, decoder
->>> innerSubstrate = encoder.encode(univ.Integer(1234))
->>> innerSubstrate
-b'\x02\x02\x04\xd2'
->>> any = univ.Any(innerSubstrate)
->>> any
-Any(b'\x02\x02\x04\xd2')
->>> substrate = encoder.encode(any)
->>> substrate
-b'\x02\x02\x04\xd2'
->>>
-</pre>
-</td></tr></table>
-
-<p>
-As with Choice type encoding, there is no traces of Any type in substrate.
-Obviously, the substrate we are dealing with, will decode into the inner
-[Integer] component, unless pyasn1 specification is given to guide the
-decoder. Continuing previous code:
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ
->>> from pyasn1.codec.ber import encoder, decoder
-
->>> decoder.decode(substrate)
-(Integer(1234), b'')
->>> any, substrate = decoder.decode(substrate, asn1Spec=univ.Any())
->>> any
-Any(b'\x02\x02\x04\xd2')
->>> decoder.decode(str(any))
-(Integer(1234), b'')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-Both CHOICE and ANY types are widely used in practice. Reader is welcome to
-take a look at
-<a href=http://www.cs.auckland.ac.nz/~pgut001/pubs/x509guide.txt>
-ASN.1 specifications of X.509 applications</a> for more information.
-</p>
-
-<a name="2.2.2"></a>
-<h4>
-2.2.2 Ignoring unknown types
-</h4>
-
-<p>
-When dealing with a loosely specified ASN.1 structure, the receiving
-end may not be aware of some types present in the substrate. It may be
-convenient then to turn decoder into a recovery mode. Whilst there, decoder
-will not bail out when hit an unknown tag but rather treat it as an Any
-type.
-</p>
-
-<table bgcolor="lightgray" border=0 width=100%><TR><TD>
-<pre>
->>> from pyasn1.type import univ, tag
->>> from pyasn1.codec.ber import encoder, decoder
->>> taggedInt = univ.Integer(12345).subtype(
-... implicitTag=tag.Tag(tag.tagClassContext, tag.tagFormatSimple, 40)
-... )
->>> substrate = encoder.encode(taggedInt)
->>> decoder.decode(substrate)
-Traceback (most recent call last):
-...
-pyasn1.error.PyAsn1Error: TagSet(Tag(tagClass=128, tagFormat=0, tagId=40)) not in asn1Spec
->>>
->>> decoder.decode.defaultErrorState = decoder.stDumpRawValue
->>> decoder.decode(substrate)
-(Any(b'\x9f(\x0209'), '')
->>>
-</pre>
-</td></tr></table>
-
-<p>
-It's also possible to configure a custom decoder, to handle unknown tags
-found in substrate. This can be done by means of <b>defaultRawDecoder</b>
-attribute holding a reference to type decoder object. Refer to the source
-for API details.
-</p>
-
-<a name="3"></a>
-<h3>
-3. Feedback and getting help
-</h3>
-
-<p>
-Although pyasn1 software is almost a decade old and used in many production
-environments, it still may have bugs and non-implemented pieces. Anyone
-who happens to run into such defect is welcome to complain to
-<a href=mailto:pyasn1-users@lists.sourceforge.net>pyasn1 mailing list</a>
-or better yet fix the issue and send
-<a href=mailto:ilya@glas.net>me</a> the patch.
-</p>
-
-<p>
-Typically, pyasn1 is used for building arbitrary protocol support into
-various applications. This involves manual translation of ASN.1 data
-structures into their pyasn1 implementations. To save time and effort,
-data structures for some of the popular protocols are pre-programmed
-and kept for further re-use in form of the
-<a href=http://sourceforge.net/projects/pyasn1/files/pyasn1-modules/>
-pyasn1-modules package</a>. For instance, many structures for PKI (X.509,
-PKCS#*, CRMF, OCSP), LDAP and SNMP are present.
-Applications authors are advised to import and use relevant modules
-from that package whenever needed protocol structures are already
-there. New protocol modules contributions are welcome.
-</p>
-
-<p>
-And finally, the latest pyasn1 package revision is available for free
-download from
-<a href=http://sourceforge.net/projects/pyasn1/>project home</a> and
-also from the
-<a href=http://pypi.python.org/pypi>Python package repository</a>.
-</p>
-
-<hr>
-
-</td>
-</tr>
-</table>
-</center>
-</body>
-</html>

Powered by Google App Engine
This is Rietveld 408576698