Index: tools/telemetry/third_party/gsutil/third_party/boto/boto/machinelearning/layer1.py |
diff --git a/tools/telemetry/third_party/gsutil/third_party/boto/boto/machinelearning/layer1.py b/tools/telemetry/third_party/gsutil/third_party/boto/boto/machinelearning/layer1.py |
deleted file mode 100644 |
index 0768fb1ea9c238ff056c2fec20d513d6f80bf3de..0000000000000000000000000000000000000000 |
--- a/tools/telemetry/third_party/gsutil/third_party/boto/boto/machinelearning/layer1.py |
+++ /dev/null |
@@ -1,1408 +0,0 @@ |
-# Copyright (c) 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved |
-# |
-# Permission is hereby granted, free of charge, to any person obtaining a |
-# copy of this software and associated documentation files (the |
-# "Software"), to deal in the Software without restriction, including |
-# without limitation the rights to use, copy, modify, merge, publish, dis- |
-# tribute, sublicense, and/or sell copies of the Software, and to permit |
-# persons to whom the Software is furnished to do so, subject to the fol- |
-# lowing conditions: |
-# |
-# The above copyright notice and this permission notice shall be included |
-# in all copies or substantial portions of the Software. |
-# |
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS |
-# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- |
-# ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT |
-# SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, |
-# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
-# IN THE SOFTWARE. |
-# |
- |
-import boto |
-from boto.compat import json, urlsplit |
-from boto.connection import AWSQueryConnection |
-from boto.regioninfo import RegionInfo |
-from boto.exception import JSONResponseError |
-from boto.machinelearning import exceptions |
- |
- |
-class MachineLearningConnection(AWSQueryConnection): |
- """ |
- Definition of the public APIs exposed by Amazon Machine Learning |
- """ |
- APIVersion = "2014-12-12" |
- AuthServiceName = 'machinelearning' |
- DefaultRegionName = "us-east-1" |
- DefaultRegionEndpoint = "machinelearning.us-east-1.amazonaws.com" |
- ServiceName = "MachineLearning" |
- TargetPrefix = "AmazonML_20141212" |
- ResponseError = JSONResponseError |
- |
- _faults = { |
- "InternalServerException": exceptions.InternalServerException, |
- "LimitExceededException": exceptions.LimitExceededException, |
- "ResourceNotFoundException": exceptions.ResourceNotFoundException, |
- "IdempotentParameterMismatchException": exceptions.IdempotentParameterMismatchException, |
- "PredictorNotMountedException": exceptions.PredictorNotMountedException, |
- "InvalidInputException": exceptions.InvalidInputException, |
- } |
- |
- |
- def __init__(self, **kwargs): |
- region = kwargs.pop('region', None) |
- if not region: |
- region = RegionInfo(self, self.DefaultRegionName, |
- self.DefaultRegionEndpoint) |
- |
- if 'host' not in kwargs or kwargs['host'] is None: |
- kwargs['host'] = region.endpoint |
- |
- super(MachineLearningConnection, self).__init__(**kwargs) |
- self.region = region |
- self.auth_region_name = self.region.name |
- |
- def _required_auth_capability(self): |
- return ['hmac-v4'] |
- |
- def create_batch_prediction(self, batch_prediction_id, ml_model_id, |
- batch_prediction_data_source_id, output_uri, |
- batch_prediction_name=None): |
- """ |
- Generates predictions for a group of observations. The |
- observations to process exist in one or more data files |
- referenced by a `DataSource`. This operation creates a new |
- `BatchPrediction`, and uses an `MLModel` and the data files |
- referenced by the `DataSource` as information sources. |
- |
- `CreateBatchPrediction` is an asynchronous operation. In |
- response to `CreateBatchPrediction`, Amazon Machine Learning |
- (Amazon ML) immediately returns and sets the `BatchPrediction` |
- status to `PENDING`. After the `BatchPrediction` completes, |
- Amazon ML sets the status to `COMPLETED`. |
- |
- You can poll for status updates by using the |
- GetBatchPrediction operation and checking the `Status` |
- parameter of the result. After the `COMPLETED` status appears, |
- the results are available in the location specified by the |
- `OutputUri` parameter. |
- |
- :type batch_prediction_id: string |
- :param batch_prediction_id: A user-supplied ID that uniquely identifies |
- the `BatchPrediction`. |
- |
- :type batch_prediction_name: string |
- :param batch_prediction_name: A user-supplied name or description of |
- the `BatchPrediction`. `BatchPredictionName` can only use the UTF-8 |
- character set. |
- |
- :type ml_model_id: string |
- :param ml_model_id: The ID of the `MLModel` that will generate |
- predictions for the group of observations. |
- |
- :type batch_prediction_data_source_id: string |
- :param batch_prediction_data_source_id: The ID of the `DataSource` that |
- points to the group of observations to predict. |
- |
- :type output_uri: string |
- :param output_uri: The location of an Amazon Simple Storage Service |
- (Amazon S3) bucket or directory to store the batch prediction |
- results. The following substrings are not allowed in the s3 key |
- portion of the "outputURI" field: ':', '//', '/./', '/../'. |
- Amazon ML needs permissions to store and retrieve the logs on your |
- behalf. For information about how to set permissions, see the |
- `Amazon Machine Learning Developer Guide`_. |
- |
- """ |
- params = { |
- 'BatchPredictionId': batch_prediction_id, |
- 'MLModelId': ml_model_id, |
- 'BatchPredictionDataSourceId': batch_prediction_data_source_id, |
- 'OutputUri': output_uri, |
- } |
- if batch_prediction_name is not None: |
- params['BatchPredictionName'] = batch_prediction_name |
- return self.make_request(action='CreateBatchPrediction', |
- body=json.dumps(params)) |
- |
- def create_data_source_from_rds(self, data_source_id, rds_data, role_arn, |
- data_source_name=None, |
- compute_statistics=None): |
- """ |
- Creates a `DataSource` object from an ` Amazon Relational |
- Database Service`_ (Amazon RDS). A `DataSource` references |
- data that can be used to perform CreateMLModel, |
- CreateEvaluation, or CreateBatchPrediction operations. |
- |
- `CreateDataSourceFromRDS` is an asynchronous operation. In |
- response to `CreateDataSourceFromRDS`, Amazon Machine Learning |
- (Amazon ML) immediately returns and sets the `DataSource` |
- status to `PENDING`. After the `DataSource` is created and |
- ready for use, Amazon ML sets the `Status` parameter to |
- `COMPLETED`. `DataSource` in `COMPLETED` or `PENDING` status |
- can only be used to perform CreateMLModel, CreateEvaluation, |
- or CreateBatchPrediction operations. |
- |
- If Amazon ML cannot accept the input source, it sets the |
- `Status` parameter to `FAILED` and includes an error message |
- in the `Message` attribute of the GetDataSource operation |
- response. |
- |
- :type data_source_id: string |
- :param data_source_id: A user-supplied ID that uniquely identifies the |
- `DataSource`. Typically, an Amazon Resource Number (ARN) becomes |
- the ID for a `DataSource`. |
- |
- :type data_source_name: string |
- :param data_source_name: A user-supplied name or description of the |
- `DataSource`. |
- |
- :type rds_data: dict |
- :param rds_data: |
- The data specification of an Amazon RDS `DataSource`: |
- |
- |
- + DatabaseInformation - |
- |
- + `DatabaseName ` - Name of the Amazon RDS database. |
- + ` InstanceIdentifier ` - Unique identifier for the Amazon RDS |
- database instance. |
- |
- + DatabaseCredentials - AWS Identity and Access Management (IAM) |
- credentials that are used to connect to the Amazon RDS database. |
- + ResourceRole - Role (DataPipelineDefaultResourceRole) assumed by an |
- Amazon Elastic Compute Cloud (EC2) instance to carry out the copy |
- task from Amazon RDS to Amazon S3. For more information, see `Role |
- templates`_ for data pipelines. |
- + ServiceRole - Role (DataPipelineDefaultRole) assumed by the AWS Data |
- Pipeline service to monitor the progress of the copy task from |
- Amazon RDS to Amazon Simple Storage Service (S3). For more |
- information, see `Role templates`_ for data pipelines. |
- + SecurityInfo - Security information to use to access an Amazon RDS |
- instance. You need to set up appropriate ingress rules for the |
- security entity IDs provided to allow access to the Amazon RDS |
- instance. Specify a [ `SubnetId`, `SecurityGroupIds`] pair for a |
- VPC-based Amazon RDS instance. |
- + SelectSqlQuery - Query that is used to retrieve the observation data |
- for the `Datasource`. |
- + S3StagingLocation - Amazon S3 location for staging RDS data. The data |
- retrieved from Amazon RDS using `SelectSqlQuery` is stored in this |
- location. |
- + DataSchemaUri - Amazon S3 location of the `DataSchema`. |
- + DataSchema - A JSON string representing the schema. This is not |
- required if `DataSchemaUri` is specified. |
- + DataRearrangement - A JSON string representing the splitting |
- requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some- |
- random-seed\", |
- \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"` |
- |
- :type role_arn: string |
- :param role_arn: The role that Amazon ML assumes on behalf of the user |
- to create and activate a data pipeline in the users account and |
- copy data (using the `SelectSqlQuery`) query from Amazon RDS to |
- Amazon S3. |
- |
- :type compute_statistics: boolean |
- :param compute_statistics: The compute statistics for a `DataSource`. |
- The statistics are generated from the observation data referenced |
- by a `DataSource`. Amazon ML uses the statistics internally during |
- an `MLModel` training. This parameter must be set to `True` if the |
- ``DataSource `` needs to be used for `MLModel` training. |
- |
- """ |
- params = { |
- 'DataSourceId': data_source_id, |
- 'RDSData': rds_data, |
- 'RoleARN': role_arn, |
- } |
- if data_source_name is not None: |
- params['DataSourceName'] = data_source_name |
- if compute_statistics is not None: |
- params['ComputeStatistics'] = compute_statistics |
- return self.make_request(action='CreateDataSourceFromRDS', |
- body=json.dumps(params)) |
- |
- def create_data_source_from_redshift(self, data_source_id, data_spec, |
- role_arn, data_source_name=None, |
- compute_statistics=None): |
- """ |
- Creates a `DataSource` from `Amazon Redshift`_. A `DataSource` |
- references data that can be used to perform either |
- CreateMLModel, CreateEvaluation or CreateBatchPrediction |
- operations. |
- |
- `CreateDataSourceFromRedshift` is an asynchronous operation. |
- In response to `CreateDataSourceFromRedshift`, Amazon Machine |
- Learning (Amazon ML) immediately returns and sets the |
- `DataSource` status to `PENDING`. After the `DataSource` is |
- created and ready for use, Amazon ML sets the `Status` |
- parameter to `COMPLETED`. `DataSource` in `COMPLETED` or |
- `PENDING` status can only be used to perform CreateMLModel, |
- CreateEvaluation, or CreateBatchPrediction operations. |
- |
- If Amazon ML cannot accept the input source, it sets the |
- `Status` parameter to `FAILED` and includes an error message |
- in the `Message` attribute of the GetDataSource operation |
- response. |
- |
- The observations should exist in the database hosted on an |
- Amazon Redshift cluster and should be specified by a |
- `SelectSqlQuery`. Amazon ML executes ` Unload`_ command in |
- Amazon Redshift to transfer the result set of `SelectSqlQuery` |
- to `S3StagingLocation.` |
- |
- After the `DataSource` is created, it's ready for use in |
- evaluations and batch predictions. If you plan to use the |
- `DataSource` to train an `MLModel`, the `DataSource` requires |
- another item -- a recipe. A recipe describes the observation |
- variables that participate in training an `MLModel`. A recipe |
- describes how each input variable will be used in training. |
- Will the variable be included or excluded from training? Will |
- the variable be manipulated, for example, combined with |
- another variable or split apart into word combinations? The |
- recipe provides answers to these questions. For more |
- information, see the Amazon Machine Learning Developer Guide. |
- |
- :type data_source_id: string |
- :param data_source_id: A user-supplied ID that uniquely identifies the |
- `DataSource`. |
- |
- :type data_source_name: string |
- :param data_source_name: A user-supplied name or description of the |
- `DataSource`. |
- |
- :type data_spec: dict |
- :param data_spec: |
- The data specification of an Amazon Redshift `DataSource`: |
- |
- |
- + DatabaseInformation - |
- |
- + `DatabaseName ` - Name of the Amazon Redshift database. |
- + ` ClusterIdentifier ` - Unique ID for the Amazon Redshift cluster. |
- |
- + DatabaseCredentials - AWS Identity abd Access Management (IAM) |
- credentials that are used to connect to the Amazon Redshift |
- database. |
- + SelectSqlQuery - Query that is used to retrieve the observation data |
- for the `Datasource`. |
- + S3StagingLocation - Amazon Simple Storage Service (Amazon S3) |
- location for staging Amazon Redshift data. The data retrieved from |
- Amazon Relational Database Service (Amazon RDS) using |
- `SelectSqlQuery` is stored in this location. |
- + DataSchemaUri - Amazon S3 location of the `DataSchema`. |
- + DataSchema - A JSON string representing the schema. This is not |
- required if `DataSchemaUri` is specified. |
- + DataRearrangement - A JSON string representing the splitting |
- requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some- |
- random-seed\", |
- \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"` |
- |
- :type role_arn: string |
- :param role_arn: A fully specified role Amazon Resource Name (ARN). |
- Amazon ML assumes the role on behalf of the user to create the |
- following: |
- |
- |
- + A security group to allow Amazon ML to execute the `SelectSqlQuery` |
- query on an Amazon Redshift cluster |
- + An Amazon S3 bucket policy to grant Amazon ML read/write permissions |
- on the `S3StagingLocation` |
- |
- :type compute_statistics: boolean |
- :param compute_statistics: The compute statistics for a `DataSource`. |
- The statistics are generated from the observation data referenced |
- by a `DataSource`. Amazon ML uses the statistics internally during |
- `MLModel` training. This parameter must be set to `True` if the |
- ``DataSource `` needs to be used for `MLModel` training |
- |
- """ |
- params = { |
- 'DataSourceId': data_source_id, |
- 'DataSpec': data_spec, |
- 'RoleARN': role_arn, |
- } |
- if data_source_name is not None: |
- params['DataSourceName'] = data_source_name |
- if compute_statistics is not None: |
- params['ComputeStatistics'] = compute_statistics |
- return self.make_request(action='CreateDataSourceFromRedshift', |
- body=json.dumps(params)) |
- |
- def create_data_source_from_s3(self, data_source_id, data_spec, |
- data_source_name=None, |
- compute_statistics=None): |
- """ |
- Creates a `DataSource` object. A `DataSource` references data |
- that can be used to perform CreateMLModel, CreateEvaluation, |
- or CreateBatchPrediction operations. |
- |
- `CreateDataSourceFromS3` is an asynchronous operation. In |
- response to `CreateDataSourceFromS3`, Amazon Machine Learning |
- (Amazon ML) immediately returns and sets the `DataSource` |
- status to `PENDING`. After the `DataSource` is created and |
- ready for use, Amazon ML sets the `Status` parameter to |
- `COMPLETED`. `DataSource` in `COMPLETED` or `PENDING` status |
- can only be used to perform CreateMLModel, CreateEvaluation or |
- CreateBatchPrediction operations. |
- |
- If Amazon ML cannot accept the input source, it sets the |
- `Status` parameter to `FAILED` and includes an error message |
- in the `Message` attribute of the GetDataSource operation |
- response. |
- |
- The observation data used in a `DataSource` should be ready to |
- use; that is, it should have a consistent structure, and |
- missing data values should be kept to a minimum. The |
- observation data must reside in one or more CSV files in an |
- Amazon Simple Storage Service (Amazon S3) bucket, along with a |
- schema that describes the data items by name and type. The |
- same schema must be used for all of the data files referenced |
- by the `DataSource`. |
- |
- After the `DataSource` has been created, it's ready to use in |
- evaluations and batch predictions. If you plan to use the |
- `DataSource` to train an `MLModel`, the `DataSource` requires |
- another item: a recipe. A recipe describes the observation |
- variables that participate in training an `MLModel`. A recipe |
- describes how each input variable will be used in training. |
- Will the variable be included or excluded from training? Will |
- the variable be manipulated, for example, combined with |
- another variable, or split apart into word combinations? The |
- recipe provides answers to these questions. For more |
- information, see the `Amazon Machine Learning Developer |
- Guide`_. |
- |
- :type data_source_id: string |
- :param data_source_id: A user-supplied identifier that uniquely |
- identifies the `DataSource`. |
- |
- :type data_source_name: string |
- :param data_source_name: A user-supplied name or description of the |
- `DataSource`. |
- |
- :type data_spec: dict |
- :param data_spec: |
- The data specification of a `DataSource`: |
- |
- |
- + DataLocationS3 - Amazon Simple Storage Service (Amazon S3) location |
- of the observation data. |
- + DataSchemaLocationS3 - Amazon S3 location of the `DataSchema`. |
- + DataSchema - A JSON string representing the schema. This is not |
- required if `DataSchemaUri` is specified. |
- + DataRearrangement - A JSON string representing the splitting |
- requirement of a `Datasource`. Sample - ` "{\"randomSeed\":\"some- |
- random-seed\", |
- \"splitting\":{\"percentBegin\":10,\"percentEnd\":60}}"` |
- |
- :type compute_statistics: boolean |
- :param compute_statistics: The compute statistics for a `DataSource`. |
- The statistics are generated from the observation data referenced |
- by a `DataSource`. Amazon ML uses the statistics internally during |
- an `MLModel` training. This parameter must be set to `True` if the |
- ``DataSource `` needs to be used for `MLModel` training |
- |
- """ |
- params = { |
- 'DataSourceId': data_source_id, |
- 'DataSpec': data_spec, |
- } |
- if data_source_name is not None: |
- params['DataSourceName'] = data_source_name |
- if compute_statistics is not None: |
- params['ComputeStatistics'] = compute_statistics |
- return self.make_request(action='CreateDataSourceFromS3', |
- body=json.dumps(params)) |
- |
- def create_evaluation(self, evaluation_id, ml_model_id, |
- evaluation_data_source_id, evaluation_name=None): |
- """ |
- Creates a new `Evaluation` of an `MLModel`. An `MLModel` is |
- evaluated on a set of observations associated to a |
- `DataSource`. Like a `DataSource` for an `MLModel`, the |
- `DataSource` for an `Evaluation` contains values for the |
- Target Variable. The `Evaluation` compares the predicted |
- result for each observation to the actual outcome and provides |
- a summary so that you know how effective the `MLModel` |
- functions on the test data. Evaluation generates a relevant |
- performance metric such as BinaryAUC, RegressionRMSE or |
- MulticlassAvgFScore based on the corresponding `MLModelType`: |
- `BINARY`, `REGRESSION` or `MULTICLASS`. |
- |
- `CreateEvaluation` is an asynchronous operation. In response |
- to `CreateEvaluation`, Amazon Machine Learning (Amazon ML) |
- immediately returns and sets the evaluation status to |
- `PENDING`. After the `Evaluation` is created and ready for |
- use, Amazon ML sets the status to `COMPLETED`. |
- |
- You can use the GetEvaluation operation to check progress of |
- the evaluation during the creation operation. |
- |
- :type evaluation_id: string |
- :param evaluation_id: A user-supplied ID that uniquely identifies the |
- `Evaluation`. |
- |
- :type evaluation_name: string |
- :param evaluation_name: A user-supplied name or description of the |
- `Evaluation`. |
- |
- :type ml_model_id: string |
- :param ml_model_id: The ID of the `MLModel` to evaluate. |
- The schema used in creating the `MLModel` must match the schema of the |
- `DataSource` used in the `Evaluation`. |
- |
- :type evaluation_data_source_id: string |
- :param evaluation_data_source_id: The ID of the `DataSource` for the |
- evaluation. The schema of the `DataSource` must match the schema |
- used to create the `MLModel`. |
- |
- """ |
- params = { |
- 'EvaluationId': evaluation_id, |
- 'MLModelId': ml_model_id, |
- 'EvaluationDataSourceId': evaluation_data_source_id, |
- } |
- if evaluation_name is not None: |
- params['EvaluationName'] = evaluation_name |
- return self.make_request(action='CreateEvaluation', |
- body=json.dumps(params)) |
- |
- def create_ml_model(self, ml_model_id, ml_model_type, |
- training_data_source_id, ml_model_name=None, |
- parameters=None, recipe=None, recipe_uri=None): |
- """ |
- Creates a new `MLModel` using the data files and the recipe as |
- information sources. |
- |
- An `MLModel` is nearly immutable. Users can only update the |
- `MLModelName` and the `ScoreThreshold` in an `MLModel` without |
- creating a new `MLModel`. |
- |
- `CreateMLModel` is an asynchronous operation. In response to |
- `CreateMLModel`, Amazon Machine Learning (Amazon ML) |
- immediately returns and sets the `MLModel` status to |
- `PENDING`. After the `MLModel` is created and ready for use, |
- Amazon ML sets the status to `COMPLETED`. |
- |
- You can use the GetMLModel operation to check progress of the |
- `MLModel` during the creation operation. |
- |
- CreateMLModel requires a `DataSource` with computed |
- statistics, which can be created by setting |
- `ComputeStatistics` to `True` in CreateDataSourceFromRDS, |
- CreateDataSourceFromS3, or CreateDataSourceFromRedshift |
- operations. |
- |
- :type ml_model_id: string |
- :param ml_model_id: A user-supplied ID that uniquely identifies the |
- `MLModel`. |
- |
- :type ml_model_name: string |
- :param ml_model_name: A user-supplied name or description of the |
- `MLModel`. |
- |
- :type ml_model_type: string |
- :param ml_model_type: The category of supervised learning that this |
- `MLModel` will address. Choose from the following types: |
- |
- + Choose `REGRESSION` if the `MLModel` will be used to predict a |
- numeric value. |
- + Choose `BINARY` if the `MLModel` result has two possible values. |
- + Choose `MULTICLASS` if the `MLModel` result has a limited number of |
- values. |
- |
- |
- For more information, see the `Amazon Machine Learning Developer |
- Guide`_. |
- |
- :type parameters: map |
- :param parameters: |
- A list of the training parameters in the `MLModel`. The list is |
- implemented as a map of key/value pairs. |
- |
- The following is the current set of training parameters: |
- |
- |
- + `sgd.l1RegularizationAmount` - Coefficient regularization L1 norm. It |
- controls overfitting the data by penalizing large coefficients. |
- This tends to drive coefficients to zero, resulting in sparse |
- feature set. If you use this parameter, start by specifying a small |
- value such as 1.0E-08. The value is a double that ranges from 0 to |
- MAX_DOUBLE. The default is not to use L1 normalization. The |
- parameter cannot be used when `L2` is specified. Use this parameter |
- sparingly. |
- + `sgd.l2RegularizationAmount` - Coefficient regularization L2 norm. It |
- controls overfitting the data by penalizing large coefficients. |
- This tends to drive coefficients to small, nonzero values. If you |
- use this parameter, start by specifying a small value such as |
- 1.0E-08. The valuseis a double that ranges from 0 to MAX_DOUBLE. |
- The default is not to use L2 normalization. This cannot be used |
- when `L1` is specified. Use this parameter sparingly. |
- + `sgd.maxPasses` - Number of times that the training process traverses |
- the observations to build the `MLModel`. The value is an integer |
- that ranges from 1 to 10000. The default value is 10. |
- + `sgd.maxMLModelSizeInBytes` - Maximum allowed size of the model. |
- Depending on the input data, the size of the model might affect its |
- performance. The value is an integer that ranges from 100000 to |
- 2147483648. The default value is 33554432. |
- |
- :type training_data_source_id: string |
- :param training_data_source_id: The `DataSource` that points to the |
- training data. |
- |
- :type recipe: string |
- :param recipe: The data recipe for creating `MLModel`. You must specify |
- either the recipe or its URI. If you dont specify a recipe or its |
- URI, Amazon ML creates a default. |
- |
- :type recipe_uri: string |
- :param recipe_uri: The Amazon Simple Storage Service (Amazon S3) |
- location and file name that contains the `MLModel` recipe. You must |
- specify either the recipe or its URI. If you dont specify a recipe |
- or its URI, Amazon ML creates a default. |
- |
- """ |
- params = { |
- 'MLModelId': ml_model_id, |
- 'MLModelType': ml_model_type, |
- 'TrainingDataSourceId': training_data_source_id, |
- } |
- if ml_model_name is not None: |
- params['MLModelName'] = ml_model_name |
- if parameters is not None: |
- params['Parameters'] = parameters |
- if recipe is not None: |
- params['Recipe'] = recipe |
- if recipe_uri is not None: |
- params['RecipeUri'] = recipe_uri |
- return self.make_request(action='CreateMLModel', |
- body=json.dumps(params)) |
- |
- def create_realtime_endpoint(self, ml_model_id): |
- """ |
- Creates a real-time endpoint for the `MLModel`. The endpoint |
- contains the URI of the `MLModel`; that is, the location to |
- send real-time prediction requests for the specified |
- `MLModel`. |
- |
- :type ml_model_id: string |
- :param ml_model_id: The ID assigned to the `MLModel` during creation. |
- |
- """ |
- params = {'MLModelId': ml_model_id, } |
- return self.make_request(action='CreateRealtimeEndpoint', |
- body=json.dumps(params)) |
- |
- def delete_batch_prediction(self, batch_prediction_id): |
- """ |
- Assigns the DELETED status to a `BatchPrediction`, rendering |
- it unusable. |
- |
- After using the `DeleteBatchPrediction` operation, you can use |
- the GetBatchPrediction operation to verify that the status of |
- the `BatchPrediction` changed to DELETED. |
- |
- The result of the `DeleteBatchPrediction` operation is |
- irreversible. |
- |
- :type batch_prediction_id: string |
- :param batch_prediction_id: A user-supplied ID that uniquely identifies |
- the `BatchPrediction`. |
- |
- """ |
- params = {'BatchPredictionId': batch_prediction_id, } |
- return self.make_request(action='DeleteBatchPrediction', |
- body=json.dumps(params)) |
- |
- def delete_data_source(self, data_source_id): |
- """ |
- Assigns the DELETED status to a `DataSource`, rendering it |
- unusable. |
- |
- After using the `DeleteDataSource` operation, you can use the |
- GetDataSource operation to verify that the status of the |
- `DataSource` changed to DELETED. |
- |
- The results of the `DeleteDataSource` operation are |
- irreversible. |
- |
- :type data_source_id: string |
- :param data_source_id: A user-supplied ID that uniquely identifies the |
- `DataSource`. |
- |
- """ |
- params = {'DataSourceId': data_source_id, } |
- return self.make_request(action='DeleteDataSource', |
- body=json.dumps(params)) |
- |
- def delete_evaluation(self, evaluation_id): |
- """ |
- Assigns the `DELETED` status to an `Evaluation`, rendering it |
- unusable. |
- |
- After invoking the `DeleteEvaluation` operation, you can use |
- the GetEvaluation operation to verify that the status of the |
- `Evaluation` changed to `DELETED`. |
- |
- The results of the `DeleteEvaluation` operation are |
- irreversible. |
- |
- :type evaluation_id: string |
- :param evaluation_id: A user-supplied ID that uniquely identifies the |
- `Evaluation` to delete. |
- |
- """ |
- params = {'EvaluationId': evaluation_id, } |
- return self.make_request(action='DeleteEvaluation', |
- body=json.dumps(params)) |
- |
- def delete_ml_model(self, ml_model_id): |
- """ |
- Assigns the DELETED status to an `MLModel`, rendering it |
- unusable. |
- |
- After using the `DeleteMLModel` operation, you can use the |
- GetMLModel operation to verify that the status of the |
- `MLModel` changed to DELETED. |
- |
- The result of the `DeleteMLModel` operation is irreversible. |
- |
- :type ml_model_id: string |
- :param ml_model_id: A user-supplied ID that uniquely identifies the |
- `MLModel`. |
- |
- """ |
- params = {'MLModelId': ml_model_id, } |
- return self.make_request(action='DeleteMLModel', |
- body=json.dumps(params)) |
- |
- def delete_realtime_endpoint(self, ml_model_id): |
- """ |
- Deletes a real time endpoint of an `MLModel`. |
- |
- :type ml_model_id: string |
- :param ml_model_id: The ID assigned to the `MLModel` during creation. |
- |
- """ |
- params = {'MLModelId': ml_model_id, } |
- return self.make_request(action='DeleteRealtimeEndpoint', |
- body=json.dumps(params)) |
- |
- def describe_batch_predictions(self, filter_variable=None, eq=None, |
- gt=None, lt=None, ge=None, le=None, |
- ne=None, prefix=None, sort_order=None, |
- next_token=None, limit=None): |
- """ |
- Returns a list of `BatchPrediction` operations that match the |
- search criteria in the request. |
- |
- :type filter_variable: string |
- :param filter_variable: |
- Use one of the following variables to filter a list of |
- `BatchPrediction`: |
- |
- |
- + `CreatedAt` - Sets the search criteria to the `BatchPrediction` |
- creation date. |
- + `Status` - Sets the search criteria to the `BatchPrediction` status. |
- + `Name` - Sets the search criteria to the contents of the |
- `BatchPrediction` ** ** `Name`. |
- + `IAMUser` - Sets the search criteria to the user account that invoked |
- the `BatchPrediction` creation. |
- + `MLModelId` - Sets the search criteria to the `MLModel` used in the |
- `BatchPrediction`. |
- + `DataSourceId` - Sets the search criteria to the `DataSource` used in |
- the `BatchPrediction`. |
- + `DataURI` - Sets the search criteria to the data file(s) used in the |
- `BatchPrediction`. The URL can identify either a file or an Amazon |
- Simple Storage Solution (Amazon S3) bucket or directory. |
- |
- :type eq: string |
- :param eq: The equal to operator. The `BatchPrediction` results will |
- have `FilterVariable` values that exactly match the value specified |
- with `EQ`. |
- |
- :type gt: string |
- :param gt: The greater than operator. The `BatchPrediction` results |
- will have `FilterVariable` values that are greater than the value |
- specified with `GT`. |
- |
- :type lt: string |
- :param lt: The less than operator. The `BatchPrediction` results will |
- have `FilterVariable` values that are less than the value specified |
- with `LT`. |
- |
- :type ge: string |
- :param ge: The greater than or equal to operator. The `BatchPrediction` |
- results will have `FilterVariable` values that are greater than or |
- equal to the value specified with `GE`. |
- |
- :type le: string |
- :param le: The less than or equal to operator. The `BatchPrediction` |
- results will have `FilterVariable` values that are less than or |
- equal to the value specified with `LE`. |
- |
- :type ne: string |
- :param ne: The not equal to operator. The `BatchPrediction` results |
- will have `FilterVariable` values not equal to the value specified |
- with `NE`. |
- |
- :type prefix: string |
- :param prefix: |
- A string that is found at the beginning of a variable, such as `Name` |
- or `Id`. |
- |
- For example, a `Batch Prediction` operation could have the `Name` |
- `2014-09-09-HolidayGiftMailer`. To search for this |
- `BatchPrediction`, select `Name` for the `FilterVariable` and any |
- of the following strings for the `Prefix`: |
- |
- |
- + 2014-09 |
- + 2014-09-09 |
- + 2014-09-09-Holiday |
- |
- :type sort_order: string |
- :param sort_order: A two-value parameter that determines the sequence |
- of the resulting list of `MLModel`s. |
- |
- + `asc` - Arranges the list in ascending order (A-Z, 0-9). |
- + `dsc` - Arranges the list in descending order (Z-A, 9-0). |
- |
- |
- Results are sorted by `FilterVariable`. |
- |
- :type next_token: string |
- :param next_token: An ID of the page in the paginated results. |
- |
- :type limit: integer |
- :param limit: The number of pages of information to include in the |
- result. The range of acceptable values is 1 through 100. The |
- default value is 100. |
- |
- """ |
- params = {} |
- if filter_variable is not None: |
- params['FilterVariable'] = filter_variable |
- if eq is not None: |
- params['EQ'] = eq |
- if gt is not None: |
- params['GT'] = gt |
- if lt is not None: |
- params['LT'] = lt |
- if ge is not None: |
- params['GE'] = ge |
- if le is not None: |
- params['LE'] = le |
- if ne is not None: |
- params['NE'] = ne |
- if prefix is not None: |
- params['Prefix'] = prefix |
- if sort_order is not None: |
- params['SortOrder'] = sort_order |
- if next_token is not None: |
- params['NextToken'] = next_token |
- if limit is not None: |
- params['Limit'] = limit |
- return self.make_request(action='DescribeBatchPredictions', |
- body=json.dumps(params)) |
- |
- def describe_data_sources(self, filter_variable=None, eq=None, gt=None, |
- lt=None, ge=None, le=None, ne=None, |
- prefix=None, sort_order=None, next_token=None, |
- limit=None): |
- """ |
- Returns a list of `DataSource` that match the search criteria |
- in the request. |
- |
- :type filter_variable: string |
- :param filter_variable: |
- Use one of the following variables to filter a list of `DataSource`: |
- |
- |
- + `CreatedAt` - Sets the search criteria to `DataSource` creation |
- dates. |
- + `Status` - Sets the search criteria to `DataSource` statuses. |
- + `Name` - Sets the search criteria to the contents of `DataSource` ** |
- ** `Name`. |
- + `DataUri` - Sets the search criteria to the URI of data files used to |
- create the `DataSource`. The URI can identify either a file or an |
- Amazon Simple Storage Service (Amazon S3) bucket or directory. |
- + `IAMUser` - Sets the search criteria to the user account that invoked |
- the `DataSource` creation. |
- |
- :type eq: string |
- :param eq: The equal to operator. The `DataSource` results will have |
- `FilterVariable` values that exactly match the value specified with |
- `EQ`. |
- |
- :type gt: string |
- :param gt: The greater than operator. The `DataSource` results will |
- have `FilterVariable` values that are greater than the value |
- specified with `GT`. |
- |
- :type lt: string |
- :param lt: The less than operator. The `DataSource` results will have |
- `FilterVariable` values that are less than the value specified with |
- `LT`. |
- |
- :type ge: string |
- :param ge: The greater than or equal to operator. The `DataSource` |
- results will have `FilterVariable` values that are greater than or |
- equal to the value specified with `GE`. |
- |
- :type le: string |
- :param le: The less than or equal to operator. The `DataSource` results |
- will have `FilterVariable` values that are less than or equal to |
- the value specified with `LE`. |
- |
- :type ne: string |
- :param ne: The not equal to operator. The `DataSource` results will |
- have `FilterVariable` values not equal to the value specified with |
- `NE`. |
- |
- :type prefix: string |
- :param prefix: |
- A string that is found at the beginning of a variable, such as `Name` |
- or `Id`. |
- |
- For example, a `DataSource` could have the `Name` |
- `2014-09-09-HolidayGiftMailer`. To search for this `DataSource`, |
- select `Name` for the `FilterVariable` and any of the following |
- strings for the `Prefix`: |
- |
- |
- + 2014-09 |
- + 2014-09-09 |
- + 2014-09-09-Holiday |
- |
- :type sort_order: string |
- :param sort_order: A two-value parameter that determines the sequence |
- of the resulting list of `DataSource`. |
- |
- + `asc` - Arranges the list in ascending order (A-Z, 0-9). |
- + `dsc` - Arranges the list in descending order (Z-A, 9-0). |
- |
- |
- Results are sorted by `FilterVariable`. |
- |
- :type next_token: string |
- :param next_token: The ID of the page in the paginated results. |
- |
- :type limit: integer |
- :param limit: The maximum number of `DataSource` to include in the |
- result. |
- |
- """ |
- params = {} |
- if filter_variable is not None: |
- params['FilterVariable'] = filter_variable |
- if eq is not None: |
- params['EQ'] = eq |
- if gt is not None: |
- params['GT'] = gt |
- if lt is not None: |
- params['LT'] = lt |
- if ge is not None: |
- params['GE'] = ge |
- if le is not None: |
- params['LE'] = le |
- if ne is not None: |
- params['NE'] = ne |
- if prefix is not None: |
- params['Prefix'] = prefix |
- if sort_order is not None: |
- params['SortOrder'] = sort_order |
- if next_token is not None: |
- params['NextToken'] = next_token |
- if limit is not None: |
- params['Limit'] = limit |
- return self.make_request(action='DescribeDataSources', |
- body=json.dumps(params)) |
- |
- def describe_evaluations(self, filter_variable=None, eq=None, gt=None, |
- lt=None, ge=None, le=None, ne=None, prefix=None, |
- sort_order=None, next_token=None, limit=None): |
- """ |
- Returns a list of `DescribeEvaluations` that match the search |
- criteria in the request. |
- |
- :type filter_variable: string |
- :param filter_variable: |
- Use one of the following variable to filter a list of `Evaluation` |
- objects: |
- |
- |
- + `CreatedAt` - Sets the search criteria to the `Evaluation` creation |
- date. |
- + `Status` - Sets the search criteria to the `Evaluation` status. |
- + `Name` - Sets the search criteria to the contents of `Evaluation` ** |
- ** `Name`. |
- + `IAMUser` - Sets the search criteria to the user account that invoked |
- an `Evaluation`. |
- + `MLModelId` - Sets the search criteria to the `MLModel` that was |
- evaluated. |
- + `DataSourceId` - Sets the search criteria to the `DataSource` used in |
- `Evaluation`. |
- + `DataUri` - Sets the search criteria to the data file(s) used in |
- `Evaluation`. The URL can identify either a file or an Amazon |
- Simple Storage Solution (Amazon S3) bucket or directory. |
- |
- :type eq: string |
- :param eq: The equal to operator. The `Evaluation` results will have |
- `FilterVariable` values that exactly match the value specified with |
- `EQ`. |
- |
- :type gt: string |
- :param gt: The greater than operator. The `Evaluation` results will |
- have `FilterVariable` values that are greater than the value |
- specified with `GT`. |
- |
- :type lt: string |
- :param lt: The less than operator. The `Evaluation` results will have |
- `FilterVariable` values that are less than the value specified with |
- `LT`. |
- |
- :type ge: string |
- :param ge: The greater than or equal to operator. The `Evaluation` |
- results will have `FilterVariable` values that are greater than or |
- equal to the value specified with `GE`. |
- |
- :type le: string |
- :param le: The less than or equal to operator. The `Evaluation` results |
- will have `FilterVariable` values that are less than or equal to |
- the value specified with `LE`. |
- |
- :type ne: string |
- :param ne: The not equal to operator. The `Evaluation` results will |
- have `FilterVariable` values not equal to the value specified with |
- `NE`. |
- |
- :type prefix: string |
- :param prefix: |
- A string that is found at the beginning of a variable, such as `Name` |
- or `Id`. |
- |
- For example, an `Evaluation` could have the `Name` |
- `2014-09-09-HolidayGiftMailer`. To search for this `Evaluation`, |
- select `Name` for the `FilterVariable` and any of the following |
- strings for the `Prefix`: |
- |
- |
- + 2014-09 |
- + 2014-09-09 |
- + 2014-09-09-Holiday |
- |
- :type sort_order: string |
- :param sort_order: A two-value parameter that determines the sequence |
- of the resulting list of `Evaluation`. |
- |
- + `asc` - Arranges the list in ascending order (A-Z, 0-9). |
- + `dsc` - Arranges the list in descending order (Z-A, 9-0). |
- |
- |
- Results are sorted by `FilterVariable`. |
- |
- :type next_token: string |
- :param next_token: The ID of the page in the paginated results. |
- |
- :type limit: integer |
- :param limit: The maximum number of `Evaluation` to include in the |
- result. |
- |
- """ |
- params = {} |
- if filter_variable is not None: |
- params['FilterVariable'] = filter_variable |
- if eq is not None: |
- params['EQ'] = eq |
- if gt is not None: |
- params['GT'] = gt |
- if lt is not None: |
- params['LT'] = lt |
- if ge is not None: |
- params['GE'] = ge |
- if le is not None: |
- params['LE'] = le |
- if ne is not None: |
- params['NE'] = ne |
- if prefix is not None: |
- params['Prefix'] = prefix |
- if sort_order is not None: |
- params['SortOrder'] = sort_order |
- if next_token is not None: |
- params['NextToken'] = next_token |
- if limit is not None: |
- params['Limit'] = limit |
- return self.make_request(action='DescribeEvaluations', |
- body=json.dumps(params)) |
- |
- def describe_ml_models(self, filter_variable=None, eq=None, gt=None, |
- lt=None, ge=None, le=None, ne=None, prefix=None, |
- sort_order=None, next_token=None, limit=None): |
- """ |
- Returns a list of `MLModel` that match the search criteria in |
- the request. |
- |
- :type filter_variable: string |
- :param filter_variable: |
- Use one of the following variables to filter a list of `MLModel`: |
- |
- |
- + `CreatedAt` - Sets the search criteria to `MLModel` creation date. |
- + `Status` - Sets the search criteria to `MLModel` status. |
- + `Name` - Sets the search criteria to the contents of `MLModel` ** ** |
- `Name`. |
- + `IAMUser` - Sets the search criteria to the user account that invoked |
- the `MLModel` creation. |
- + `TrainingDataSourceId` - Sets the search criteria to the `DataSource` |
- used to train one or more `MLModel`. |
- + `RealtimeEndpointStatus` - Sets the search criteria to the `MLModel` |
- real-time endpoint status. |
- + `MLModelType` - Sets the search criteria to `MLModel` type: binary, |
- regression, or multi-class. |
- + `Algorithm` - Sets the search criteria to the algorithm that the |
- `MLModel` uses. |
- + `TrainingDataURI` - Sets the search criteria to the data file(s) used |
- in training a `MLModel`. The URL can identify either a file or an |
- Amazon Simple Storage Service (Amazon S3) bucket or directory. |
- |
- :type eq: string |
- :param eq: The equal to operator. The `MLModel` results will have |
- `FilterVariable` values that exactly match the value specified with |
- `EQ`. |
- |
- :type gt: string |
- :param gt: The greater than operator. The `MLModel` results will have |
- `FilterVariable` values that are greater than the value specified |
- with `GT`. |
- |
- :type lt: string |
- :param lt: The less than operator. The `MLModel` results will have |
- `FilterVariable` values that are less than the value specified with |
- `LT`. |
- |
- :type ge: string |
- :param ge: The greater than or equal to operator. The `MLModel` results |
- will have `FilterVariable` values that are greater than or equal to |
- the value specified with `GE`. |
- |
- :type le: string |
- :param le: The less than or equal to operator. The `MLModel` results |
- will have `FilterVariable` values that are less than or equal to |
- the value specified with `LE`. |
- |
- :type ne: string |
- :param ne: The not equal to operator. The `MLModel` results will have |
- `FilterVariable` values not equal to the value specified with `NE`. |
- |
- :type prefix: string |
- :param prefix: |
- A string that is found at the beginning of a variable, such as `Name` |
- or `Id`. |
- |
- For example, an `MLModel` could have the `Name` |
- `2014-09-09-HolidayGiftMailer`. To search for this `MLModel`, |
- select `Name` for the `FilterVariable` and any of the following |
- strings for the `Prefix`: |
- |
- |
- + 2014-09 |
- + 2014-09-09 |
- + 2014-09-09-Holiday |
- |
- :type sort_order: string |
- :param sort_order: A two-value parameter that determines the sequence |
- of the resulting list of `MLModel`. |
- |
- + `asc` - Arranges the list in ascending order (A-Z, 0-9). |
- + `dsc` - Arranges the list in descending order (Z-A, 9-0). |
- |
- |
- Results are sorted by `FilterVariable`. |
- |
- :type next_token: string |
- :param next_token: The ID of the page in the paginated results. |
- |
- :type limit: integer |
- :param limit: The number of pages of information to include in the |
- result. The range of acceptable values is 1 through 100. The |
- default value is 100. |
- |
- """ |
- params = {} |
- if filter_variable is not None: |
- params['FilterVariable'] = filter_variable |
- if eq is not None: |
- params['EQ'] = eq |
- if gt is not None: |
- params['GT'] = gt |
- if lt is not None: |
- params['LT'] = lt |
- if ge is not None: |
- params['GE'] = ge |
- if le is not None: |
- params['LE'] = le |
- if ne is not None: |
- params['NE'] = ne |
- if prefix is not None: |
- params['Prefix'] = prefix |
- if sort_order is not None: |
- params['SortOrder'] = sort_order |
- if next_token is not None: |
- params['NextToken'] = next_token |
- if limit is not None: |
- params['Limit'] = limit |
- return self.make_request(action='DescribeMLModels', |
- body=json.dumps(params)) |
- |
- def get_batch_prediction(self, batch_prediction_id): |
- """ |
- Returns a `BatchPrediction` that includes detailed metadata, |
- status, and data file information for a `Batch Prediction` |
- request. |
- |
- :type batch_prediction_id: string |
- :param batch_prediction_id: An ID assigned to the `BatchPrediction` at |
- creation. |
- |
- """ |
- params = {'BatchPredictionId': batch_prediction_id, } |
- return self.make_request(action='GetBatchPrediction', |
- body=json.dumps(params)) |
- |
- def get_data_source(self, data_source_id, verbose=None): |
- """ |
- Returns a `DataSource` that includes metadata and data file |
- information, as well as the current status of the |
- `DataSource`. |
- |
- `GetDataSource` provides results in normal or verbose format. |
- The verbose format adds the schema description and the list of |
- files pointed to by the DataSource to the normal format. |
- |
- :type data_source_id: string |
- :param data_source_id: The ID assigned to the `DataSource` at creation. |
- |
- :type verbose: boolean |
- :param verbose: Specifies whether the `GetDataSource` operation should |
- return `DataSourceSchema`. |
- If true, `DataSourceSchema` is returned. |
- |
- If false, `DataSourceSchema` is not returned. |
- |
- """ |
- params = {'DataSourceId': data_source_id, } |
- if verbose is not None: |
- params['Verbose'] = verbose |
- return self.make_request(action='GetDataSource', |
- body=json.dumps(params)) |
- |
- def get_evaluation(self, evaluation_id): |
- """ |
- Returns an `Evaluation` that includes metadata as well as the |
- current status of the `Evaluation`. |
- |
- :type evaluation_id: string |
- :param evaluation_id: The ID of the `Evaluation` to retrieve. The |
- evaluation of each `MLModel` is recorded and cataloged. The ID |
- provides the means to access the information. |
- |
- """ |
- params = {'EvaluationId': evaluation_id, } |
- return self.make_request(action='GetEvaluation', |
- body=json.dumps(params)) |
- |
- def get_ml_model(self, ml_model_id, verbose=None): |
- """ |
- Returns an `MLModel` that includes detailed metadata, and data |
- source information as well as the current status of the |
- `MLModel`. |
- |
- `GetMLModel` provides results in normal or verbose format. |
- |
- :type ml_model_id: string |
- :param ml_model_id: The ID assigned to the `MLModel` at creation. |
- |
- :type verbose: boolean |
- :param verbose: Specifies whether the `GetMLModel` operation should |
- return `Recipe`. |
- If true, `Recipe` is returned. |
- |
- If false, `Recipe` is not returned. |
- |
- """ |
- params = {'MLModelId': ml_model_id, } |
- if verbose is not None: |
- params['Verbose'] = verbose |
- return self.make_request(action='GetMLModel', |
- body=json.dumps(params)) |
- |
- def predict(self, ml_model_id, record, predict_endpoint): |
- """ |
- Generates a prediction for the observation using the specified |
- `MLModel`. |
- |
- |
- Not all response parameters will be populated because this is |
- dependent on the type of requested model. |
- |
- :type ml_model_id: string |
- :param ml_model_id: A unique identifier of the `MLModel`. |
- |
- :type record: map |
- :param record: A map of variable name-value pairs that represent an |
- observation. |
- |
- :type predict_endpoint: string |
- :param predict_endpoint: The endpoint to send the predict request to. |
- |
- """ |
- predict_host = urlsplit(predict_endpoint).hostname |
- if predict_host is None: |
- predict_host = predict_endpoint |
- |
- params = { |
- 'MLModelId': ml_model_id, |
- 'Record': record, |
- 'PredictEndpoint': predict_host, |
- } |
- return self.make_request(action='Predict', |
- body=json.dumps(params), |
- host=predict_host) |
- |
- def update_batch_prediction(self, batch_prediction_id, |
- batch_prediction_name): |
- """ |
- Updates the `BatchPredictionName` of a `BatchPrediction`. |
- |
- You can use the GetBatchPrediction operation to view the |
- contents of the updated data element. |
- |
- :type batch_prediction_id: string |
- :param batch_prediction_id: The ID assigned to the `BatchPrediction` |
- during creation. |
- |
- :type batch_prediction_name: string |
- :param batch_prediction_name: A new user-supplied name or description |
- of the `BatchPrediction`. |
- |
- """ |
- params = { |
- 'BatchPredictionId': batch_prediction_id, |
- 'BatchPredictionName': batch_prediction_name, |
- } |
- return self.make_request(action='UpdateBatchPrediction', |
- body=json.dumps(params)) |
- |
- def update_data_source(self, data_source_id, data_source_name): |
- """ |
- Updates the `DataSourceName` of a `DataSource`. |
- |
- You can use the GetDataSource operation to view the contents |
- of the updated data element. |
- |
- :type data_source_id: string |
- :param data_source_id: The ID assigned to the `DataSource` during |
- creation. |
- |
- :type data_source_name: string |
- :param data_source_name: A new user-supplied name or description of the |
- `DataSource` that will replace the current description. |
- |
- """ |
- params = { |
- 'DataSourceId': data_source_id, |
- 'DataSourceName': data_source_name, |
- } |
- return self.make_request(action='UpdateDataSource', |
- body=json.dumps(params)) |
- |
- def update_evaluation(self, evaluation_id, evaluation_name): |
- """ |
- Updates the `EvaluationName` of an `Evaluation`. |
- |
- You can use the GetEvaluation operation to view the contents |
- of the updated data element. |
- |
- :type evaluation_id: string |
- :param evaluation_id: The ID assigned to the `Evaluation` during |
- creation. |
- |
- :type evaluation_name: string |
- :param evaluation_name: A new user-supplied name or description of the |
- `Evaluation` that will replace the current content. |
- |
- """ |
- params = { |
- 'EvaluationId': evaluation_id, |
- 'EvaluationName': evaluation_name, |
- } |
- return self.make_request(action='UpdateEvaluation', |
- body=json.dumps(params)) |
- |
- def update_ml_model(self, ml_model_id, ml_model_name=None, |
- score_threshold=None): |
- """ |
- Updates the `MLModelName` and the `ScoreThreshold` of an |
- `MLModel`. |
- |
- You can use the GetMLModel operation to view the contents of |
- the updated data element. |
- |
- :type ml_model_id: string |
- :param ml_model_id: The ID assigned to the `MLModel` during creation. |
- |
- :type ml_model_name: string |
- :param ml_model_name: A user-supplied name or description of the |
- `MLModel`. |
- |
- :type score_threshold: float |
- :param score_threshold: The `ScoreThreshold` used in binary |
- classification `MLModel` that marks the boundary between a positive |
- prediction and a negative prediction. |
- Output values greater than or equal to the `ScoreThreshold` receive a |
- positive result from the `MLModel`, such as `True`. Output values |
- less than the `ScoreThreshold` receive a negative response from the |
- `MLModel`, such as `False`. |
- |
- """ |
- params = {'MLModelId': ml_model_id, } |
- if ml_model_name is not None: |
- params['MLModelName'] = ml_model_name |
- if score_threshold is not None: |
- params['ScoreThreshold'] = score_threshold |
- return self.make_request(action='UpdateMLModel', |
- body=json.dumps(params)) |
- |
- def make_request(self, action, body, host=None): |
- headers = { |
- 'X-Amz-Target': '%s.%s' % (self.TargetPrefix, action), |
- 'Host': self.region.endpoint, |
- 'Content-Type': 'application/x-amz-json-1.1', |
- 'Content-Length': str(len(body)), |
- } |
- http_request_kwargs = { |
- 'method':'POST', 'path':'/', 'auth_path':'/', 'params':{}, |
- 'headers': headers, 'data':body |
- } |
- if host is not None: |
- headers['Host'] = host |
- http_request_kwargs['host'] = host |
- http_request = self.build_base_http_request(**http_request_kwargs) |
- response = self._mexe(http_request, sender=None, |
- override_num_retries=10) |
- response_body = response.read().decode('utf-8') |
- boto.log.debug(response_body) |
- if response.status == 200: |
- if response_body: |
- return json.loads(response_body) |
- else: |
- json_body = json.loads(response_body) |
- fault_name = json_body.get('__type', None) |
- exception_class = self._faults.get(fault_name, self.ResponseError) |
- raise exception_class(response.status, response.reason, |
- body=json_body) |
- |