Index: tools/telemetry/third_party/gsutil/third_party/rsa/rsa/_version200.py |
diff --git a/tools/telemetry/third_party/gsutil/third_party/rsa/rsa/_version200.py b/tools/telemetry/third_party/gsutil/third_party/rsa/rsa/_version200.py |
deleted file mode 100644 |
index f9156538575d46040eef3e4795509ba961c488e9..0000000000000000000000000000000000000000 |
--- a/tools/telemetry/third_party/gsutil/third_party/rsa/rsa/_version200.py |
+++ /dev/null |
@@ -1,529 +0,0 @@ |
-"""RSA module |
- |
-Module for calculating large primes, and RSA encryption, decryption, |
-signing and verification. Includes generating public and private keys. |
- |
-WARNING: this implementation does not use random padding, compression of the |
-cleartext input to prevent repetitions, or other common security improvements. |
-Use with care. |
- |
-""" |
- |
-__author__ = "Sybren Stuvel, Marloes de Boer, Ivo Tamboer, and Barry Mead" |
-__date__ = "2010-02-08" |
-__version__ = '2.0' |
- |
-import math |
-import os |
-import random |
-import sys |
-import types |
-from rsa._compat import byte |
- |
-# Display a warning that this insecure version is imported. |
-import warnings |
-warnings.warn('Insecure version of the RSA module is imported as %s' % __name__) |
- |
- |
-def bit_size(number): |
- """Returns the number of bits required to hold a specific long number""" |
- |
- return int(math.ceil(math.log(number,2))) |
- |
-def gcd(p, q): |
- """Returns the greatest common divisor of p and q |
- >>> gcd(48, 180) |
- 12 |
- """ |
- # Iterateive Version is faster and uses much less stack space |
- while q != 0: |
- if p < q: (p,q) = (q,p) |
- (p,q) = (q, p % q) |
- return p |
- |
- |
-def bytes2int(bytes): |
- """Converts a list of bytes or a string to an integer |
- |
- >>> (((128 * 256) + 64) * 256) + 15 |
- 8405007 |
- >>> l = [128, 64, 15] |
- >>> bytes2int(l) #same as bytes2int('\x80@\x0f') |
- 8405007 |
- """ |
- |
- if not (type(bytes) is types.ListType or type(bytes) is types.StringType): |
- raise TypeError("You must pass a string or a list") |
- |
- # Convert byte stream to integer |
- integer = 0 |
- for byte in bytes: |
- integer *= 256 |
- if type(byte) is types.StringType: byte = ord(byte) |
- integer += byte |
- |
- return integer |
- |
-def int2bytes(number): |
- """ |
- Converts a number to a string of bytes |
- """ |
- |
- if not (type(number) is types.LongType or type(number) is types.IntType): |
- raise TypeError("You must pass a long or an int") |
- |
- string = "" |
- |
- while number > 0: |
- string = "%s%s" % (byte(number & 0xFF), string) |
- number /= 256 |
- |
- return string |
- |
-def to64(number): |
- """Converts a number in the range of 0 to 63 into base 64 digit |
- character in the range of '0'-'9', 'A'-'Z', 'a'-'z','-','_'. |
- |
- >>> to64(10) |
- 'A' |
- """ |
- |
- if not (type(number) is types.LongType or type(number) is types.IntType): |
- raise TypeError("You must pass a long or an int") |
- |
- if 0 <= number <= 9: #00-09 translates to '0' - '9' |
- return byte(number + 48) |
- |
- if 10 <= number <= 35: |
- return byte(number + 55) #10-35 translates to 'A' - 'Z' |
- |
- if 36 <= number <= 61: |
- return byte(number + 61) #36-61 translates to 'a' - 'z' |
- |
- if number == 62: # 62 translates to '-' (minus) |
- return byte(45) |
- |
- if number == 63: # 63 translates to '_' (underscore) |
- return byte(95) |
- |
- raise ValueError('Invalid Base64 value: %i' % number) |
- |
- |
-def from64(number): |
- """Converts an ordinal character value in the range of |
- 0-9,A-Z,a-z,-,_ to a number in the range of 0-63. |
- |
- >>> from64(49) |
- 1 |
- """ |
- |
- if not (type(number) is types.LongType or type(number) is types.IntType): |
- raise TypeError("You must pass a long or an int") |
- |
- if 48 <= number <= 57: #ord('0') - ord('9') translates to 0-9 |
- return(number - 48) |
- |
- if 65 <= number <= 90: #ord('A') - ord('Z') translates to 10-35 |
- return(number - 55) |
- |
- if 97 <= number <= 122: #ord('a') - ord('z') translates to 36-61 |
- return(number - 61) |
- |
- if number == 45: #ord('-') translates to 62 |
- return(62) |
- |
- if number == 95: #ord('_') translates to 63 |
- return(63) |
- |
- raise ValueError('Invalid Base64 value: %i' % number) |
- |
- |
-def int2str64(number): |
- """Converts a number to a string of base64 encoded characters in |
- the range of '0'-'9','A'-'Z,'a'-'z','-','_'. |
- |
- >>> int2str64(123456789) |
- '7MyqL' |
- """ |
- |
- if not (type(number) is types.LongType or type(number) is types.IntType): |
- raise TypeError("You must pass a long or an int") |
- |
- string = "" |
- |
- while number > 0: |
- string = "%s%s" % (to64(number & 0x3F), string) |
- number /= 64 |
- |
- return string |
- |
- |
-def str642int(string): |
- """Converts a base64 encoded string into an integer. |
- The chars of this string in in the range '0'-'9','A'-'Z','a'-'z','-','_' |
- |
- >>> str642int('7MyqL') |
- 123456789 |
- """ |
- |
- if not (type(string) is types.ListType or type(string) is types.StringType): |
- raise TypeError("You must pass a string or a list") |
- |
- integer = 0 |
- for byte in string: |
- integer *= 64 |
- if type(byte) is types.StringType: byte = ord(byte) |
- integer += from64(byte) |
- |
- return integer |
- |
-def read_random_int(nbits): |
- """Reads a random integer of approximately nbits bits rounded up |
- to whole bytes""" |
- |
- nbytes = int(math.ceil(nbits/8.)) |
- randomdata = os.urandom(nbytes) |
- return bytes2int(randomdata) |
- |
-def randint(minvalue, maxvalue): |
- """Returns a random integer x with minvalue <= x <= maxvalue""" |
- |
- # Safety - get a lot of random data even if the range is fairly |
- # small |
- min_nbits = 32 |
- |
- # The range of the random numbers we need to generate |
- range = (maxvalue - minvalue) + 1 |
- |
- # Which is this number of bytes |
- rangebytes = ((bit_size(range) + 7) / 8) |
- |
- # Convert to bits, but make sure it's always at least min_nbits*2 |
- rangebits = max(rangebytes * 8, min_nbits * 2) |
- |
- # Take a random number of bits between min_nbits and rangebits |
- nbits = random.randint(min_nbits, rangebits) |
- |
- return (read_random_int(nbits) % range) + minvalue |
- |
-def jacobi(a, b): |
- """Calculates the value of the Jacobi symbol (a/b) |
- where both a and b are positive integers, and b is odd |
- """ |
- |
- if a == 0: return 0 |
- result = 1 |
- while a > 1: |
- if a & 1: |
- if ((a-1)*(b-1) >> 2) & 1: |
- result = -result |
- a, b = b % a, a |
- else: |
- if (((b * b) - 1) >> 3) & 1: |
- result = -result |
- a >>= 1 |
- if a == 0: return 0 |
- return result |
- |
-def jacobi_witness(x, n): |
- """Returns False if n is an Euler pseudo-prime with base x, and |
- True otherwise. |
- """ |
- |
- j = jacobi(x, n) % n |
- f = pow(x, (n-1)/2, n) |
- |
- if j == f: return False |
- return True |
- |
-def randomized_primality_testing(n, k): |
- """Calculates whether n is composite (which is always correct) or |
- prime (which is incorrect with error probability 2**-k) |
- |
- Returns False if the number is composite, and True if it's |
- probably prime. |
- """ |
- |
- # 50% of Jacobi-witnesses can report compositness of non-prime numbers |
- |
- for i in range(k): |
- x = randint(1, n-1) |
- if jacobi_witness(x, n): return False |
- |
- return True |
- |
-def is_prime(number): |
- """Returns True if the number is prime, and False otherwise. |
- |
- >>> is_prime(42) |
- 0 |
- >>> is_prime(41) |
- 1 |
- """ |
- |
- if randomized_primality_testing(number, 6): |
- # Prime, according to Jacobi |
- return True |
- |
- # Not prime |
- return False |
- |
- |
-def getprime(nbits): |
- """Returns a prime number of max. 'math.ceil(nbits/8)*8' bits. In |
- other words: nbits is rounded up to whole bytes. |
- |
- >>> p = getprime(8) |
- >>> is_prime(p-1) |
- 0 |
- >>> is_prime(p) |
- 1 |
- >>> is_prime(p+1) |
- 0 |
- """ |
- |
- while True: |
- integer = read_random_int(nbits) |
- |
- # Make sure it's odd |
- integer |= 1 |
- |
- # Test for primeness |
- if is_prime(integer): break |
- |
- # Retry if not prime |
- |
- return integer |
- |
-def are_relatively_prime(a, b): |
- """Returns True if a and b are relatively prime, and False if they |
- are not. |
- |
- >>> are_relatively_prime(2, 3) |
- 1 |
- >>> are_relatively_prime(2, 4) |
- 0 |
- """ |
- |
- d = gcd(a, b) |
- return (d == 1) |
- |
-def find_p_q(nbits): |
- """Returns a tuple of two different primes of nbits bits""" |
- pbits = nbits + (nbits/16) #Make sure that p and q aren't too close |
- qbits = nbits - (nbits/16) #or the factoring programs can factor n |
- p = getprime(pbits) |
- while True: |
- q = getprime(qbits) |
- #Make sure p and q are different. |
- if not q == p: break |
- return (p, q) |
- |
-def extended_gcd(a, b): |
- """Returns a tuple (r, i, j) such that r = gcd(a, b) = ia + jb |
- """ |
- # r = gcd(a,b) i = multiplicitive inverse of a mod b |
- # or j = multiplicitive inverse of b mod a |
- # Neg return values for i or j are made positive mod b or a respectively |
- # Iterateive Version is faster and uses much less stack space |
- x = 0 |
- y = 1 |
- lx = 1 |
- ly = 0 |
- oa = a #Remember original a/b to remove |
- ob = b #negative values from return results |
- while b != 0: |
- q = long(a/b) |
- (a, b) = (b, a % b) |
- (x, lx) = ((lx - (q * x)),x) |
- (y, ly) = ((ly - (q * y)),y) |
- if (lx < 0): lx += ob #If neg wrap modulo orignal b |
- if (ly < 0): ly += oa #If neg wrap modulo orignal a |
- return (a, lx, ly) #Return only positive values |
- |
-# Main function: calculate encryption and decryption keys |
-def calculate_keys(p, q, nbits): |
- """Calculates an encryption and a decryption key for p and q, and |
- returns them as a tuple (e, d)""" |
- |
- n = p * q |
- phi_n = (p-1) * (q-1) |
- |
- while True: |
- # Make sure e has enough bits so we ensure "wrapping" through |
- # modulo n |
- e = max(65537,getprime(nbits/4)) |
- if are_relatively_prime(e, n) and are_relatively_prime(e, phi_n): break |
- |
- (d, i, j) = extended_gcd(e, phi_n) |
- |
- if not d == 1: |
- raise Exception("e (%d) and phi_n (%d) are not relatively prime" % (e, phi_n)) |
- if (i < 0): |
- raise Exception("New extended_gcd shouldn't return negative values") |
- if not (e * i) % phi_n == 1: |
- raise Exception("e (%d) and i (%d) are not mult. inv. modulo phi_n (%d)" % (e, i, phi_n)) |
- |
- return (e, i) |
- |
- |
-def gen_keys(nbits): |
- """Generate RSA keys of nbits bits. Returns (p, q, e, d). |
- |
- Note: this can take a long time, depending on the key size. |
- """ |
- |
- (p, q) = find_p_q(nbits) |
- (e, d) = calculate_keys(p, q, nbits) |
- |
- return (p, q, e, d) |
- |
-def newkeys(nbits): |
- """Generates public and private keys, and returns them as (pub, |
- priv). |
- |
- The public key consists of a dict {e: ..., , n: ....). The private |
- key consists of a dict {d: ...., p: ...., q: ....). |
- """ |
- nbits = max(9,nbits) # Don't let nbits go below 9 bits |
- (p, q, e, d) = gen_keys(nbits) |
- |
- return ( {'e': e, 'n': p*q}, {'d': d, 'p': p, 'q': q} ) |
- |
-def encrypt_int(message, ekey, n): |
- """Encrypts a message using encryption key 'ekey', working modulo n""" |
- |
- if type(message) is types.IntType: |
- message = long(message) |
- |
- if not type(message) is types.LongType: |
- raise TypeError("You must pass a long or int") |
- |
- if message < 0 or message > n: |
- raise OverflowError("The message is too long") |
- |
- #Note: Bit exponents start at zero (bit counts start at 1) this is correct |
- safebit = bit_size(n) - 2 #compute safe bit (MSB - 1) |
- message += (1 << safebit) #add safebit to ensure folding |
- |
- return pow(message, ekey, n) |
- |
-def decrypt_int(cyphertext, dkey, n): |
- """Decrypts a cypher text using the decryption key 'dkey', working |
- modulo n""" |
- |
- message = pow(cyphertext, dkey, n) |
- |
- safebit = bit_size(n) - 2 #compute safe bit (MSB - 1) |
- message -= (1 << safebit) #remove safebit before decode |
- |
- return message |
- |
-def encode64chops(chops): |
- """base64encodes chops and combines them into a ',' delimited string""" |
- |
- chips = [] #chips are character chops |
- |
- for value in chops: |
- chips.append(int2str64(value)) |
- |
- #delimit chops with comma |
- encoded = ','.join(chips) |
- |
- return encoded |
- |
-def decode64chops(string): |
- """base64decodes and makes a ',' delimited string into chops""" |
- |
- chips = string.split(',') #split chops at commas |
- |
- chops = [] |
- |
- for string in chips: #make char chops (chips) into chops |
- chops.append(str642int(string)) |
- |
- return chops |
- |
-def chopstring(message, key, n, funcref): |
- """Chops the 'message' into integers that fit into n, |
- leaving room for a safebit to be added to ensure that all |
- messages fold during exponentiation. The MSB of the number n |
- is not independant modulo n (setting it could cause overflow), so |
- use the next lower bit for the safebit. Therefore reserve 2-bits |
- in the number n for non-data bits. Calls specified encryption |
- function for each chop. |
- |
- Used by 'encrypt' and 'sign'. |
- """ |
- |
- msglen = len(message) |
- mbits = msglen * 8 |
- #Set aside 2-bits so setting of safebit won't overflow modulo n. |
- nbits = bit_size(n) - 2 # leave room for safebit |
- nbytes = nbits / 8 |
- blocks = msglen / nbytes |
- |
- if msglen % nbytes > 0: |
- blocks += 1 |
- |
- cypher = [] |
- |
- for bindex in range(blocks): |
- offset = bindex * nbytes |
- block = message[offset:offset+nbytes] |
- value = bytes2int(block) |
- cypher.append(funcref(value, key, n)) |
- |
- return encode64chops(cypher) #Encode encrypted ints to base64 strings |
- |
-def gluechops(string, key, n, funcref): |
- """Glues chops back together into a string. calls |
- funcref(integer, key, n) for each chop. |
- |
- Used by 'decrypt' and 'verify'. |
- """ |
- message = "" |
- |
- chops = decode64chops(string) #Decode base64 strings into integer chops |
- |
- for cpart in chops: |
- mpart = funcref(cpart, key, n) #Decrypt each chop |
- message += int2bytes(mpart) #Combine decrypted strings into a msg |
- |
- return message |
- |
-def encrypt(message, key): |
- """Encrypts a string 'message' with the public key 'key'""" |
- if 'n' not in key: |
- raise Exception("You must use the public key with encrypt") |
- |
- return chopstring(message, key['e'], key['n'], encrypt_int) |
- |
-def sign(message, key): |
- """Signs a string 'message' with the private key 'key'""" |
- if 'p' not in key: |
- raise Exception("You must use the private key with sign") |
- |
- return chopstring(message, key['d'], key['p']*key['q'], encrypt_int) |
- |
-def decrypt(cypher, key): |
- """Decrypts a string 'cypher' with the private key 'key'""" |
- if 'p' not in key: |
- raise Exception("You must use the private key with decrypt") |
- |
- return gluechops(cypher, key['d'], key['p']*key['q'], decrypt_int) |
- |
-def verify(cypher, key): |
- """Verifies a string 'cypher' with the public key 'key'""" |
- if 'n' not in key: |
- raise Exception("You must use the public key with verify") |
- |
- return gluechops(cypher, key['e'], key['n'], decrypt_int) |
- |
-# Do doctest if we're not imported |
-if __name__ == "__main__": |
- import doctest |
- doctest.testmod() |
- |
-__all__ = ["newkeys", "encrypt", "decrypt", "sign", "verify"] |
- |