Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1170)

Unified Diff: tools/telemetry/third_party/gsutil/third_party/boto/boto/dynamodb2/table.py

Issue 1260493004: Revert "Add gsutil 4.13 to telemetry/third_party" (Closed) Base URL: https://chromium.googlesource.com/chromium/src.git@master
Patch Set: Created 5 years, 5 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: tools/telemetry/third_party/gsutil/third_party/boto/boto/dynamodb2/table.py
diff --git a/tools/telemetry/third_party/gsutil/third_party/boto/boto/dynamodb2/table.py b/tools/telemetry/third_party/gsutil/third_party/boto/boto/dynamodb2/table.py
deleted file mode 100644
index d02ff5c7deb4acbb53925c85ab0e489649192a4d..0000000000000000000000000000000000000000
--- a/tools/telemetry/third_party/gsutil/third_party/boto/boto/dynamodb2/table.py
+++ /dev/null
@@ -1,1722 +0,0 @@
-import boto
-from boto.dynamodb2 import exceptions
-from boto.dynamodb2.fields import (HashKey, RangeKey,
- AllIndex, KeysOnlyIndex, IncludeIndex,
- GlobalAllIndex, GlobalKeysOnlyIndex,
- GlobalIncludeIndex)
-from boto.dynamodb2.items import Item
-from boto.dynamodb2.layer1 import DynamoDBConnection
-from boto.dynamodb2.results import ResultSet, BatchGetResultSet
-from boto.dynamodb2.types import (NonBooleanDynamizer, Dynamizer, FILTER_OPERATORS,
- QUERY_OPERATORS, STRING)
-from boto.exception import JSONResponseError
-
-
-class Table(object):
- """
- Interacts & models the behavior of a DynamoDB table.
-
- The ``Table`` object represents a set (or rough categorization) of
- records within DynamoDB. The important part is that all records within the
- table, while largely-schema-free, share the same schema & are essentially
- namespaced for use in your application. For example, you might have a
- ``users`` table or a ``forums`` table.
- """
- max_batch_get = 100
-
- _PROJECTION_TYPE_TO_INDEX = dict(
- global_indexes=dict(
- ALL=GlobalAllIndex,
- KEYS_ONLY=GlobalKeysOnlyIndex,
- INCLUDE=GlobalIncludeIndex,
- ), local_indexes=dict(
- ALL=AllIndex,
- KEYS_ONLY=KeysOnlyIndex,
- INCLUDE=IncludeIndex,
- )
- )
-
- def __init__(self, table_name, schema=None, throughput=None, indexes=None,
- global_indexes=None, connection=None):
- """
- Sets up a new in-memory ``Table``.
-
- This is useful if the table already exists within DynamoDB & you simply
- want to use it for additional interactions. The only required parameter
- is the ``table_name``. However, under the hood, the object will call
- ``describe_table`` to determine the schema/indexes/throughput. You
- can avoid this extra call by passing in ``schema`` & ``indexes``.
-
- **IMPORTANT** - If you're creating a new ``Table`` for the first time,
- you should use the ``Table.create`` method instead, as it will
- persist the table structure to DynamoDB.
-
- Requires a ``table_name`` parameter, which should be a simple string
- of the name of the table.
-
- Optionally accepts a ``schema`` parameter, which should be a list of
- ``BaseSchemaField`` subclasses representing the desired schema.
-
- Optionally accepts a ``throughput`` parameter, which should be a
- dictionary. If provided, it should specify a ``read`` & ``write`` key,
- both of which should have an integer value associated with them.
-
- Optionally accepts a ``indexes`` parameter, which should be a list of
- ``BaseIndexField`` subclasses representing the desired indexes.
-
- Optionally accepts a ``global_indexes`` parameter, which should be a
- list of ``GlobalBaseIndexField`` subclasses representing the desired
- indexes.
-
- Optionally accepts a ``connection`` parameter, which should be a
- ``DynamoDBConnection`` instance (or subclass). This is primarily useful
- for specifying alternate connection parameters.
-
- Example::
-
- # The simple, it-already-exists case.
- >>> conn = Table('users')
-
- # The full, minimum-extra-calls case.
- >>> from boto import dynamodb2
- >>> users = Table('users', schema=[
- ... HashKey('username'),
- ... RangeKey('date_joined', data_type=NUMBER)
- ... ], throughput={
- ... 'read':20,
- ... 'write': 10,
- ... }, indexes=[
- ... KeysOnlyIndex('MostRecentlyJoined', parts=[
- ... HashKey('username')
- ... RangeKey('date_joined')
- ... ]),
- ... ], global_indexes=[
- ... GlobalAllIndex('UsersByZipcode', parts=[
- ... HashKey('zipcode'),
- ... RangeKey('username'),
- ... ],
- ... throughput={
- ... 'read':10,
- ... 'write":10,
- ... }),
- ... ], connection=dynamodb2.connect_to_region('us-west-2',
- ... aws_access_key_id='key',
- ... aws_secret_access_key='key',
- ... ))
-
- """
- self.table_name = table_name
- self.connection = connection
- self.throughput = {
- 'read': 5,
- 'write': 5,
- }
- self.schema = schema
- self.indexes = indexes
- self.global_indexes = global_indexes
-
- if self.connection is None:
- self.connection = DynamoDBConnection()
-
- if throughput is not None:
- self.throughput = throughput
-
- self._dynamizer = NonBooleanDynamizer()
-
- def use_boolean(self):
- self._dynamizer = Dynamizer()
-
- @classmethod
- def create(cls, table_name, schema, throughput=None, indexes=None,
- global_indexes=None, connection=None):
- """
- Creates a new table in DynamoDB & returns an in-memory ``Table`` object.
-
- This will setup a brand new table within DynamoDB. The ``table_name``
- must be unique for your AWS account. The ``schema`` is also required
- to define the key structure of the table.
-
- **IMPORTANT** - You should consider the usage pattern of your table
- up-front, as the schema can **NOT** be modified once the table is
- created, requiring the creation of a new table & migrating the data
- should you wish to revise it.
-
- **IMPORTANT** - If the table already exists in DynamoDB, additional
- calls to this method will result in an error. If you just need
- a ``Table`` object to interact with the existing table, you should
- just initialize a new ``Table`` object, which requires only the
- ``table_name``.
-
- Requires a ``table_name`` parameter, which should be a simple string
- of the name of the table.
-
- Requires a ``schema`` parameter, which should be a list of
- ``BaseSchemaField`` subclasses representing the desired schema.
-
- Optionally accepts a ``throughput`` parameter, which should be a
- dictionary. If provided, it should specify a ``read`` & ``write`` key,
- both of which should have an integer value associated with them.
-
- Optionally accepts a ``indexes`` parameter, which should be a list of
- ``BaseIndexField`` subclasses representing the desired indexes.
-
- Optionally accepts a ``global_indexes`` parameter, which should be a
- list of ``GlobalBaseIndexField`` subclasses representing the desired
- indexes.
-
- Optionally accepts a ``connection`` parameter, which should be a
- ``DynamoDBConnection`` instance (or subclass). This is primarily useful
- for specifying alternate connection parameters.
-
- Example::
-
- >>> users = Table.create('users', schema=[
- ... HashKey('username'),
- ... RangeKey('date_joined', data_type=NUMBER)
- ... ], throughput={
- ... 'read':20,
- ... 'write': 10,
- ... }, indexes=[
- ... KeysOnlyIndex('MostRecentlyJoined', parts=[
- ... RangeKey('date_joined')
- ... ]), global_indexes=[
- ... GlobalAllIndex('UsersByZipcode', parts=[
- ... HashKey('zipcode'),
- ... RangeKey('username'),
- ... ],
- ... throughput={
- ... 'read':10,
- ... 'write':10,
- ... }),
- ... ])
-
- """
- table = cls(table_name=table_name, connection=connection)
- table.schema = schema
-
- if throughput is not None:
- table.throughput = throughput
-
- if indexes is not None:
- table.indexes = indexes
-
- if global_indexes is not None:
- table.global_indexes = global_indexes
-
- # Prep the schema.
- raw_schema = []
- attr_defs = []
- seen_attrs = set()
-
- for field in table.schema:
- raw_schema.append(field.schema())
- # Build the attributes off what we know.
- seen_attrs.add(field.name)
- attr_defs.append(field.definition())
-
- raw_throughput = {
- 'ReadCapacityUnits': int(table.throughput['read']),
- 'WriteCapacityUnits': int(table.throughput['write']),
- }
- kwargs = {}
-
- kwarg_map = {
- 'indexes': 'local_secondary_indexes',
- 'global_indexes': 'global_secondary_indexes',
- }
- for index_attr in ('indexes', 'global_indexes'):
- table_indexes = getattr(table, index_attr)
- if table_indexes:
- raw_indexes = []
- for index_field in table_indexes:
- raw_indexes.append(index_field.schema())
- # Make sure all attributes specified in the indexes are
- # added to the definition
- for field in index_field.parts:
- if field.name not in seen_attrs:
- seen_attrs.add(field.name)
- attr_defs.append(field.definition())
-
- kwargs[kwarg_map[index_attr]] = raw_indexes
-
- table.connection.create_table(
- table_name=table.table_name,
- attribute_definitions=attr_defs,
- key_schema=raw_schema,
- provisioned_throughput=raw_throughput,
- **kwargs
- )
- return table
-
- def _introspect_schema(self, raw_schema, raw_attributes=None):
- """
- Given a raw schema structure back from a DynamoDB response, parse
- out & build the high-level Python objects that represent them.
- """
- schema = []
- sane_attributes = {}
-
- if raw_attributes:
- for field in raw_attributes:
- sane_attributes[field['AttributeName']] = field['AttributeType']
-
- for field in raw_schema:
- data_type = sane_attributes.get(field['AttributeName'], STRING)
-
- if field['KeyType'] == 'HASH':
- schema.append(
- HashKey(field['AttributeName'], data_type=data_type)
- )
- elif field['KeyType'] == 'RANGE':
- schema.append(
- RangeKey(field['AttributeName'], data_type=data_type)
- )
- else:
- raise exceptions.UnknownSchemaFieldError(
- "%s was seen, but is unknown. Please report this at "
- "https://github.com/boto/boto/issues." % field['KeyType']
- )
-
- return schema
-
- def _introspect_all_indexes(self, raw_indexes, map_indexes_projection):
- """
- Given a raw index/global index structure back from a DynamoDB response,
- parse out & build the high-level Python objects that represent them.
- """
- indexes = []
-
- for field in raw_indexes:
- index_klass = map_indexes_projection.get('ALL')
- kwargs = {
- 'parts': []
- }
-
- if field['Projection']['ProjectionType'] == 'ALL':
- index_klass = map_indexes_projection.get('ALL')
- elif field['Projection']['ProjectionType'] == 'KEYS_ONLY':
- index_klass = map_indexes_projection.get('KEYS_ONLY')
- elif field['Projection']['ProjectionType'] == 'INCLUDE':
- index_klass = map_indexes_projection.get('INCLUDE')
- kwargs['includes'] = field['Projection']['NonKeyAttributes']
- else:
- raise exceptions.UnknownIndexFieldError(
- "%s was seen, but is unknown. Please report this at "
- "https://github.com/boto/boto/issues." % \
- field['Projection']['ProjectionType']
- )
-
- name = field['IndexName']
- kwargs['parts'] = self._introspect_schema(field['KeySchema'], None)
- indexes.append(index_klass(name, **kwargs))
-
- return indexes
-
- def _introspect_indexes(self, raw_indexes):
- """
- Given a raw index structure back from a DynamoDB response, parse
- out & build the high-level Python objects that represent them.
- """
- return self._introspect_all_indexes(
- raw_indexes, self._PROJECTION_TYPE_TO_INDEX.get('local_indexes'))
-
- def _introspect_global_indexes(self, raw_global_indexes):
- """
- Given a raw global index structure back from a DynamoDB response, parse
- out & build the high-level Python objects that represent them.
- """
- return self._introspect_all_indexes(
- raw_global_indexes,
- self._PROJECTION_TYPE_TO_INDEX.get('global_indexes'))
-
- def describe(self):
- """
- Describes the current structure of the table in DynamoDB.
-
- This information will be used to update the ``schema``, ``indexes``,
- ``global_indexes`` and ``throughput`` information on the ``Table``. Some
- calls, such as those involving creating keys or querying, will require
- this information to be populated.
-
- It also returns the full raw data structure from DynamoDB, in the
- event you'd like to parse out additional information (such as the
- ``ItemCount`` or usage information).
-
- Example::
-
- >>> users.describe()
- {
- # Lots of keys here...
- }
- >>> len(users.schema)
- 2
-
- """
- result = self.connection.describe_table(self.table_name)
-
- # Blindly update throughput, since what's on DynamoDB's end is likely
- # more correct.
- raw_throughput = result['Table']['ProvisionedThroughput']
- self.throughput['read'] = int(raw_throughput['ReadCapacityUnits'])
- self.throughput['write'] = int(raw_throughput['WriteCapacityUnits'])
-
- if not self.schema:
- # Since we have the data, build the schema.
- raw_schema = result['Table'].get('KeySchema', [])
- raw_attributes = result['Table'].get('AttributeDefinitions', [])
- self.schema = self._introspect_schema(raw_schema, raw_attributes)
-
- if not self.indexes:
- # Build the index information as well.
- raw_indexes = result['Table'].get('LocalSecondaryIndexes', [])
- self.indexes = self._introspect_indexes(raw_indexes)
-
- # Build the global index information as well.
- raw_global_indexes = result['Table'].get('GlobalSecondaryIndexes', [])
- self.global_indexes = self._introspect_global_indexes(raw_global_indexes)
-
- # This is leaky.
- return result
-
- def update(self, throughput=None, global_indexes=None):
- """
- Updates table attributes and global indexes in DynamoDB.
-
- Optionally accepts a ``throughput`` parameter, which should be a
- dictionary. If provided, it should specify a ``read`` & ``write`` key,
- both of which should have an integer value associated with them.
-
- Optionally accepts a ``global_indexes`` parameter, which should be a
- dictionary. If provided, it should specify the index name, which is also
- a dict containing a ``read`` & ``write`` key, both of which
- should have an integer value associated with them. If you are writing
- new code, please use ``Table.update_global_secondary_index``.
-
- Returns ``True`` on success.
-
- Example::
-
- # For a read-heavier application...
- >>> users.update(throughput={
- ... 'read': 20,
- ... 'write': 10,
- ... })
- True
-
- # To also update the global index(es) throughput.
- >>> users.update(throughput={
- ... 'read': 20,
- ... 'write': 10,
- ... },
- ... global_secondary_indexes={
- ... 'TheIndexNameHere': {
- ... 'read': 15,
- ... 'write': 5,
- ... }
- ... })
- True
- """
-
- data = None
-
- if throughput:
- self.throughput = throughput
- data = {
- 'ReadCapacityUnits': int(self.throughput['read']),
- 'WriteCapacityUnits': int(self.throughput['write']),
- }
-
- gsi_data = None
-
- if global_indexes:
- gsi_data = []
-
- for gsi_name, gsi_throughput in global_indexes.items():
- gsi_data.append({
- "Update": {
- "IndexName": gsi_name,
- "ProvisionedThroughput": {
- "ReadCapacityUnits": int(gsi_throughput['read']),
- "WriteCapacityUnits": int(gsi_throughput['write']),
- },
- },
- })
-
- if throughput or global_indexes:
- self.connection.update_table(
- self.table_name,
- provisioned_throughput=data,
- global_secondary_index_updates=gsi_data,
- )
-
- return True
- else:
- msg = 'You need to provide either the throughput or the ' \
- 'global_indexes to update method'
- boto.log.error(msg)
-
- return False
-
- def create_global_secondary_index(self, global_index):
- """
- Creates a global index in DynamoDB after the table has been created.
-
- Requires a ``global_indexes`` parameter, which should be a
- ``GlobalBaseIndexField`` subclass representing the desired index.
-
- To update ``global_indexes`` information on the ``Table``, you'll need
- to call ``Table.describe``.
-
- Returns ``True`` on success.
-
- Example::
-
- # To create a global index
- >>> users.create_global_secondary_index(
- ... global_index=GlobalAllIndex(
- ... 'TheIndexNameHere', parts=[
- ... HashKey('requiredHashkey', data_type=STRING),
- ... RangeKey('optionalRangeKey', data_type=STRING)
- ... ],
- ... throughput={
- ... 'read': 2,
- ... 'write': 1,
- ... })
- ... )
- True
-
- """
-
- if global_index:
- gsi_data = []
- gsi_data_attr_def = []
-
- gsi_data.append({
- "Create": global_index.schema()
- })
-
- for attr_def in global_index.parts:
- gsi_data_attr_def.append(attr_def.definition())
-
- self.connection.update_table(
- self.table_name,
- global_secondary_index_updates=gsi_data,
- attribute_definitions=gsi_data_attr_def
- )
-
- return True
- else:
- msg = 'You need to provide the global_index to ' \
- 'create_global_secondary_index method'
- boto.log.error(msg)
-
- return False
-
- def delete_global_secondary_index(self, global_index_name):
- """
- Deletes a global index in DynamoDB after the table has been created.
-
- Requires a ``global_index_name`` parameter, which should be a simple
- string of the name of the global secondary index.
-
- To update ``global_indexes`` information on the ``Table``, you'll need
- to call ``Table.describe``.
-
- Returns ``True`` on success.
-
- Example::
-
- # To delete a global index
- >>> users.delete_global_secondary_index('TheIndexNameHere')
- True
-
- """
-
- if global_index_name:
- gsi_data = [
- {
- "Delete": {
- "IndexName": global_index_name
- }
- }
- ]
-
- self.connection.update_table(
- self.table_name,
- global_secondary_index_updates=gsi_data,
- )
-
- return True
- else:
- msg = 'You need to provide the global index name to ' \
- 'delete_global_secondary_index method'
- boto.log.error(msg)
-
- return False
-
- def update_global_secondary_index(self, global_indexes):
- """
- Updates a global index(es) in DynamoDB after the table has been created.
-
- Requires a ``global_indexes`` parameter, which should be a
- dictionary. If provided, it should specify the index name, which is also
- a dict containing a ``read`` & ``write`` key, both of which
- should have an integer value associated with them.
-
- To update ``global_indexes`` information on the ``Table``, you'll need
- to call ``Table.describe``.
-
- Returns ``True`` on success.
-
- Example::
-
- # To update a global index
- >>> users.update_global_secondary_index(global_indexes={
- ... 'TheIndexNameHere': {
- ... 'read': 15,
- ... 'write': 5,
- ... }
- ... })
- True
-
- """
-
- if global_indexes:
- gsi_data = []
-
- for gsi_name, gsi_throughput in global_indexes.items():
- gsi_data.append({
- "Update": {
- "IndexName": gsi_name,
- "ProvisionedThroughput": {
- "ReadCapacityUnits": int(gsi_throughput['read']),
- "WriteCapacityUnits": int(gsi_throughput['write']),
- },
- },
- })
-
- self.connection.update_table(
- self.table_name,
- global_secondary_index_updates=gsi_data,
- )
- return True
- else:
- msg = 'You need to provide the global indexes to ' \
- 'update_global_secondary_index method'
- boto.log.error(msg)
-
- return False
-
- def delete(self):
- """
- Deletes a table in DynamoDB.
-
- **IMPORTANT** - Be careful when using this method, there is no undo.
-
- Returns ``True`` on success.
-
- Example::
-
- >>> users.delete()
- True
-
- """
- self.connection.delete_table(self.table_name)
- return True
-
- def _encode_keys(self, keys):
- """
- Given a flat Python dictionary of keys/values, converts it into the
- nested dictionary DynamoDB expects.
-
- Converts::
-
- {
- 'username': 'john',
- 'tags': [1, 2, 5],
- }
-
- ...to...::
-
- {
- 'username': {'S': 'john'},
- 'tags': {'NS': ['1', '2', '5']},
- }
-
- """
- raw_key = {}
-
- for key, value in keys.items():
- raw_key[key] = self._dynamizer.encode(value)
-
- return raw_key
-
- def get_item(self, consistent=False, attributes=None, **kwargs):
- """
- Fetches an item (record) from a table in DynamoDB.
-
- To specify the key of the item you'd like to get, you can specify the
- key attributes as kwargs.
-
- Optionally accepts a ``consistent`` parameter, which should be a
- boolean. If you provide ``True``, it will perform
- a consistent (but more expensive) read from DynamoDB.
- (Default: ``False``)
-
- Optionally accepts an ``attributes`` parameter, which should be a
- list of fieldname to fetch. (Default: ``None``, which means all fields
- should be fetched)
-
- Returns an ``Item`` instance containing all the data for that record.
-
- Raises an ``ItemNotFound`` exception if the item is not found.
-
- Example::
-
- # A simple hash key.
- >>> john = users.get_item(username='johndoe')
- >>> john['first_name']
- 'John'
-
- # A complex hash+range key.
- >>> john = users.get_item(username='johndoe', last_name='Doe')
- >>> john['first_name']
- 'John'
-
- # A consistent read (assuming the data might have just changed).
- >>> john = users.get_item(username='johndoe', consistent=True)
- >>> john['first_name']
- 'Johann'
-
- # With a key that is an invalid variable name in Python.
- # Also, assumes a different schema than previous examples.
- >>> john = users.get_item(**{
- ... 'date-joined': 127549192,
- ... })
- >>> john['first_name']
- 'John'
-
- """
- raw_key = self._encode_keys(kwargs)
- item_data = self.connection.get_item(
- self.table_name,
- raw_key,
- attributes_to_get=attributes,
- consistent_read=consistent
- )
- if 'Item' not in item_data:
- raise exceptions.ItemNotFound("Item %s couldn't be found." % kwargs)
- item = Item(self)
- item.load(item_data)
- return item
-
- def has_item(self, **kwargs):
- """
- Return whether an item (record) exists within a table in DynamoDB.
-
- To specify the key of the item you'd like to get, you can specify the
- key attributes as kwargs.
-
- Optionally accepts a ``consistent`` parameter, which should be a
- boolean. If you provide ``True``, it will perform
- a consistent (but more expensive) read from DynamoDB.
- (Default: ``False``)
-
- Optionally accepts an ``attributes`` parameter, which should be a
- list of fieldnames to fetch. (Default: ``None``, which means all fields
- should be fetched)
-
- Returns ``True`` if an ``Item`` is present, ``False`` if not.
-
- Example::
-
- # Simple, just hash-key schema.
- >>> users.has_item(username='johndoe')
- True
-
- # Complex schema, item not present.
- >>> users.has_item(
- ... username='johndoe',
- ... date_joined='2014-01-07'
- ... )
- False
-
- """
- try:
- self.get_item(**kwargs)
- except (JSONResponseError, exceptions.ItemNotFound):
- return False
-
- return True
-
- def lookup(self, *args, **kwargs):
- """
- Look up an entry in DynamoDB. This is mostly backwards compatible
- with boto.dynamodb. Unlike get_item, it takes hash_key and range_key first,
- although you may still specify keyword arguments instead.
-
- Also unlike the get_item command, if the returned item has no keys
- (i.e., it does not exist in DynamoDB), a None result is returned, instead
- of an empty key object.
-
- Example::
- >>> user = users.lookup(username)
- >>> user = users.lookup(username, consistent=True)
- >>> app = apps.lookup('my_customer_id', 'my_app_id')
-
- """
- if not self.schema:
- self.describe()
- for x, arg in enumerate(args):
- kwargs[self.schema[x].name] = arg
- ret = self.get_item(**kwargs)
- if not ret.keys():
- return None
- return ret
-
- def new_item(self, *args):
- """
- Returns a new, blank item
-
- This is mostly for consistency with boto.dynamodb
- """
- if not self.schema:
- self.describe()
- data = {}
- for x, arg in enumerate(args):
- data[self.schema[x].name] = arg
- return Item(self, data=data)
-
- def put_item(self, data, overwrite=False):
- """
- Saves an entire item to DynamoDB.
-
- By default, if any part of the ``Item``'s original data doesn't match
- what's currently in DynamoDB, this request will fail. This prevents
- other processes from updating the data in between when you read the
- item & when your request to update the item's data is processed, which
- would typically result in some data loss.
-
- Requires a ``data`` parameter, which should be a dictionary of the data
- you'd like to store in DynamoDB.
-
- Optionally accepts an ``overwrite`` parameter, which should be a
- boolean. If you provide ``True``, this will tell DynamoDB to blindly
- overwrite whatever data is present, if any.
-
- Returns ``True`` on success.
-
- Example::
-
- >>> users.put_item(data={
- ... 'username': 'jane',
- ... 'first_name': 'Jane',
- ... 'last_name': 'Doe',
- ... 'date_joined': 126478915,
- ... })
- True
-
- """
- item = Item(self, data=data)
- return item.save(overwrite=overwrite)
-
- def _put_item(self, item_data, expects=None):
- """
- The internal variant of ``put_item`` (full data). This is used by the
- ``Item`` objects, since that operation is represented at the
- table-level by the API, but conceptually maps better to telling an
- individual ``Item`` to save itself.
- """
- kwargs = {}
-
- if expects is not None:
- kwargs['expected'] = expects
-
- self.connection.put_item(self.table_name, item_data, **kwargs)
- return True
-
- def _update_item(self, key, item_data, expects=None):
- """
- The internal variant of ``put_item`` (partial data). This is used by the
- ``Item`` objects, since that operation is represented at the
- table-level by the API, but conceptually maps better to telling an
- individual ``Item`` to save itself.
- """
- raw_key = self._encode_keys(key)
- kwargs = {}
-
- if expects is not None:
- kwargs['expected'] = expects
-
- self.connection.update_item(self.table_name, raw_key, item_data, **kwargs)
- return True
-
- def delete_item(self, expected=None, conditional_operator=None, **kwargs):
- """
- Deletes a single item. You can perform a conditional delete operation
- that deletes the item if it exists, or if it has an expected attribute
- value.
-
- Conditional deletes are useful for only deleting items if specific
- conditions are met. If those conditions are met, DynamoDB performs
- the delete. Otherwise, the item is not deleted.
-
- To specify the expected attribute values of the item, you can pass a
- dictionary of conditions to ``expected``. Each condition should follow
- the pattern ``<attributename>__<comparison_operator>=<value_to_expect>``.
-
- **IMPORTANT** - Be careful when using this method, there is no undo.
-
- To specify the key of the item you'd like to get, you can specify the
- key attributes as kwargs.
-
- Optionally accepts an ``expected`` parameter which is a dictionary of
- expected attribute value conditions.
-
- Optionally accepts a ``conditional_operator`` which applies to the
- expected attribute value conditions:
-
- + `AND` - If all of the conditions evaluate to true (default)
- + `OR` - True if at least one condition evaluates to true
-
- Returns ``True`` on success, ``False`` on failed conditional delete.
-
- Example::
-
- # A simple hash key.
- >>> users.delete_item(username='johndoe')
- True
-
- # A complex hash+range key.
- >>> users.delete_item(username='jane', last_name='Doe')
- True
-
- # With a key that is an invalid variable name in Python.
- # Also, assumes a different schema than previous examples.
- >>> users.delete_item(**{
- ... 'date-joined': 127549192,
- ... })
- True
-
- # Conditional delete
- >>> users.delete_item(username='johndoe',
- ... expected={'balance__eq': 0})
- True
- """
- expected = self._build_filters(expected, using=FILTER_OPERATORS)
- raw_key = self._encode_keys(kwargs)
-
- try:
- self.connection.delete_item(self.table_name, raw_key,
- expected=expected,
- conditional_operator=conditional_operator)
- except exceptions.ConditionalCheckFailedException:
- return False
-
- return True
-
- def get_key_fields(self):
- """
- Returns the fields necessary to make a key for a table.
-
- If the ``Table`` does not already have a populated ``schema``,
- this will request it via a ``Table.describe`` call.
-
- Returns a list of fieldnames (strings).
-
- Example::
-
- # A simple hash key.
- >>> users.get_key_fields()
- ['username']
-
- # A complex hash+range key.
- >>> users.get_key_fields()
- ['username', 'last_name']
-
- """
- if not self.schema:
- # We don't know the structure of the table. Get a description to
- # populate the schema.
- self.describe()
-
- return [field.name for field in self.schema]
-
- def batch_write(self):
- """
- Allows the batching of writes to DynamoDB.
-
- Since each write/delete call to DynamoDB has a cost associated with it,
- when loading lots of data, it makes sense to batch them, creating as
- few calls as possible.
-
- This returns a context manager that will transparently handle creating
- these batches. The object you get back lightly-resembles a ``Table``
- object, sharing just the ``put_item`` & ``delete_item`` methods
- (which are all that DynamoDB can batch in terms of writing data).
-
- DynamoDB's maximum batch size is 25 items per request. If you attempt
- to put/delete more than that, the context manager will batch as many
- as it can up to that number, then flush them to DynamoDB & continue
- batching as more calls come in.
-
- Example::
-
- # Assuming a table with one record...
- >>> with users.batch_write() as batch:
- ... batch.put_item(data={
- ... 'username': 'johndoe',
- ... 'first_name': 'John',
- ... 'last_name': 'Doe',
- ... 'owner': 1,
- ... })
- ... # Nothing across the wire yet.
- ... batch.delete_item(username='bob')
- ... # Still no requests sent.
- ... batch.put_item(data={
- ... 'username': 'jane',
- ... 'first_name': 'Jane',
- ... 'last_name': 'Doe',
- ... 'date_joined': 127436192,
- ... })
- ... # Nothing yet, but once we leave the context, the
- ... # put/deletes will be sent.
-
- """
- # PHENOMENAL COSMIC DOCS!!! itty-bitty code.
- return BatchTable(self)
-
- def _build_filters(self, filter_kwargs, using=QUERY_OPERATORS):
- """
- An internal method for taking query/scan-style ``**kwargs`` & turning
- them into the raw structure DynamoDB expects for filtering.
- """
- if filter_kwargs is None:
- return
-
- filters = {}
-
- for field_and_op, value in filter_kwargs.items():
- field_bits = field_and_op.split('__')
- fieldname = '__'.join(field_bits[:-1])
-
- try:
- op = using[field_bits[-1]]
- except KeyError:
- raise exceptions.UnknownFilterTypeError(
- "Operator '%s' from '%s' is not recognized." % (
- field_bits[-1],
- field_and_op
- )
- )
-
- lookup = {
- 'AttributeValueList': [],
- 'ComparisonOperator': op,
- }
-
- # Special-case the ``NULL/NOT_NULL`` case.
- if field_bits[-1] == 'null':
- del lookup['AttributeValueList']
-
- if value is False:
- lookup['ComparisonOperator'] = 'NOT_NULL'
- else:
- lookup['ComparisonOperator'] = 'NULL'
- # Special-case the ``BETWEEN`` case.
- elif field_bits[-1] == 'between':
- if len(value) == 2 and isinstance(value, (list, tuple)):
- lookup['AttributeValueList'].append(
- self._dynamizer.encode(value[0])
- )
- lookup['AttributeValueList'].append(
- self._dynamizer.encode(value[1])
- )
- # Special-case the ``IN`` case
- elif field_bits[-1] == 'in':
- for val in value:
- lookup['AttributeValueList'].append(self._dynamizer.encode(val))
- else:
- # Fix up the value for encoding, because it was built to only work
- # with ``set``s.
- if isinstance(value, (list, tuple)):
- value = set(value)
- lookup['AttributeValueList'].append(
- self._dynamizer.encode(value)
- )
-
- # Finally, insert it into the filters.
- filters[fieldname] = lookup
-
- return filters
-
- def query(self, limit=None, index=None, reverse=False, consistent=False,
- attributes=None, max_page_size=None, **filter_kwargs):
- """
- **WARNING:** This method is provided **strictly** for
- backward-compatibility. It returns results in an incorrect order.
-
- If you are writing new code, please use ``Table.query_2``.
- """
- reverse = not reverse
- return self.query_2(limit=limit, index=index, reverse=reverse,
- consistent=consistent, attributes=attributes,
- max_page_size=max_page_size, **filter_kwargs)
-
- def query_2(self, limit=None, index=None, reverse=False,
- consistent=False, attributes=None, max_page_size=None,
- query_filter=None, conditional_operator=None,
- **filter_kwargs):
- """
- Queries for a set of matching items in a DynamoDB table.
-
- Queries can be performed against a hash key, a hash+range key or
- against any data stored in your local secondary indexes. Query filters
- can be used to filter on arbitrary fields.
-
- **Note** - You can not query against arbitrary fields within the data
- stored in DynamoDB unless you specify ``query_filter`` values.
-
- To specify the filters of the items you'd like to get, you can specify
- the filters as kwargs. Each filter kwarg should follow the pattern
- ``<fieldname>__<filter_operation>=<value_to_look_for>``. Query filters
- are specified in the same way.
-
- Optionally accepts a ``limit`` parameter, which should be an integer
- count of the total number of items to return. (Default: ``None`` -
- all results)
-
- Optionally accepts an ``index`` parameter, which should be a string of
- name of the local secondary index you want to query against.
- (Default: ``None``)
-
- Optionally accepts a ``reverse`` parameter, which will present the
- results in reverse order. (Default: ``False`` - normal order)
-
- Optionally accepts a ``consistent`` parameter, which should be a
- boolean. If you provide ``True``, it will force a consistent read of
- the data (more expensive). (Default: ``False`` - use eventually
- consistent reads)
-
- Optionally accepts a ``attributes`` parameter, which should be a
- tuple. If you provide any attributes only these will be fetched
- from DynamoDB. This uses the ``AttributesToGet`` and set's
- ``Select`` to ``SPECIFIC_ATTRIBUTES`` API.
-
- Optionally accepts a ``max_page_size`` parameter, which should be an
- integer count of the maximum number of items to retrieve
- **per-request**. This is useful in making faster requests & prevent
- the scan from drowning out other queries. (Default: ``None`` -
- fetch as many as DynamoDB will return)
-
- Optionally accepts a ``query_filter`` which is a dictionary of filter
- conditions against any arbitrary field in the returned data.
-
- Optionally accepts a ``conditional_operator`` which applies to the
- query filter conditions:
-
- + `AND` - True if all filter conditions evaluate to true (default)
- + `OR` - True if at least one filter condition evaluates to true
-
- Returns a ``ResultSet``, which transparently handles the pagination of
- results you get back.
-
- Example::
-
- # Look for last names equal to "Doe".
- >>> results = users.query(last_name__eq='Doe')
- >>> for res in results:
- ... print res['first_name']
- 'John'
- 'Jane'
-
- # Look for last names beginning with "D", in reverse order, limit 3.
- >>> results = users.query(
- ... last_name__beginswith='D',
- ... reverse=True,
- ... limit=3
- ... )
- >>> for res in results:
- ... print res['first_name']
- 'Alice'
- 'Jane'
- 'John'
-
- # Use an LSI & a consistent read.
- >>> results = users.query(
- ... date_joined__gte=1236451000,
- ... owner__eq=1,
- ... index='DateJoinedIndex',
- ... consistent=True
- ... )
- >>> for res in results:
- ... print res['first_name']
- 'Alice'
- 'Bob'
- 'John'
- 'Fred'
-
- # Filter by non-indexed field(s)
- >>> results = users.query(
- ... last_name__eq='Doe',
- ... reverse=True,
- ... query_filter={
- ... 'first_name__beginswith': 'A'
- ... }
- ... )
- >>> for res in results:
- ... print res['first_name'] + ' ' + res['last_name']
- 'Alice Doe'
-
- """
- if self.schema:
- if len(self.schema) == 1:
- if len(filter_kwargs) <= 1:
- if not self.global_indexes or not len(self.global_indexes):
- # If the schema only has one field, there's <= 1 filter
- # param & no Global Secondary Indexes, this is user
- # error. Bail early.
- raise exceptions.QueryError(
- "You must specify more than one key to filter on."
- )
-
- if attributes is not None:
- select = 'SPECIFIC_ATTRIBUTES'
- else:
- select = None
-
- results = ResultSet(
- max_page_size=max_page_size
- )
- kwargs = filter_kwargs.copy()
- kwargs.update({
- 'limit': limit,
- 'index': index,
- 'reverse': reverse,
- 'consistent': consistent,
- 'select': select,
- 'attributes_to_get': attributes,
- 'query_filter': query_filter,
- 'conditional_operator': conditional_operator,
- })
- results.to_call(self._query, **kwargs)
- return results
-
- def query_count(self, index=None, consistent=False, conditional_operator=None,
- query_filter=None, scan_index_forward=True, limit=None,
- exclusive_start_key=None, **filter_kwargs):
- """
- Queries the exact count of matching items in a DynamoDB table.
-
- Queries can be performed against a hash key, a hash+range key or
- against any data stored in your local secondary indexes. Query filters
- can be used to filter on arbitrary fields.
-
- To specify the filters of the items you'd like to get, you can specify
- the filters as kwargs. Each filter kwarg should follow the pattern
- ``<fieldname>__<filter_operation>=<value_to_look_for>``. Query filters
- are specified in the same way.
-
- Optionally accepts an ``index`` parameter, which should be a string of
- name of the local secondary index you want to query against.
- (Default: ``None``)
-
- Optionally accepts a ``consistent`` parameter, which should be a
- boolean. If you provide ``True``, it will force a consistent read of
- the data (more expensive). (Default: ``False`` - use eventually
- consistent reads)
-
- Optionally accepts a ``query_filter`` which is a dictionary of filter
- conditions against any arbitrary field in the returned data.
-
- Optionally accepts a ``conditional_operator`` which applies to the
- query filter conditions:
-
- + `AND` - True if all filter conditions evaluate to true (default)
- + `OR` - True if at least one filter condition evaluates to true
-
- Optionally accept a ``exclusive_start_key`` which is used to get
- the remaining items when a query cannot return the complete count.
-
- Returns an integer which represents the exact amount of matched
- items.
-
- :type scan_index_forward: boolean
- :param scan_index_forward: Specifies ascending (true) or descending
- (false) traversal of the index. DynamoDB returns results reflecting
- the requested order determined by the range key. If the data type
- is Number, the results are returned in numeric order. For String,
- the results are returned in order of ASCII character code values.
- For Binary, DynamoDB treats each byte of the binary data as
- unsigned when it compares binary values.
-
- If ScanIndexForward is not specified, the results are returned in
- ascending order.
-
- :type limit: integer
- :param limit: The maximum number of items to evaluate (not necessarily
- the number of matching items).
-
- Example::
-
- # Look for last names equal to "Doe".
- >>> users.query_count(last_name__eq='Doe')
- 5
-
- # Use an LSI & a consistent read.
- >>> users.query_count(
- ... date_joined__gte=1236451000,
- ... owner__eq=1,
- ... index='DateJoinedIndex',
- ... consistent=True
- ... )
- 2
-
- """
- key_conditions = self._build_filters(
- filter_kwargs,
- using=QUERY_OPERATORS
- )
-
- built_query_filter = self._build_filters(
- query_filter,
- using=FILTER_OPERATORS
- )
-
- count_buffer = 0
- last_evaluated_key = exclusive_start_key
-
- while True:
- raw_results = self.connection.query(
- self.table_name,
- index_name=index,
- consistent_read=consistent,
- select='COUNT',
- key_conditions=key_conditions,
- query_filter=built_query_filter,
- conditional_operator=conditional_operator,
- limit=limit,
- scan_index_forward=scan_index_forward,
- exclusive_start_key=last_evaluated_key
- )
-
- count_buffer += int(raw_results.get('Count', 0))
- last_evaluated_key = raw_results.get('LastEvaluatedKey')
- if not last_evaluated_key or count_buffer < 1:
- break
-
- return count_buffer
-
- def _query(self, limit=None, index=None, reverse=False, consistent=False,
- exclusive_start_key=None, select=None, attributes_to_get=None,
- query_filter=None, conditional_operator=None, **filter_kwargs):
- """
- The internal method that performs the actual queries. Used extensively
- by ``ResultSet`` to perform each (paginated) request.
- """
- kwargs = {
- 'limit': limit,
- 'index_name': index,
- 'consistent_read': consistent,
- 'select': select,
- 'attributes_to_get': attributes_to_get,
- 'conditional_operator': conditional_operator,
- }
-
- if reverse:
- kwargs['scan_index_forward'] = False
-
- if exclusive_start_key:
- kwargs['exclusive_start_key'] = {}
-
- for key, value in exclusive_start_key.items():
- kwargs['exclusive_start_key'][key] = \
- self._dynamizer.encode(value)
-
- # Convert the filters into something we can actually use.
- kwargs['key_conditions'] = self._build_filters(
- filter_kwargs,
- using=QUERY_OPERATORS
- )
-
- kwargs['query_filter'] = self._build_filters(
- query_filter,
- using=FILTER_OPERATORS
- )
-
- raw_results = self.connection.query(
- self.table_name,
- **kwargs
- )
- results = []
- last_key = None
-
- for raw_item in raw_results.get('Items', []):
- item = Item(self)
- item.load({
- 'Item': raw_item,
- })
- results.append(item)
-
- if raw_results.get('LastEvaluatedKey', None):
- last_key = {}
-
- for key, value in raw_results['LastEvaluatedKey'].items():
- last_key[key] = self._dynamizer.decode(value)
-
- return {
- 'results': results,
- 'last_key': last_key,
- }
-
- def scan(self, limit=None, segment=None, total_segments=None,
- max_page_size=None, attributes=None, conditional_operator=None,
- **filter_kwargs):
- """
- Scans across all items within a DynamoDB table.
-
- Scans can be performed against a hash key or a hash+range key. You can
- additionally filter the results after the table has been read but
- before the response is returned by using query filters.
-
- To specify the filters of the items you'd like to get, you can specify
- the filters as kwargs. Each filter kwarg should follow the pattern
- ``<fieldname>__<filter_operation>=<value_to_look_for>``.
-
- Optionally accepts a ``limit`` parameter, which should be an integer
- count of the total number of items to return. (Default: ``None`` -
- all results)
-
- Optionally accepts a ``segment`` parameter, which should be an integer
- of the segment to retrieve on. Please see the documentation about
- Parallel Scans (Default: ``None`` - no segments)
-
- Optionally accepts a ``total_segments`` parameter, which should be an
- integer count of number of segments to divide the table into.
- Please see the documentation about Parallel Scans (Default: ``None`` -
- no segments)
-
- Optionally accepts a ``max_page_size`` parameter, which should be an
- integer count of the maximum number of items to retrieve
- **per-request**. This is useful in making faster requests & prevent
- the scan from drowning out other queries. (Default: ``None`` -
- fetch as many as DynamoDB will return)
-
- Optionally accepts an ``attributes`` parameter, which should be a
- tuple. If you provide any attributes only these will be fetched
- from DynamoDB. This uses the ``AttributesToGet`` and set's
- ``Select`` to ``SPECIFIC_ATTRIBUTES`` API.
-
- Returns a ``ResultSet``, which transparently handles the pagination of
- results you get back.
-
- Example::
-
- # All results.
- >>> everything = users.scan()
-
- # Look for last names beginning with "D".
- >>> results = users.scan(last_name__beginswith='D')
- >>> for res in results:
- ... print res['first_name']
- 'Alice'
- 'John'
- 'Jane'
-
- # Use an ``IN`` filter & limit.
- >>> results = users.scan(
- ... age__in=[25, 26, 27, 28, 29],
- ... limit=1
- ... )
- >>> for res in results:
- ... print res['first_name']
- 'Alice'
-
- """
- results = ResultSet(
- max_page_size=max_page_size
- )
- kwargs = filter_kwargs.copy()
- kwargs.update({
- 'limit': limit,
- 'segment': segment,
- 'total_segments': total_segments,
- 'attributes': attributes,
- 'conditional_operator': conditional_operator,
- })
- results.to_call(self._scan, **kwargs)
- return results
-
- def _scan(self, limit=None, exclusive_start_key=None, segment=None,
- total_segments=None, attributes=None, conditional_operator=None,
- **filter_kwargs):
- """
- The internal method that performs the actual scan. Used extensively
- by ``ResultSet`` to perform each (paginated) request.
- """
- kwargs = {
- 'limit': limit,
- 'segment': segment,
- 'total_segments': total_segments,
- 'attributes_to_get': attributes,
- 'conditional_operator': conditional_operator,
- }
-
- if exclusive_start_key:
- kwargs['exclusive_start_key'] = {}
-
- for key, value in exclusive_start_key.items():
- kwargs['exclusive_start_key'][key] = \
- self._dynamizer.encode(value)
-
- # Convert the filters into something we can actually use.
- kwargs['scan_filter'] = self._build_filters(
- filter_kwargs,
- using=FILTER_OPERATORS
- )
-
- raw_results = self.connection.scan(
- self.table_name,
- **kwargs
- )
- results = []
- last_key = None
-
- for raw_item in raw_results.get('Items', []):
- item = Item(self)
- item.load({
- 'Item': raw_item,
- })
- results.append(item)
-
- if raw_results.get('LastEvaluatedKey', None):
- last_key = {}
-
- for key, value in raw_results['LastEvaluatedKey'].items():
- last_key[key] = self._dynamizer.decode(value)
-
- return {
- 'results': results,
- 'last_key': last_key,
- }
-
- def batch_get(self, keys, consistent=False, attributes=None):
- """
- Fetches many specific items in batch from a table.
-
- Requires a ``keys`` parameter, which should be a list of dictionaries.
- Each dictionary should consist of the keys values to specify.
-
- Optionally accepts a ``consistent`` parameter, which should be a
- boolean. If you provide ``True``, a strongly consistent read will be
- used. (Default: False)
-
- Optionally accepts an ``attributes`` parameter, which should be a
- tuple. If you provide any attributes only these will be fetched
- from DynamoDB.
-
- Returns a ``ResultSet``, which transparently handles the pagination of
- results you get back.
-
- Example::
-
- >>> results = users.batch_get(keys=[
- ... {
- ... 'username': 'johndoe',
- ... },
- ... {
- ... 'username': 'jane',
- ... },
- ... {
- ... 'username': 'fred',
- ... },
- ... ])
- >>> for res in results:
- ... print res['first_name']
- 'John'
- 'Jane'
- 'Fred'
-
- """
- # We pass the keys to the constructor instead, so it can maintain it's
- # own internal state as to what keys have been processed.
- results = BatchGetResultSet(keys=keys, max_batch_get=self.max_batch_get)
- results.to_call(self._batch_get, consistent=consistent, attributes=attributes)
- return results
-
- def _batch_get(self, keys, consistent=False, attributes=None):
- """
- The internal method that performs the actual batch get. Used extensively
- by ``BatchGetResultSet`` to perform each (paginated) request.
- """
- items = {
- self.table_name: {
- 'Keys': [],
- },
- }
-
- if consistent:
- items[self.table_name]['ConsistentRead'] = True
-
- if attributes is not None:
- items[self.table_name]['AttributesToGet'] = attributes
-
- for key_data in keys:
- raw_key = {}
-
- for key, value in key_data.items():
- raw_key[key] = self._dynamizer.encode(value)
-
- items[self.table_name]['Keys'].append(raw_key)
-
- raw_results = self.connection.batch_get_item(request_items=items)
- results = []
- unprocessed_keys = []
-
- for raw_item in raw_results['Responses'].get(self.table_name, []):
- item = Item(self)
- item.load({
- 'Item': raw_item,
- })
- results.append(item)
-
- raw_unproccessed = raw_results.get('UnprocessedKeys', {})
-
- for raw_key in raw_unproccessed.get('Keys', []):
- py_key = {}
-
- for key, value in raw_key.items():
- py_key[key] = self._dynamizer.decode(value)
-
- unprocessed_keys.append(py_key)
-
- return {
- 'results': results,
- # NEVER return a ``last_key``. Just in-case any part of
- # ``ResultSet`` peeks through, since much of the
- # original underlying implementation is based on this key.
- 'last_key': None,
- 'unprocessed_keys': unprocessed_keys,
- }
-
- def count(self):
- """
- Returns a (very) eventually consistent count of the number of items
- in a table.
-
- Lag time is about 6 hours, so don't expect a high degree of accuracy.
-
- Example::
-
- >>> users.count()
- 6
-
- """
- info = self.describe()
- return info['Table'].get('ItemCount', 0)
-
-
-class BatchTable(object):
- """
- Used by ``Table`` as the context manager for batch writes.
-
- You likely don't want to try to use this object directly.
- """
- def __init__(self, table):
- self.table = table
- self._to_put = []
- self._to_delete = []
- self._unprocessed = []
-
- def __enter__(self):
- return self
-
- def __exit__(self, type, value, traceback):
- if self._to_put or self._to_delete:
- # Flush anything that's left.
- self.flush()
-
- if self._unprocessed:
- # Finally, handle anything that wasn't processed.
- self.resend_unprocessed()
-
- def put_item(self, data, overwrite=False):
- self._to_put.append(data)
-
- if self.should_flush():
- self.flush()
-
- def delete_item(self, **kwargs):
- self._to_delete.append(kwargs)
-
- if self.should_flush():
- self.flush()
-
- def should_flush(self):
- if len(self._to_put) + len(self._to_delete) == 25:
- return True
-
- return False
-
- def flush(self):
- batch_data = {
- self.table.table_name: [
- # We'll insert data here shortly.
- ],
- }
-
- for put in self._to_put:
- item = Item(self.table, data=put)
- batch_data[self.table.table_name].append({
- 'PutRequest': {
- 'Item': item.prepare_full(),
- }
- })
-
- for delete in self._to_delete:
- batch_data[self.table.table_name].append({
- 'DeleteRequest': {
- 'Key': self.table._encode_keys(delete),
- }
- })
-
- resp = self.table.connection.batch_write_item(batch_data)
- self.handle_unprocessed(resp)
-
- self._to_put = []
- self._to_delete = []
- return True
-
- def handle_unprocessed(self, resp):
- if len(resp.get('UnprocessedItems', [])):
- table_name = self.table.table_name
- unprocessed = resp['UnprocessedItems'].get(table_name, [])
-
- # Some items have not been processed. Stow them for now &
- # re-attempt processing on ``__exit__``.
- msg = "%s items were unprocessed. Storing for later."
- boto.log.info(msg % len(unprocessed))
- self._unprocessed.extend(unprocessed)
-
- def resend_unprocessed(self):
- # If there are unprocessed records (for instance, the user was over
- # their throughput limitations), iterate over them & send until they're
- # all there.
- boto.log.info(
- "Re-sending %s unprocessed items." % len(self._unprocessed)
- )
-
- while len(self._unprocessed):
- # Again, do 25 at a time.
- to_resend = self._unprocessed[:25]
- # Remove them from the list.
- self._unprocessed = self._unprocessed[25:]
- batch_data = {
- self.table.table_name: to_resend
- }
- boto.log.info("Sending %s items" % len(to_resend))
- resp = self.table.connection.batch_write_item(batch_data)
- self.handle_unprocessed(resp)
- boto.log.info(
- "%s unprocessed items left" % len(self._unprocessed)
- )

Powered by Google App Engine
This is Rietveld 408576698